
':.,

SIAM J, NUMER, ANAL.

Vol. 21. 1'10.2, April 1984

@ 1984 Socie:y for Il1dustria! and Applied Mathematics
012

ON THE CONVERGENCE OF SOME INTERVAL-ARITHMETIC
MODIFICATIONS OF NEWTON'S METHOD*

G. ALEFELDt

.Abstract. In this paper we consider the meanwhile weJl-known interval-arithmetic modifications of the
Newton's method and of the so-calJed simplifiedNewton's method for sohringsystemsof nonlinear equations.
Starting with an interval-vector which contains a zero. we give for the first time sufficientconditions for the
convergencc of these methods to this solution. If thc starting interval-vector contains no solution, then
under the very same conditions the methods under consideration will break down after a finite number of
steps. The interval-arithmetic evaluation of the first derivative is only involvcd in these conditions.

1. Introduction. In order to motivate the resuJts of the later sections, we first
consider a single equation with one unknown. If f has a zero x* which is contained in
the interval XO s; X, where f: Xc iR~ IR, and if the interval-arithmetic evaluation

f'(Xk) of the derivative exists, then, if 0 Ef'C'(k), the method

m(Xk) EX\ (m(Xk) ElR),

yk+! = f (X
'k'

) _!(1n(Xk))
}

n Xk
-'~ lm f'(Xk)

is weIl defined. Furthermore x* EXk and Iimk->x.Xk = x* hold. The order of conver-
gence is (under some additional conditions) at least two. (There are, meanwhile, several
people who are claiming authorship far this nice result. Therefore we omit to include
a list of papers where the method (1) was discussed. lnstead we refer to [2, § 7], where
this methou was discussed, surely not for the first time.)

The paper under consideration discusses the question, how far the results about
(1) can be proven for the corresponding generalization of (1) to systems of nonlinear
equations. This question has so far not been answered in a satisfactory manner.

At first we discuss some tools trom interval-analysis. Among these is an explicit
representation of the result of the Gaussian algorithm if it is applied to systems with
intervals as coefficients and in the right-hand side. This representation was first given
by H. Schwand! in [4]. A simple concIusion (Lemma 2), which we prove by applying
this representation is the important new tool of this paper.

Because of its fundamental importance, we then introduce an example which
shows that the results on (1) obviously do not an hold for nonlinear systems. In part
a) of the foIlowing theorem we prove that under certain conditions on the starting
interval-vector the modifications of Newton's method are convergent. These conditions
are dependent only on the interval-arithmetic evaluation of the first derivative. In part
b) of this theorem we prove that undercertain conditions the methods are breaking
down if the starting interval does not contain a zero. The idea of the proof for this
result was first used by H. Cornelius in [3].

(1)

2. Preliminaries. Concerning the notation and basic facts of interval-analysis, we
refer to [2]. Therefore we only list the most important concepts. The set of compact
intervals becomes a complete metric space if we introduce the metric (distance)

q(A, B) =max {lal- bll, la2- b21}.
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The width or diameter of an interval A = [al, a2J is defined by

dCA) = a2 -- a1'

The absolute value of the interval A is defined to be the distance

IAI:= q(A, 0).

For interval-matrices we define these concepts via the elements. !f .sIl= (Aij) is an
interval-matrix, then d(.91)= (d(Aij», for example-

Among others we use the following equations:
a) For interval-matrices ,<;1and gJ and a point-matrix Cf5,it nolds that

(.91+ gJ)~ = s1~ + gJ~.

(See [2, § 10, formula (7)].)
,8) For interval-matrices ~c;1and 0c3it holds that

d(.91:i: gJ) = d(.91) + d(03).

(See [2, § 10, formuJa (12)].)

'Y) Far an interval-matrix .91and a point-vecrOf 4 It halds that

d(S!11) = d(.91)i~l.

(See [2, § 10, farmu]a (19)].)

