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ALEFELD, G.

On the Convergence01the Higher Order Versions
01D. J. Evans' Implicit Matrix Inversion Process

Dedicated to Prof. Dr. Dr. h. c. HELMUTHEINRICH on the occasion of bis 80th birthday.

Die Versionen des Evans- Verfahrens mit höherer Konvergenzordnung werden untersucht. Es werden hinreichende Bedin-
gungen für die Konvergenz, Fehlerahschätzungen sowie Bedingungen für die Monotonie der Iterierten angegeben. Es wird
außerdem gezeigt, daß diese Verfahren zur Verbesserung einer Näherung für die Pseudoinverse einer Matrix mit vollem
Spaltenrang geeignet sind.

The higher order versions of the method introduced by D. J. Evans are investigated. We introduce sufficient conditions
for convergence, prove some error estimations and show that under appropriate conditions the iterates are possessing mono-
tonous behaviour. Furthermorewe show that these methods can a.lso be used to improve an approximation for the pseudo-
inverse of a matrix with full column rank. .

.l13YQaIOTCH BapHaHTbI MeTo):(a .l1BeHbca C BbICIIIHM nopH):(HoM CXO):(HMOCTH H ):(aIOTCH ):(OCTaTOQHbIe YCJIO-
BHH ):(JlH CXO):(HMOCTH,OIleHHH norpewHocTH H YCJlOBHH):(JlHJlWHOTOHHOCTHHTepHpOBaHHbIX. lipoMe Toro
):(OHa3bIBaeTCH, QTO 3TH MeTO):(bI npHrO):(HbI ):(JlH YJlYQWeHHH npHOJlHmeHHJI ):(JlH nceB):(o-oopaTHOll O):(HOll
MaTpHIIbI C nOJlHbIM CTOJlOIleBbIM paHrOM.

1. Introduetion

In the recent paper [2] D. J. EVANS introduced an implicit matrix inversion process. It was demonstrated by a
simple example that this method is asymptotically much faster convergent than the welllmown method of SCHULZ
[3], which is usually denoted as the Hotelling-method in the English literature. In [1] the method proposed by EVANS
was investigated. Sufficient conditions for convergence, error estimations and statements about the monotonous
behaviour of the iterates were proved. .

In the present paper we show that EVANS'method can also be used to improve an approximation of the pseudo-
inverse of an (m, n)-matrix A which has full column rank. Furthermore we investigate the versions of EvANS'
method which have higher order of convergence. For these methods we present sufficient conditions for convergence
and error estimations as well as statements about the monotonous behaviour of the iterates.

2. Preleminaries

Let there be given areal (m, n)-matrix A with full column rank, that is rank (A) = n. It follows that m ~ n. The
pseudoinverse of A is defined to be the unique (n, m)-matrix At for which thefollowing equations (the so-called
Moore-Penrose equations) hold:

(a) AAtA = A , (b) AtAAt = At ,

(c) (AAt)T = AAt , (d) (AtA)T = AtA .
If rank(A) = n and m = n holdthenAt = A -I. Under the abovea8sumption rank(A) = n theequation

AtA = In

holds where In is the (n, n) unit matrix. This can be seen in the following manner: In general we have

rank(UV) ~ min {rank(U), rank(V)}

}
(1)

(2)

for the rank of the product UV. Hence it follows from (1), (a) that

rank(A) = rank(AAtA) ~ rank(AtA)
and therefore

rank(AtA) ~ rank(A) ~ rank(AtA)

from which rank(AtA) ~ n follows. Therefore the (n, n)-matrix AtA is nonsingular. Multiplying the equation

(AtA) (AtA) = AtAAtA = AtA

from the left by (AtA)-1 the assertion folIows.
If we set

X = VAT

0

(3)

for an (n, n)-matrix V and for the given matrix Athen it holds that

X =XAAt. (4)
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This ean be seen in the following manner: From (1), (a) and (e) it follows that

AT = AT(AAt)T = AT(AAt) ,

and therefore using (3),

X = VAT(AAt) = XAAt

whieh is (4). 0
The existence of a matrix V such that (3) holds is equivalent to the condition that the range of XT is contained in

the range of A:

X = VAT for some (n, n)-matrix V{=}R(XT) c R(A) (where R denotes the range) .
In order to prove thisassume on the one hand that X = VAT. Then itfollows for XE IW'that XTx = A VTx and

beeause of VTx E /Rnit follows that R(XT) ( R(A). If on the other hand R(XT} c R(A) then for every x E /Rnthere
exists an x E W such that XTX = Ax.

