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On the Convergence of the Higher Order Versions
of D. J. Evans’ Implicit Matrix Inversion Process

Dedicated to Prof. Dr. Dr. h. . HELmuT HEINRICH on the occasion of his 80th birthday.

Die Versionen des Evans-Verfahrens mit hiherer Konvergenzordnung werden untersucht. Es werden hinreichende Bedin-
gungen fir die Konvergenz, Fehlerabschiitzungen sowie Bedingungen fir die Monolonie der Iterierten angegeben. Es wird
auferdem gezeigt, daf diese Verfahren zur Verbesserung einer Niherung fiir die Pseudoinverse einer Matriz mit vollem

Spaltenrang geeignet sind.

The higher order versions of the method introduced by D. J. Evans are investigated. We introduce sufficient conditions
for convergence, prove some error estimations and show that under appropriale conditions the ilerates are possessing mono-
tonous behaviour. Furthermore we show that these methods can also be used to improve an appmmmauon for the pseudo-
inverse of a matriz with full column rank.

MS}"?&IOTCH BapHaHTHl MeToa HMNBeukca ¢ BelcInM MMOPAAKOM CXOJJUMOCTH M HaloTcA JJO0CTATOYHEIE YCJI0-
BHA 1A CXOIOHMMOCTH, OLleHEH IIOrpeliHOCTH M YCJI0BHA JiA MOHOTOHHOCTH HUTEeDHPOBAHHLIX. H]}OI\‘IE TOTO
IOKa3LIBAETCH, YTO 3TH METOIH NPUTOIHB OAA YAYYIIeHHA Hp}lﬁ.]'[HH{CHI»Ef{ JiEI b5 HCCBﬂO‘ﬂﬁpaTHOﬁ OJIHOI1
MATPHIEL C ITOJHBIM CTONOIEBBIM PaHroM.

1. Introduetion

In the recent paper [2] D. J. Evaxns introduced an implicit matrix inversion process. It was demonstrated by a
simple example that this method is asymptotically much faster convergent than the wellknown method of ScHULZ
[3], which is usually denoted as the Hotelling-method in the English literature. In [1] the method proposed by Evans
was investigated. Sufficient conditions for convergence, error estimations and statements about the monotonous
behaviour of the iterates were proved.

In the present paper we show that Evaxs’ method can also be used to improve an approximation of the pseudo-
inverse of an (m, n)-matrix 4 which has full column rank. Furthermore we investigate the versions of Evans’
method which have higher order of convergence. For these methods we present sufficient conditions for convergence
and error estimations as well as statements about the monotonous behaviour of the iterates.

2. Preleminaries

Let there be given a real (m, n)-matrix 4 with full column rank, that is rank (4) = #. It follows that m = n. The
pseudoinverse of A4 is defined to be the unique (n, m)-matrix AT for which the following equations (the so-called
Moore-Penrose equations) hold:

(a) AAt4 =4, (b) AtAAt = At
(¢) (AANT = A4t (d) (AT4)T = A4 . }
If rank(4) = n and m = n hold then At = A-1. Under the above assumption rank(4) = n the equation
At4 =1, (2)
holds where I, is the (n, n) unit matriz. This can be seen in the following manner: In general we have
rank(U V) =< min {rank(U), rank(V)}
for the rank of the product UV. Hence it follows from (1), (a) that
rank(4) = rank(4474) < rank(414)
and therefore
rank(A474) < rank(4) < rank(414)
from which rank(414) = n follows. Therefore the (n, n)-matrix A4 is nonsingular. Multiplying the equation
(ATA) (AT4) = ATAATA = At4
from the left by (414)? the assertion follows. O
If we set
X=VvAT (3)
for an (n, n)-mairiz V and for the given matriz A then it holds that
X = XAAt, (4)
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This can be seen in the following manner: From (1), (a) and (c) it follows that
AT = AT(AANT = AT(A4Y),
and therefore using (3),
X =VAT(44%) = XAA4t
which is (4). O
The existence of a mairix V such that (3) holds is equivalent to the condition that the range of X7 is contained in
the range of A:

X = VAT for some (n, n)-matrix ¥V & R(XT) ¢ R(A) (where R denotes the range) .