8) For an interval-matrix .s1and a point-vector ~ it holds that

.91~= {Jß~I~E .91}.

(See [2, § 10, formula (1)].)
In genera! we have

(2) .91(?J3{) s; Cc1@){

far interval-matrices .91,03 and a point-vector {.
This was proven in [4, p. 15]. If { is equal to one of the unit-vectors then thc

equality-sign holds in (2).
Thisis the content of the next lemma.

LEMMA1. lf {= ~i (=ith unit-vector) then the equality-sign holds in (2).
Proof. Denate the columns of the matrix gJ by (;i, 1 ~ i ~ n. Then it holds that

03".= (6... 6 ) e.=6..L b '''.1 1

and therefore

.91(03{'j) = .916j.

On the other hand we have

( .:1103) f j = (.:1161, . . . .rAt /1) {'j = .Sflt j

and therefore the assertion folIows. 0

Assurne now that we have given an Tl by Tl interval-matrix .:11= (Aij) and an
interval-vector 6= (Bj) with Tlcomponents. By applying the formulas of the Gaussian
algorithm we compute an interval-vector x = (X;) for which the relation

{q;= ~-1~1~E d, 4E 6}S; x

holds. See [2, § 15] or [4, pp. 20ff], for example. If we set A~P := Ajj, 1 ~ i, j ~ Tl,and
Bll) := Bi>1~ i ~ n, then the formulas are as folIows (see [4, p. 23J, for example). We
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~xplicitlYlist these formulas since we have to make explicit use of them:

for k = 1(1)n - 1 do
begin

for i = k+ l(1)n do
begin

for j = k + 1(1)n do

A(k)
ACHl).= A(k) - A (k) ~

lJ . lJ kJ A Ck)
kk

DCk+l )
'1. A (k)

Di := B)'~) -B(k)~k
A Ck)

kk

end;
for I = 1 ( 1) k GO

begin
for j = 1(1) n do

A. (k+l) '- A Ck)
Ij .- Ij

B Ck+1) '- B (k)
I .- I

end

end;
X =B(n) /A(n)n n nn

for i = n - 1(-1) 1 do

. n

)/(n) (n) (n)
X. =(B. - '" A.. X. A.

I I L 'I' U .
j=i+l

We have assumed that no division by an interval whieh eontains zero oecurs. In
this case we say that the feasibility of the Gaussian algorithm is guaranteed. The
feasibility is not dependent on the right-hand side vector 6,

In the formulas above we have not taken into account exehanges of rows or
column which are eventuaIly necessary in order to prevent division by an interval
which contains zero. If one programs the above formulas, then the upper index can
be suppressed.

If we define the interval-matrices

1

0
1

(f2 '-
~k .-

0

A Ck)
k+l.k

A (k)
kk

l~k~n-l,

A(k)-~
A(k)kk

0 1
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11
qj)k:= .

0

1

A (n)
kk

1 ~ k :5":n,

0

:Yk:= 1 12k~n-l,

1

1 A(n)- k.k+J

0

then we have for tbe interval-vector calculated above, using

~'= (12 (
(12

(... ( ((J
«

(fj 1') . . .)V. ;:1n-1. ;:1n.-2 '"'2 ~ JV . ,

the representation

X=.@j(:Y1(fiiJi:Y2(.. .(SJ"-J(gn-l(fiiJnt}. ;},

which was first given by H. Schwandt in [4, pp. 24ff]. As in [4] we denote this
interval-vector by IGA (d, t), tl:Iatis we have the representation

(3) IGA (d, t) = qj)1(:Y1(' . . g"-I(qj)n(CfJ"-I(' . '(CfJ2(CfJI6)' . .).

Notice that it is not possible to omit the parentheses in generaL
In order to formulate the next result, we define an interval-matrix IGA (s1) by

using the interval-matrices occurring on the right-hand side of (3):

(4) IGA (.511):=fiiJj(:Yt('" fiiJ,,(CfJ"-I(" '(CfJ2CfJt).. ').