Choosingx = ei E /Rn,i = 1(1) n, where ei denotes the i-th unit-vector we get XT = A VTor X = VAT. The
i-th eolumn of VT is a veetor Xi which because of the equation XTei = AXi corresponds to X = ei. 0

If (besides ofrank(A) = n) m = n then because of R(A) = W it holds for all matricesX that R(XT) c R(A) =
= /Rn, that is (3) is true for all matrices X with some V.

We now mention some results whieh partly where already proved in [1].

Theorem 1: Assume that for the (n, n)-matrix A = D - L - V (D diagonal part, L lower triangular part,
V upper triangularpart of A) thediagonalpart D is nonsingular.Let Si =1= 0, i = 1(1)n, and 8 = diag(s;).

a) Define the real numbers Pi, i = 1(1) n, recursively by
I

{

i-l

l

a"

j

," la"

, }

Pi = - .L; ~ Pilsil + .L; !J...ISil ,
Isd j=l aii j=i+l/aii

and a8sume that

p = max Pi < I .
l;;:;i;;:;n

i = 1(1) n ,

Then using the norm 11.11= 118-1 . 81!00it holds that

II(D - L)-l VII~ P < I .
b) Define the real numbers q;, i = 1(1) n, recursively by

I

{

i-l

j

aij

l

n

l

aij

l }
qi = - .L; - ISil + .L; - qilsil ,

Isd j=l aii j~i+1 aii

and assume that

q = max qi < I .
l;;:;i;;:;n

i = n( -I) I ,

Then using the norm 11.11= 118-1.81100 it holds that

II(D - V)-l LII ~ q < I .
Theorem 2: Assume that the (n, n)-matrix A has nonvanishing diagonal elements and that for the numbers

Si =1= 0, i = 1(1) n, it holds that

{

I"

j

aij

l }
r = max -.L; - s' < I .

l;;:;i;;:;.. ISil ~=~ aii 111
J~'

Then p ~ r < 1 and q Sr< I for the numbers P and q defined in Theorem 1.
If not stated otherwise we always use the norm

11.11 = 118-1.81100

where 8 is some fixed nonsingular diagonal-matrix.
We are using the following lemmata:

(5)

Lemma I: Assume that A is areal (m, n)-matrix and X is areal (n, m)-matrix. If III" - XAII < I for the
norm (5) then X,A has nonvanishing diagonal elements.

For the case m = n the proof can be found in [1] as apart of the proof of Satz I of this paper. The analogons
proof holds for m =1= n.

Lemma 2: Assume that A is areal (m, n)-matrix and X is areal (n, m)-mat1"ix.11 IIIn - XAII < I for the
norm (5) then

111" - D-IXAII = IID-l(L + V)II< 1
where XA = D - L - V.

Für the case m = n the proof ean be found in [1] as apart of the proof of Satz I of this paper. The analogous
proof holds for m =1=n.
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Lemma 3. Assume that A is areal (m, n)-matrix and X is areal (n, m)-matrix. If XA = D - L - U with
nonsingular diagonal part D then if

111" - D-lXAII = IID-l(L + U)II< 1
for the norm (5) it always holds that

111" - D-lXAII ~ 111"- XAII .
Furthermoreif all diagonalelementsof XA aredifferentfrom onethen (6) holdswith thestrict < -sign.

Proof: By assumption 111" - D-lXAII = IID-l(L + U)II< 1, that is

(6)

IS~I L~ (I~:\Isil + I~::\ IS1I)}< 1 ,

where we have set D = diag (dii), L = (lij), U = (Uij).
If dii =F1 then muItiplying this inequality by \1 - diil =F 0 and using 1 - Idiil ~ 11 ---'diil it follows that

1

{

"

(/

l..

l

u..

\ )}

1 "_
I .

1
J;. d'~ ISil + / ISil < 11- diil + I

-
I {.17.(Ilijllsil + IUijllsiD} .s, J*'"'' Si J*'

If dii =F1, i = 1(1) n, then it follows that 111"- D-lXAII < 111"- XAII. If at least one dii = 1 then we only
can conclude that 111"- D-lXAII ~ 111"- XAII. 0

i = 1(1) n ,

3. Methods

Let there be given an (m, n)-matrix A with fuIl column rank, that is rank (A) = n ~ m. The (n, m)-matrix X1c is
assumed to be an approximation for the pseudoinverse At of A. We are forming the product X1cA which is an (n, n)-
matrix and consider the splitting

XkA = Dk - Lk - U1c (7)

where Dk is the diagonal part and Lk and Uk denote the strictly lower and upper triangular parts of XkA, respectively.
If Dk is nonsingular then we define- -

Lk = DklLk, Uk = D;;lUk (8)
and

Fk = iJ'h(I" - [h)-l (I" - Lk)-l,
It then holds that

D;;lX1cA = (In - Fk) Gk.