In order to prove this assume on the one hand that X = VAT, Then it follows for z € R" that X7z = AV7z and
because of ¥VTa € R" it follows that R(XT) c R(A). If on the other hand R(XT) ¢ R(A) then for every Z ¢ R" there
exists an z € B" such that X7z = Az.

Choosing # = ¢; € RB", i = 1(1) n, where ¢; denotes the i-th unit-vector we get XT = AVT or X = VAT. The
i-th column of V7 is a vector z; which because of the equation XTe; = Ax; corresponds to & = e;. O

If (besides of rank(4) = %) m = n then because of B(A4) = K" it holds for all matrices X that R(XT) ¢ R(4) =
= [B", that is (3) is true for all matrices X with some V.

We now mention some results which partly where already proved in [1].

Theorem 1: Assume that for the (n, n)-matric A =D — L — U (D diagonal purt, L lower lriangular part,
U upper triangular part of A) the diagonal part D is nonsingular. Let s; % 0, 1 = 1(1) n, and S = diag(s;).
a) Define the real numbers pi, 1 = 1(1) n, recursively by

{5 151 UI ’a,;jl 3
e 21 - pilsil + E '"“I lsilg, +=U)n
Sil 1§

a»n j=i+1 |

and assume that
p=maxp; < 1.

1sizn
Then using the norm ||-|| = ||S-1 - 8||w it holds that
D —-L 0| =p<1.
b) Define the real numbers ¢;, ¢ = 1(1) n, recursively by

ao= A5 Bl 4 5 Blgyl, i a1
|S:| (ﬂu ! 'j-=i+1]&sfl s ’

and assume that

g =maxgq; < 1.
1=i=n
Then using the norm ||-|| = ||S~1 - S||e it holds that

D -0 Ll =¢<1.

Theorem 2: Assume that the (n, n)-mairiz A has nonvanishing diagonal elements and that for the numbers
s; # 0, 1 = 1(1) n, it holds that

r = max : Z“' L <
-—1£:Sn lslt j=1 Qi l3jj
J#i

Then p = r <1and ¢ = r <1 for the numbers p and q defined in Theorem 1,
If not stated otherwise we always use the norm
Il = 11871+ Slleo (5)

where S is some fixed nonsingular diagonal-matrix.
We are using the following lemmata:

Lemma 1: Assume that 4 is a real (m, n)-matriz and X is a real (n, m)-matriz. If ||I, — XA|| < 1 for the
norm (5) then XA has nonvanishing diagonal elements.

For the case m = u the proof can be found in [1] as a part of the proof of Satz 1 of this paper. The analogous
proof holds for m - n.

Lemma 2: Assume that A is a real (m, n)-matriz and X is a real (n, m)-matriz. If ||I, — XA|| < 1 for the
norm (5) then
[lln — DX A|| = ||DYL + D)|| < 1
where XA =D — L — U.

For the case m = n the proof can be found in [1] as a part of the proof of Satz 1 of this paper. The analogous
proof holds for m # n.
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Lemma 3. Assume that A is a real (m, n)-matriz and X is a real (n, m)-matriz. If XA =D — L — U with
nonsingular diagonal part D then if

11 — D7 XA|| = [|[D"HL + U)I| <1
for the norm (5) it always holds that
1 In — DX A|| < |1, — XA4]]. (6)
Furthermore if all diagonal elements of XA are different from one then (6) holds with the strict < -sign.
Proof: By assumption || I, — D1X4|| = ||D-YL + U)|| < 1, that is

12|k i o
12 (i fs+’“11s;1)}<1, i=10)n,

where we have set D = diag (di), L = (Iy), U = (ug).
If d;; = 1 then multiplying this inequality by |1 — d;;| = 0 and using 1 —|dyi] £ |1 — dy] it follows that

. { 2( i 1 )}<11 Bl + 4 3 (1l I8l + L] [} -
I I! RN | f-[

i
If di; 41, © = 1(1) n, then it follows that ||I, — D~ IXA” < || In — XA||. If at least one di; = 1 then we only
can conclude that ||I, — DX A|| < ||I, — X A||. O