Then the folIowing holds.
LEMMA2. For 1:::i <: n it holds that

IGA (d, ~i) = IGA (.511).fi

where fi denotes the ith unit-vector.

Proof Starting with the representation (3) of IGA (.511,fi) we get the assertion by
applying repeatedly Lemma 1. 0

.. The last lemma states that the ith column of the matrix IG A (.511)is equal 10 the

interval-vector which one obtains if one applies the Gaussian algorithrn to the interval-
matrix .sIIand the right-hand side fi. In order to cornpute IGA (.sII)it is therefore not
necessary tO know the matrices appearing on the right-hand side of (4) explicitlY.
IGA (.sII)can be computed by "formally inverting" the interval-matrix .sIIby applying
the Gaussian algorithm. Finally we need the following result.

LEMMA3. For an interval-matrix .sIIand a point-vector 4 it always holds that

IGA (.511,tj) ~ IGA (.sII)' tj.

1J

0

A(n)- kn

0

1
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Thepfaaf can be found in [4, p. 33]. It is performed by applying (2) in the representation
(3) of IGA (d, ~).

Assumenowthatthereisgivenamappingf: xO~ {}~ Vn(lR)~ Vn(lR).Weconsider

the foIlowing methods for computing a zero ~* of ! in xo:
(~implified Newton's method)

m(xk) Ex\ (m(xk) E Vn(lR»),

(SN) SN (xk) = m(xk) - IGA (f'(xo), f(m(xk»),

Xk+l = SN (xk) n xk;

(Newton's method)

m(xk) E x\ (m(xk) E Vn(IR»,

(N) N (xk) = m(xk) - IGA (f'(xk), f(m(xk)),

xk+l = N (xk) nxk.

Usually one chooses m(xk) E xk to be the center of the interval-vector xk if there is
no specific information about the Iocation of ~* in xk. We do not assurne this choice,
however.

Both the methods (SN) and (N) compute sequences of interval-vectors enc10sing
the zero ~*. (SN) uses the fixed matrix f'(xo) whereas I'(xk) has to be computed in
each step of (N). As a consequence of this (N) is at least quadratically convergent
whereas (SN) normally converges only linearly. (N) may be considered to be the
immediate generalization of (1) to systems and is identical for n = 1 to (1).

Without going into the details of a proof, we mention the following existence
statement (see [1, p. 70, Satz 3.4]).

LEMMA4. 11

SN (xO)= N (xo) ~ xO

then / has a solution in xo and no solution in xO\SN (xO). 11 xO n SN (xo) = 0 then
I has no solution in x o. 0

Both the methods (SN) and (N) have been considered repeatedly. See [5], [6].
Nevertheless results do not exist which ensure the convergence of these methods. The
following simple example shows that the convergence can not be assured under the
analogous weak conditions as it was the case for (1). This example was discussed by
H. Schwandt in [4, pp. 85ff]. We repeat the discussion because of its fundamental
Importance.

Example. Let ~ = (;) and

(_X2+ /-1

)
.

/(~) = x2- y

The vector

j!-+2J5
~*= I I+JS

2
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is the unique solution of the system I(:t;:)= <! in the interval-vector

xo=~
(

[ll, 19]
)

.
10 [11,19J

Choosing m(xo) as the center of ;2;°then one gets

[
3 90771

])

'

SNxO) = N(xo) = I 88'
.

12584 :::Jxo(

[
2 5801

]8' 1144 ,

and therefore xl = xo. Therefore, if we choose m(xk) to be thecenter of xk, we have

() 1 k
X =x ="'=x =... and lim xk = xO -f=x*.

k->oo .
0

3. Convergence statements. In the theorem following, we state and prove some
convergence results concerning the methods (SN) and (N).