In order to improve Xk we consider for some nonnegative integer r the iteration method

Gk = (1" - ik) (In - U1c). (9)

(10)

Xk+1 = Gkl(I" + F1c + ... + FDDklXk, k = 1,2, .... (11)

For the special case m = n and for r = 0 this method was proposed by EVANSin [2].

Theorem 3 (Convergence statements): Let A be an (m, n)-matrix with full column rank. Assume that for some
(n, n)-matrix VI it holds that

Xl = VlAT and 111" - XlAII< 1
where the norm (5) is used. Then method (11) is well-defined and it holds that lim X1c = At.

1c-+oo

For the sequence 01 the residuals I" - XkA it holds, using the norm (5), that

111" - Xk+111 ~ 111" - DIlXlAII[2(r+1)]k ~ 111" - XlAII[2(r+1)]k . (12)

Proof: From the assumption 111" - XlAII < 1 it follows, using Lemma 1, that XlA has nonvanishing diago-
nal elements. Hence Xz can be computed using (11). Multiplying (11) from the right by A it follows that

XzA = GIl(I" + Fl + ... + Fl) DIlXlA = GIl(I" + Fl + ... + Fl) (1" - LI - Ul) =
= GI1(I" + Fl + ... + Fl) (1n - F1) GI = I" - GIlFJ+1Gl ,

or
I" - X2A = GIlF1+1Gl= (GIlFPl)'+1 .

Since the matrices LI and (I - Ll)-l commute we obtain using the definition of GI and Fl

I" - XzA = (GIlFPl)'+1 = [(1" - Ul)-l(1n - Ll)-l LlUl]'+1 = [(1" - 1\)-1 Ll(I" - LI) [\]'+1.

Using Lemma 2 it follows from the assumption 111"- XlAII < 1 that 111"- DIIXlAII < 1. From Theorem 2 and
Lemma 3 it thereforefollowsthat '

11(1" - Ul)-l Llll ~ 111"- DIlXlAII ~ 111"- XIAII
~d'
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and

/1(In - Ll)-l Ulll ~ IIIn - D1lXlAII ~ IIIn - XlAl1

where in both lines the second ~-sign can be replaced by the <-sign if all diagonalelernents of XIA are not equal to
one.

Therefore we get

IIIn - X2AII :S:IIIn - D1IXlAII2(r+1) ~ IIIn - XIAI12(r+l)< 1 .
Therefore for X2 the same conditions hold as we have assumed for Xl and X3can be computed.

It folIows that

IIIn - X3AII :S:IIIn - DiIX2AII2(r+1) ~ IIIn - X2AI12(r+1),

and using the preceding inequa1ity that

IIIn - X3AII :S: IIIn - D1IXlAII[2(r+I)]' ~ IIIn - XIAII[2(r+1)]' .
Using mathematical induction it follows for k ~ 1 that

IIIn - Xk+IAII ~ IIIn - D1IXIAII[2(r+1)]k ~ IIIn - XlAII[2(r+1)]k.
Hence it follows that

lim (In - Xk+1A) = lim (Gj;IF"G"Y+1= O.
k-+co k-+co

From the assumption Xl = VlAT and the iteration method (11) it follows by mathematical induction that

Xk+1 = Vk+1AT

where Vk+l is the (n, n)-matrix

Vk+1 = Gj;I(In + F" + ... + F~) Dj;l Vt.

Because of (3) and (4) it folIows that Xk+l = Xk+IAAt.
Therefore, multiplying the equation

lfi.Xk+IA = (Gj;IF"G"y+1
from the right by A it follows that

At - Xk+l = (Gj;IFkGl;y+1 At

from which the assertion lim X" = At follows.
k-+co

We add some remarks:
Assume that m = n. Then the second order Schulz-method

Yk+1 = Y"+ (In - Y"A) Y", k = 1,2, ... ,

is convergent to A -1 if e(In - YlA) < 1 where e denotes the spectral radius. e(I n - YIA) < 1 holds, for example,
for YI = Xl if IIIn - XIAII < 1. A simple computation shows that

IIIn - Yk+1AII~ I/In - XlAII2k .
On the other hand it folio ws from (12) for r = 0 that

IIIn - Xk+1AII ~ IIIn - D1lXlAWk ~ IIIn - XIAWk .

As mentioned in the proof of Theorem 3 the second ~-sign can be replaced by the strict <-sign if all diagonal-
elements of XlA are differentfrom one. This means that we have a better estimation for the residual 11 In - Xk+1AII
compared with the estimation of the residual IIIn - Yk+IAII. In this sense the method 01 EVANS is faster than the
method 01 SCHULZ.