5 gy 4 20
=

3. Methods

Let there be given an (m, n)-matrix A with full column rank, that is rank (4) =2 = m. The (n, m)-matrix X; is
assumed to be an approximation for the pseudoinverse A1 of 4. We are forming the product Xz4 which is an (%, n)-
matrix and consider the splitting

XA =D — Ly — U (7)

where Dy is the diagonal part and L and Ui denote the strictly lower and upper triangular parts of X4, respectively.
I Dy is nonsingular then we define

Ly =Di'Le, Ur = Di'Us (8)
and

Fi = LU, — U (I, — L), Gr = (In — L) (In — U). (9)
It then holds that

DAIXpA = (I, — Fo) Gy . (10)

In order to improve X; we consider for some nonnegative integer  the iteration method
X1 =G I + Fx + ... + FDX,, =152 (11)
For the special case m = n and for # = 0 this method was proposed by Evaxs in [2].

Theorem 3 (Convergence statements) Let A be an (m, n)-matriz with full column rank. Assume that for some
(n, n)-matriz V, it holds that

X, =V AT and ||I,— X 4]| <1
where the norm (5) is used. Then method (11) is well-defined and it holds that lim X = A,

koo

For the sequence of the residuals I, — XA it holds, using the norm (5), that
1 In — Xiall S || o — DX A||20+DE < || 1, — X, A]|RE+DE (12)

Proof: From the assumption |[I, — X, A|| < 1 it follows, using Lemma 1, that X, 4 has nonvanishing diago-
nal elements. Hence X, can be computed using (11). Multiplying (11) from the nght by A it follows that

Xed =G HIn + Fy + o + F) DX A = G (I + Fy + o + F) (I — L, — T =
=G L+ F + ... +F) (In—F)G = I, — G{'F+G,,
or
I, — X, A = GrIFHG, = (GTLF,6) 1.
Since the matrices L, and (I — L,)-! commute we obtain using the definition of @, and F,
In — X34 = (G FG) +1 = [(In — Uyt (I, — L)t LU T+ = [(In — Ut Ly, — L)) T,r+1.

Using Lemma 2 it follows from the assumptlon 1{, — X;4|| < lthat||I, — D 1X 14|l << 1. From Theorem 2 and
Lemma 3 it therefore follows that

(Za — U2 Lyj| < ||In — DX, A|| < |11, — X,4]|

B
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and ~ ~
H(In — L) P U = | In — DX A|| £ || I — XA

where in both lines the second =-sign can be replaced by the < -sign if all diagonalelements of X, 4 are not equal to
one. :
Therefore we get

s — X,dl|| = || In — DT XA+ < | L, — X A|*#D < 1.

Therefore for X, the same conditions hold as we have assumed for X, and X, can be computed.
It follows that

1 — Xsdl| = |[Tn — D31 X200 < || T, — X200,
and using the preceding inequality that

1 1s — X3dll = ||In — DX A||BEHIF < ||, — X, 4]|BC+DF
Using mathematical induction it follows for k = 1 that

1 ln — Xp414l] < || In — Dy 1X, 4B+ <[, — X, A]|Be+0F
Hence it follows that

lim (I, — Xz414) =klim (G PGy +1 =0,

>0

k—+co

From the assumption X; = V, AT and the iteration method (11) it follows by mathematical induction that
Xip1 = ViprdT
where V. is the (n, n)-matrix
Vi1 =G5 Is + Fi + ... + F) DV
Because of (3) and (4) it follows that X;., = X; ., 44"
Therefore, multiplying the equation
I.X; 14 = (Gg1FGy) 1
from the right by 4 it follows that
At — X = (G \FGy)+1 At

from which the assertion lim X, = ATt follows. O
k-rco
We add some remarks:
Assume that m = n. Then the second order Schulz-method

Y{:-?-12Yt+(1n_Y.N:A) Yt; k:1:23"'$

is convergent to A1 if o(I, — ¥,4) <1 where p denotes the spectral radius. p(f, — ¥,4) <1 holds, for example,
for ¥, = X, it [|I, — X,4|| < 1. A simple computation shows that

N — Yindl|l < 11, — X, 411%.
On the other hand it follows from (12) for r = 0 that
s — XAl < [11n — DIXA|* < |11 — X411

As mentioned in the proof of Theorem 3 the second =-sign can be replaced by the strict <(-sign if all diagonal-
elements of X, 4 are different from one. This means that we have a better estimation for the residual || I, — X}, 4|]
compared with the estimation of the residual ||I, — Y 14||. In this sense the method of EVANS is faster than the
method of ScHULZ.