THEOREM. Let there be given an interval-vector xO~ {}~ V,,(IR) and a mapping

I: xo ~ {}~ Vn(lR)~ Vn(IR),whose Frechet-derivative has an interval-arithmetic evalu-
ation. (See [2, § 3], for example.)

We assurne that IGA ([(xo» exists.
(a) Suppose that p(~?i)< 1 (p = spectral radius) where

(5) sjl = I~- IGA (/'(xo» '1' (xo)1

or that p(g;3) < 1 where

(6) ~ = d(IGA ([(xO») '1/'(xo)l.

If I has a zero:t;:*in;;cothen the sequences eomputed by (SN) or (N) are weil defined
and it holds that limk->ooxk = x,*. If one chooses m(xk) to be the center of xk then the
condition p (~) < 1 ean be replaced by p (g;3)< 2.

(b) If p(sjl) < 1 where sjl is defined by (5) and if I has no zero in xO, then thefe
is a ko ~ 0 depending on the method such that both (SN) and (N) are weIl-defined for
0 ~ k ~ ko. It holds, however, that

SN (xko) n xko = 0 and N(xko) n xko= °,

that is both methods break down after a finite number of steps because of ernpty
intersections.

Praof At first we recall the following fact (see [2, § 19], for example): If l has
a zero :t;:*in xo and if IGA (I' (xo), I(m(x°») exists, then :t;:*EN(xo) and therefore
x,*EN(xO)nxO=xl, that is the intersection is not empty. If now :t;:*Exk for some
k ~ 0 andif the vector IGA ([(xk), I(m(xk») exists, then using induction one showS
x,* EN(xk) n x\ tram which it follows that the sequence {xk} computed by using (N)
is weIl-defined. The existence of IGA ([(xk), I(m(xk»)) can be seen in the following
manner: Assume that xk exists for some k> O.Then because of forming intersections
in (N) we have xk ~ xOand using inclusion monotonicity it follows that [(x"') ~ l' (;;cO).
Using again indusion monotonicity it fo11ows the existence of IGA (/'(:1/))
since IGA ([(xo» exists. From the existence of IGA ([(xk) it follows that
IGA (f'(;;ck), t) exists for an arbitrary interval-vector t. Thus we have shown that (N)
is weIl defined if IGA ([(xo)) exists and if I has a zero q:;*in xo.
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The proof that (SN) is weIl defined can be performed similarly.
We Daw assume p(q1) < 1 and prove (a). In doing this, we use the fact that

l(m(2/» can be represented as

(7) /(m(:z/» = f(m(xk» -f(:-f'*) = .!(m(xk), ~*). (m(xk) -~*)

where!(m~k), k*) is a real point-matrix for which

(8) J(m(xk», ~*) E I'(xk)

holds. See the beginning of [2, § 19], for example. Using, besides these facts, Lemma
3,the relation (2) and the relation a) from the preliminaries, we obtain the following:

N (xk) -~* = m(xk) -~*- IGA U"'(xk), I(m(xk»)

( k\ >k
(

'
(

k
»

.
(

k'
)S; m .x ) - ~ " - IGA f x .I (m x )

= m(xk) - ~* - IGA (f'(xk». {.!(m(xk), ~*)(m(xk) - ~*)}

s; m(xk) - ~* - IGA (/(xk». {I'(xk)(m(xk) - ~*)}

s; m(xk) - ~* - {IGA (I'(xk» 'I'(xk)}(m(xk) -~*)

= (~- IGA (I'(xk» 'I'(xk»)(m(xk)-~*).

Because m(xk) E xk and I~,- IGA (/'(xk» . l'(xk)1 ~ q1, it follows that

IN (xk) - ~*I ~ q1lxk - ~*I.

Using

(
k *

)
- I k *

1qx,~ -x -~ ,

q(N (xk), ~*) = IN (xk) - ~*I,

thiscan be written as

q(N (xk), ~*) ~ .5(1q(x\ ~*).