0

Theorem 4 (Monotone Convergence): Assume that the (m, n)-matrix A has full column rank and that for some
(n, m)-matrix Xl ~ 0 it holds that In - XlA ~ 0 where Xl = VlAT for some (n, n)-matrix VI, If At ~ 0 and if each
row of Xl contains at least one nonvanishing entry then (11) is well-defined and it holds that

0 ~ Xl ~ X2 ~ ... ~ XI; ~ Xk+1 ~... ~ At, .

that islim X" = X* ~ At. 11e(In - XlA) < 1 where e denotes the spectral radius then lim X" = At.
1:-+ co k->-co

Proof: We first show that under the assumptions In - X"A ~ 0, X" ;::::0, X" = VI;AT for some k ~ 0 it
holds that 0 < dii ~ 1 for the diagonal elements of X"A. This can be seen as folIows: From the assumption In - X"A =
= In - Dt + Lk + U" ~ 0 it follows that

L" ~ 0 , U" ~ 0 , I n ~ D"
and therefore that

XlcA = Dlc - LI; - Ulc < D".

Since by assumption A t ~ 0 it folIows that

X"AAt ~ D"At.
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By (3) and (4) it follows from the hypo thesis Xk = VkAT that Xk = XkAAt. Therefore the last inequality can be
written as

Xk ~ DkAt .
Set At = (bij), Xk = (Xij) and consider a fixed row i. Then X;j ~ diibij, 1 ~ j ~ m, and therefore dii 2: O.If dii = 0
then Xij= 0 for 1 ~ j ~ m which contradicts the assumption. Therefore Xk+l can be computed using (11). We
now show that the assumptions Xk ~ 0, Xk = VkAT and In - XkA ~ 0 imply that Xk+1 ~ Xk.

Since Dk 2: 0, Lk ~ 0, Uk ~ 0, Xk ~ 0 it follows that F" ~ 0 and therefore using (11) that

Xk+I = G;;I(In + Fk + ... + FA,)DT;lXk = (In - Uk)-I (In - L,,)-I (In + F" + ... + Fk) DT;IX" =

= (In + U" + ... + U~-l) (In + L" + ... + L~-I) (In + Fk + ... + Fk) DT;IX" =

= DT;IX" + nonnegative terms ~ DT;IX"~ X".

As in the proof of Theorem 3 one shows that

In - Xk+1A = (GT;IF"Gky+1= [(In - fh)-I (In - Lk)-I LkU,,]'+1

which implies that In - Xk+1A ~ 0 and therefore since At ~ 0

At - Xk+1AAt ~ O.

As in the proof of Theorem 3 it foHows from Xk = VkAT that Xk+l = Vk+1AT and therefore that Xk+1AAt =
= Xk+1' We therefore have At ~ Xk+I' Since 0 ~ Xk ~ Xk+1 it follows that Xk+1 has in each row at least one
entry different from zero.

Therefore (11) is weH defined and it holds that

0 ~ Xl < X2 ~ ... ~ X" ~ Xk+1~ ... ~ At
from which lim X" = X* ~ At folIows. If e(In - X1A) < 1 then there exists a nonsingular diagonal matrix S such

k ""
that 1111'- XIAII< 1 for the norm (5). Hence lim X" = At folIows from Theorem 3.

k ""
0

4. Error estimations and computational amount

For simplicity we consider only the special case m = n in this section. This implies that At = A -1. Using (10) and
(11) we arrive at

A-I - Xk+1 - (In - DkIX"A) (A-I - Xk+1) = DT;IXkA(A-I - Xk+1) =
= D;;lXk - DT;IX"AXk+1 = DT;lXk - (In - Fk) GkGT;I(In+ F2 + ... + F'k)DT;IX"=
= DT;IXk- (I - F'k+1)DklXk = F'k+1DT;IX".

For the norm (5) the inequality lAI~ IBI implies that IIAII~ IIBII.Assuming 1111'- DT;IX"AII< 1 and using
besides of this

IDklL,,1 ~ IDT;IL" + DT;IU"I ~ 111'- DT;IX"AI ,

IDT;IUkl ~ IDT;IL" + DklU,,1 ~ 111'- DT;IX"AI
we get

1 IID-IL 11'+1liD-lU 11'+1

IIA -1 - Xk+lll ~ 1 - 1111'- DT;IX"A'" (1 - "D;IL1c~IY+1 (1 ~ II~klUdl)r+lIIDkIXkl! ~
1 111 - D-IXkA I12(r+l)

< l' k liD-lX 11= 1 - 1111' - DT;IXkAII' (1 - 1111'- DT;IXkAfI)2(r+1)' k k.