Theorem 4 (Monotone Convergence): Assume that the (m, n)-matriz A has full column rank and that for some
(n, m)-matriz X; = 0 it holds that I, — X, 4 = 0 where X, = VAT for some (n, n)-matriz Vy. If A* = 0 and if each
row of X, contains at least one nonvanishing entry then (11) is well-defined and it holds that
=X, =252 5h2 5085240,

that is lim X, = X* =< A1, If o(I, — X,;4) <1 where p denotes the speciral radius then lim X = A1,

k-»oo k+oo

Proof: We first show that under the assumptions I, — X;4 =0, X; = 0, X; = VAT for some k = 0 it
holds that 0 <{d; = 1 for the diagonal elements of X;A4. This can be seen as follows: From the assumption I, — X4 =
= I, — Dy + Ly + U = 0 it follows that

Ly =0, U =0, In = D
and therefore that

XA =D, — Ly — Uy = Dy.
Since by assumption A' = 0 it follows that

X AAY < DAt
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By (3) and (4) it follows from the hypothesis X; = VAT that Xy = X4 A% Therefore the last inequality can be

written as
X < DAt

Set AT = (b;;), X = (=) and consider a fixed row i. Then 2;; =< dbyj, 1 = j = m, and therefored; = 0. If di; = 0
then z;; = 0 for 1 < j < m which contradicts the assumption. Therefore X;_; can be computed using (11). We
now show that the assumptions Xz = 0, X; = VdT and I, — X34 = 0 imply that X;,; = X;.

Since Dy =0, L; = 0, U = 0, Xi = 0 it follows that F; = 0 and therefore using (11) that

Xps1 =G5 In+ Fi + ... + F) DXy = (In — ﬁk}'l ({n — f!c)_l (In +Fi + ... + FL) DX, =
=Lt Tt e+ VLt et + YT b P+ oo + F) DX =
= D;1X; + nonnegative terms = D; ' Xy = X,
As in the proof of Theorem 3 one shows that
Iy — Xp A = (G PG+ = [T, — U2 (I, — L)t LD+
which implies that I, — Xz.14 = 0 and therefore since A1 = 0
At X dAT S0,

As in the proof of Theorem 3 it follows from X, = VAT that X; ., = V147 and therefore that X;,,44% =
= Xi41. We therefore have AT = X ;. Since 0 = X = X, it follows that X;,, has in each row at least one
entry different from zero.

Therefore (11) is well defined and it holds that

s =L =N Lias-84

from which lim X, = X* = Af follows. If p(/, — X;4) <1 then there exists a nonsingular diagonal matrix S such
koo

that || I, — X, 4|| < 1 for the norm (5). Hence lim X; = A' follows from Theorem 3. O

k—+co

4. Error estimations and computational amount

For simplicity we consider only the special case m = n in this section. This implies that A" = 4-1. Using (10) and
(11) we arrive at

A7 —Xpp1 — (In — D'X4) (A7 — Xpyq1) = D Xed(A7 — X)) =
=DiiXy — D' X AXs oy = DXy — (In — Fo) GGl + Fy + ... + F) D7 X =
= DX, — (I — Fi*Y) DX, = FiH 1D 1 X, .

For the norm (5) the inequality |4| <|B| implies that ||4|| = || B||. Assuming ||, — D;'XzA|| < 1 and using
besides of this

DL S0 0+ D £ |1 — DX
|D; Ul < |Di'Le + Di'Usl < |1, — D' Xad|

we get
1 (| Dg 'Ly |"+1 [| D1 U||7+?
A1 —X = i — || DX =
! sl = T, DAl T — 1D Lally ¥ (L — Dz Ty OF Xl =
1 [ In — DiitX A2+

== s i —1
=T 1Ts = D; Xedll (T = 1a — Dy Kedppyeersn 105 Xl -

Since by Lemma 2 ||/, — Xzd|| < 1 implies that ||, — Dy'X,4|| <1 we have the following result.