Because ~* E N (xk) nxk = xk+l s; N (xk) it also holds that

(
k+1 *

) < (N(
k
)

*) <.../1 (
k *\

q X , ~ = q x, ~ =,:,;:tq x ,~ )

and therefore

q(
' k+1 *

) :::; .../Ik+lq(
0 *

)X ,::y -,:,;:t x,~.

From this inequality follows the assertion limk_.ccxk= ~*.
The proof of (a) for the method (SN) under the assumption p(q1) < 1 needs only

some minor modifications compared with the preceding proof for (N). We omit the
details,

We now prove (a) under the assumption p«(ifJ)< 1. In this case we perform the
proof for (SN). Because of the remarks at the beginning of the proof of this theorem
it is cJear that the sequence {xk} is weil defined. ApplyingLemma 3, we get for k ~ 0

SN(xl<) ~ m(xk)- IGA (I' (zO),I(m(xk)))

s; m(xk) - IGA (I' (xo» . I(m(xk».
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Using both ß) and y) from the preliminaries as weIl as (7), (8), of this paper and
taking into account that I m(xk) -:pI;;;; d(xk), it follows that

d(SN (xk» ~ d(IGA (!'(xo»). I!(m(xk»)I

= d(IGA (I'(xo») "'(m(xk), :p*)(m(xk) -:p*)1

~ d(IGA (l'(xO»)). I!'(xk)ld(xK)

~ d(IGA (!'(xo») '1!'(xO)ld(xk).

Because of xk+l = SN(xk) nxk it follows that

d(xk+l)::s fi!Jd(xk)

and therefore

d(Xk+l)::; fi!Jk+l d(xo),

from which the assertion limk-+c"Cxk =:p* follows.

If one chooses m(xk) to be the center of xk, then it follows that

Im(xk) -:p*1 ~ ~d(:l/).

Using this relation the proof can be completed also in the case of p( fi!J)< 2.
The proof of (a) for (N) under the assumption p(.s(l)< 1, p(fi!J)< 1(p(fi!J)< 2) can

be performed similarly. We omit the details.
We now prove (b). We assurne that for all k?:.O the intersections SN (xk)n~/

and N (xk) n xk are not empty. Then both methods are weH defined for all k ~ 0 and
it holds that

° 1 k k+l
x 2x 2'''x 2x ...

from which it follows that the sequence is converging to an interval-vector ; *. We
now consider the sequence {m(xk)}. This sequence is contained in the compact set xo.
By applying the Bolzano-Weierstrass theorem, we conclude that there exists a conver-
gent subsequence {m(xki)}~o. Suppose that limi-+oom(xki) = ;*. For the elements of
the sequence {m(xki)} it holds that m(xkj) Exk;. From this remark it follows that,
besides limi-+coxkj = 3*, we also have 3* E3*.

Using the continuity of the operations involved in the method (SN), we get from
the equations

SN (xkj) = m(xki) - IGA (!'(xO), !(m(xkj»),
k.+l SN (

k
) n k.

x' = X I x',

the relations

w* =~*- IGA (!'(xo), !(~*»,
*- *n *

; -w 3'

where w * := limi-+coSN (x kj) = SN (; *).

From the second equation it follows that 3* S; UI* and therefore that ~* E w *. Hence

~* E ~* - IGA(f' (xO), I(t *)),

or, by applyingLemma 3,

fEIGA(I'(xo),!(~*»s;IGA (!'Cvo» .!(~*).
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APplying 8) from the preliminaries, it follows that there exists a point-matrix :JfE
rGA[(xo)) such that q == ft'fCr*). If F!!is nonsingular, we have the contradiction
I(i *) == q. The nonsingula;ityoof ft follows tram the condition p(~) < 1 in the
foIlowing manner: If 6.}1 E I (x ), then

(9) I~- ft6.}l1 ~ I~ - IGA (/'(:v°)) 'f'(:v°)1 ==sri.