Since by Lemma 21111' - X"AII< 1 impliesthat 1111'- DT;IX~1I< 1 wehavethe folIowingresult.

Theorem 5 (Error estimation): Assume that tor same (n, n)-matrix A there exists an (n, n)-matrix Xl such that
tor the norm (5) 1111'- XIAII < 1. Then tor the iterates computed by (11) it tollow8 that

1 IID-IL W+1I1D-IUkW+1

IIA -1 - Xk+111 ~ 1 - 1111'- DT;IXkAII' (1 - IID;;;L"I~Y+1 (1 ~ IIDT;IUkIIY+1IIDklXkll~

< 1111'- D;;lx"AI12(r.+1) -1 <. 1111'- XkAII2(r+l) . D-IX
= (1 - 1111'- DT;IX"AII)2(r+I)+1IIDkXdl = (1 - 1111'- XkAI1)2(r+1)+1 11 k "I!.

Proof: For the proof we only have to note that 1111'- X1AII < 1 implies 1111'- X"AII < 1 for all k ~ 1. This
was already proved as apart of the proof of Theorem 3. 0

From Theorem 5 it folIo ws that the order of convergence of (11) is (at least) 2(r + 1).
We are now discussing the computational amount necessary to perform one step of the method (11). For

simplicity we again assume that m = n. As it is general use we only count the so-called point operations (multipli-
cations and divisions)and neglect lowerorder powersof n.
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1. The computation of XtA needs n3 operations.
2. Computation of Fk: Writing the equation (9) as

Fk(I.. - Dj;lLt) (I.. - Dj;lUt) = Dj;lLtDj;lUt

we get Fk by first solving the equation

St(I.. - Dj;lUt) = Dj;lLtDj;lUt

for Sk and subsequently solving the equation

FIe(I.. - Dj;lLt) = St

for FA;.Hence we have to solve two matrix equations with triangular matrices as coefficient matrices. This needs
altogether n3 operations if the right hand sides are known. For getting the right hand sides we have to compute the
product Dj;lLtDj;lUIe of the lower triangular matrix Dj;lLk and the upper triangular matrix Dj;lUk. For this one
has to perform -} n3 operations. Therefore the computation of Ft needs n3 + -}n3 = -+ n3 operations.

3. Computation of I.. + Ft + ... + Fr, using HORNER'S scheme needs r - 1 matrix multiplications that is
n3(r - 1) operations.

4. Computation of (I.. + Ft + ... + Fk) Dj;lXt needs one matrix multiplication that is n3 operations.
5. Computation of Xk+1: Writing (11) as

GtXk+1 == (In + Ft + ... + Fk) Dj;lXIe =: Rk,

then Xk+1 can be computed by solving

(I", - Dj;lLIe) Zk = RIe

for Zt and subsequently solving

(I.. - Dj;lUk) Xk+l = Zt.

This needs n3 operations.
Adding the operations from stepsl. to 5. we have the result that for r > 0

n3 + -+ n3 + n3(r - 1) + n3 + n3 = n3 (~ + r)

operations are necessary to perform one step of (11).
Note that for r = 0 steps 2), 3) and 4) are not performed. Therefore one step of (11) needs 2n3 operations if

r = O.
We now compare the amount of work with that necessary to perform one step of the higher order version of

the SCHULZmethod: If r is a nonnegative integer then the method

Yk+1 = [In + (In - YtA) + ...+ (I.. - YleA)'+l] YIe,

is convergent if e(In - .Y1A)< 1. Theorderof convergenceis r + 2. ,

The co m pu tat ion a 1 am 0 u n t of work necessary to perform one step of this method is as folIows:

1. Computation of YtA needs n3 operations.
2. The term [...] can be computed by using HORNER'Sscheme. This needs r. n3 operations.
3. Multiplying the term [...] by YIe needs n3 operations.

Therefore altogether one step of (13) needs

n3 + rn3 + n3 = n3(r + 2) ,

operations. This result also holds for r = O. ,

In the following Table we list for some values of r the amount of work necessary to perform one step of (11)
and (13). Furthermore the Table contains the order of convergence for these values of 1".

~.

k = 1,2, ..., (13)
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r 0 1 2 3 4 5 6

(13) 2n3 3n3 4n3 5n3 6n3 7n3 8n3
Order of Convergence 2 3 4 5 6 7 8

(11) 2n3 n3 3 n3 n3 n3 n33
Order of Convergence 2 4 6 8 10 12 14

Referenees