Theorem 5 (Error estimation): Assume that for some (n, n)-matriz A there exists an (n, n)-matriz X, such that
for the norm (5) || I, — X, A|| < 1. Then for the iterates computed by (11) it follows that
- 1 HDg L "+ D 1 Ul |7 +2
—Xenll = —1 T —1 r+1 -1 +1
1 —|[In — D' Xed|] (1 — [IDgLell)+ (1 — [|Dg U )

[l1s — DilXad||2e+D) | — Xpd||2r+D
(1 — [|I, — DyiX,d||)r+D+1 (1 = [[1, — XpA[|)2r+D+1

Proof: For the proof we only have to note that |[I, — X, 4|| < 1 implies ||I, — XzA|| < 1forall k = 1. This
was already proved as a part of the proof of Theorem 3. O

From Theorem 5 it follows that the order of convergence of (11) is (at least) 2(r + 1).

We are now discussing the computational amount necessary to perform one step of the method (11). For
simplicity we again assume that m = n. As it is general use we only count the so-called point operations (multipli-
cations and divisions) and neglect lower order powers of 7.

Ha- 1D Xl =

A

1D Xl = |IDg 1 Xl| -
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1. The computation of X4 needs n® operations.
2. Computation of F: Writing the equation (9) as
Fi(I, — DiiLy) (I, — DytU) = DLy DU,
we get F, by first solving the equation
SiIn — DUy = DLy DU
for S; and subsequently solving the equation
FuI, — DyiLy) = 8
for F,. Hence we have to solve two matrix equations with triangular matrices as coefficient matrices. This needs
altogether n® operations if the right hand sides are known. For getting the right hand sides we have to compute the
product Di 'Ly DU, of the lower triangular matrix D 'L, and the upper triangular matrix Dy 'U,. For this one
has to perform - n3 operations. Therefore the computation of Fi needs n® + 4 n® = - %3 operations.
3. Computation of I, + Fi + ... + FZ using HorNER’s scheme needs » — 1 matrix multiplications that is
n*(r — 1) operations.
4. Computation of (I, + Fi + ... + F}) D;1X; needs one matrix multiplication that is n® operations.
5. Computation of X;q: Writing (11) as
GXppr =UTn+ Fe + . + F) D Xy =: Ry,
then X .; can be computed by solving
{}ﬂ — Dk_lLt) Zg = Rx
for Zr and subsequently solving
(I,, —_— D;IUE) Xk+1 e Z; =
This needs »n® operations.
Adding the operations from steps-1. to 5. we have the result that for » > 0
et yndtndr —1)+nd+nt=ntP 41
operations are necessary to perform one step of (11).
Note that for » = 0 steps 2), 3) and 4) are not performed. Therefore one step of (11) needs 2n® operations if
r=20,
We now compare the amount of work with that necessary to perform one step of the higher order version of
the ScauLz method: If » is a nonnegative integer then the method
Yipa =y + (In — Yd) 4+ oo + (In — Yed)+1] Yo, k=12 (13)
is convergent if g(I, — Y,4) < 1. The order of convergence is r + 2.

e

The computational amount of work necessary to perform one step of this method is as follows:

1. Computation of Y34 needs n® operations.
2. The term [...] can be computed by using HorRNER’s scheme. This needs r - #® operations.
3. Multiplying the term [...] by Y, needs n* operations.

Therefore altogether one step of (13) needs
n® + rn® + n® = n¥(r 4 2)

operations. This result also holds for » = 0. ;
In the following Table we list for some values of 7 the amount of work necessary to perform one step of (11)
and (13). Furthermore the Table contains the order of convergence for these values of r.

r 0 1 2 3 4 5 6
(13) 2n? 3nd 4n3 5n3 6n® Tn? 8n?
Order of Convergence 2 3 4 5 6 7 8
1y 2 B 20 T
Order of Convergence 2 4 6 8 10 12 14
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