APplying the Perron-Frobenius theorem for nonnegative matrices, it follows that

p( ~ - F!!6.}I) ~ p(1~ - ft6.}l1)~ p(.s(1)< 1.

Bence

(ftUJI)-l == (~- (~- F!!UJI))-l

exists, from which the existence of F!!-IfolIows. This is the proof of (b) for (SN). The

proof of (b) for (N) needs only some small supplements which we omit. 0
We dose this section with two remarks:

1. From the inequality (9) it follows that the assertion (b) of the theorem already
holds if p (;i) < 1 where

;i == I~ - IGA ([(xo)). UJlI

for some 6.}1E1'(xO). Of course this is a weaker condition than p(.s(1)< 1. This fact was
pointed out by an (anonymous to me) referee.

2. It is an open question whether (b) of the theorem holds if p(~) < 1 (or if
p(g;J)< 2).

4. Some further remarks. As already mentioned above, (SN) exhibits only linear
convergence whereas (N) shows under some additional assumptions at least quadratic
convergence behaviour. From this point of view the following fact, which holds both for
(SN) and (N), is of interest: If one chooses m(xk) to be the center of xk then at least
one of the components of xk+l has its width smaller than the half of the width of the
corresponding component of xk. This follows trom the following Lemma 5 by choosing
m(xk) to be the center of xk.

LEMMA 5. Let the assumptions of the preceding theorem hold. Suppose that for the
matrix .s(1defined by (5) the condition p(.s(1)< 1 holds. 11 I has a zero ~* in the
interval-vector xO then both for (SN) and (N) it holds that m(xk) E xk+l if m(xk):j:
*

( (
k' k

)~' m x )Ex .
Proof We perform the proof tor (N). Suppose that m(xk) E xk+l. Then it follows

that m(xk) E N (x"). Using the relation

N (xk) - ~* S; (~- IGA (/'(xk)) '[(xk))(m(xk) - ~*),

which was derived in the proot of the preceding Theorem, we therefore get

m{xk) - ~:*s; N(x") -~* s; (~- IGA (/'(xk)) 'I'(xk))(m(xk) - ~*).

From this relation it follows that

Im(xk) - ~*I ~ I~ - IGA (/(xk)) 'f(xk) IIm(xk) - ~*I

~ srilm(xk) - x*l.

Since p(.s(1)< 1, we obtain the contradiction that m(xk) ==~*.The proof for (SN) can
be performed similarly.We omit the details. 0

The next lemmashowsthat the statements of the preceding lemma are also true
if there exists no zero if I in xo.
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LEMMA6. Let the assumptions of the theorem hold. Suppose that for the matrix .si
defined by (5) the condition p(.:4) < 1 holds. If / has no zero in xO then both for (N)
and (SN) it holds that m(xk) E xk+l if m(xk) Exk. (Oi course we assurne that k ~ ko
where ko is defined by the statement (b) of the theorem.)

Proof. Consider again the method (N). Assurne that m(xk) Exk+l. Then it follows
that m(xk) EN (xk) and hence that

~ EIGA (/'(xk» '/(m(xk».

Using the corresponding reasoning as in the proof of part (b) of the theorem we arrive
at the contradiction that m(xk) is a zero of f. 0

Because of Lemma 6 we can hope that it will not take a large number of steps
until the interseetion becomes empty, that is, until we have shown that there is no. °zero In x .

We finally comment on the spectral radius conditions p(~) < 1 and p(ftJ) < 1
where the matrices .s(land f?Jare defined by (5) and (6): For the interval arithmetic
evaluation [(xe) of the derivative of /(:J?) the condition limd(xo)-->cd([(x()))=~
holds. See [2], § 2. Hence, by continuity arguments, it also follows that
limd(xo)-->~.(d(IGA ([(xo») = (1.Therefore p(.:4) < 1 and p(ftJ) < 1 hold if d(:J?°)is not
too large.
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