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On improving approximate triangular factorizations
iteratively

GÖTZ ALEFELD and JON G. ROKNE

Summary. Newton's methoq. applied iteratively to the improvement of an approximate
triangular factorization of a matrix is discussed in detail. Particular consideration is given to
the effect of rounding errors on the convergence of the iteration. It is shown that on a computer
employing fixed length floating-point arithmetic Newton's method converges with an arbi-
trary starti:m.g value after 2n-l steps to the same value as that obtained by Gaussian elimi-
nation. Finally, a new method is proposed for the iterative improvement of bounds for the
elements of the triangular factorization where the effects of the rounding errors are also
considered.

1. Intr:oduction

It is frequently necessary to solve a system of linear equations Ax = b for a variety
of right-hand sides b. Since this is often done by factoring A as (1 + L*) U* and
then solving the resulting simpler sets of equations, it is important to calculate L*
and U* as accurately as possible.

\Vith this in mind J. W. SCHMIDT[3] recently proposed to apply Newton's method
in order to correct an approximate factorization of a non-singular matrix A. SCH:MIDT
also proved directly that Newton's method in this case has second order convergence.

In this paper, we show that Newton's method applied to the correction of an
approximate factorization yields the. exact factorization after a finite number of
steps if no rounding errors occur. This is a special case of a more general result: Let
the computation be contaminated by the effects of a rounding procedure. Then it
turns out that Newton's method gives the exact same result as Gaussian elimination
after at most 2n - 1 iteration steps. (SeeTheorem 1 below.) Seeminglynothing can
be gained using Newton's method in this context.

A new method is now proposed where the elements of L* and U* are enclosed by
lower and upper bounds. It is shown that the bounds converge to the exact values
assuming no rounding errors occur. At each step it is shown that the widths of the

. enclosing intervals are approximately squared. After proving this a framework for
a detailed discussion of rounding errors in this method is presented.
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2. The iteration method

Suppose we are given areal nonsingular n by n matrix A with rows already arranged
in such an order that it possesses a factorization A =(1 + L*) U*, where I denotes
the identity, L* is a strictly lower triangular matrix and U* is an upper triangular
matrix with nonvanishing diagonal elements. Denoting by L a strictly lower tri-
angular matrix and by U an upper triangular matrix then, for given A,

F(L, U) = A - (1 + L) U

defines a nonlinear mapping from JRn' to JRn".Solving th~ equation F(L, U) = 0
is therefore equivalent to computing L* and U*. Given an approximation (L<m),U<m»
to (L*, U*) we can use Newton's method, the general form of which is

F'(x<m) (x(m+1) - x(m» + F(x(m» = 0,

to solve this equation. Since

m=0,1,2,...,

F'(L<m),u<m»(L, U) = -(I + L(m» U - LU(m)

we get the follo:wing iteration method:

-(I + L(m» (U<m+1)- U<m» - (L(m+1) - L(m» U(m) + A

- (1 + L<m» U<m) = 0, m = 0,1,2, ...

ThiB form has been given in [3].
A simple manipulation gives

(1 + L(m» U<m+1)+ (L<m+1) - L(m» U(m) = A, m = 0, 1, 2, ... (1)

For ease of notation we define

L1L<m+1)= (L1l~j+1» := L(m+1) - L(m).

When we perform (1) on a computer using fixed length floating-point arithmetic of
relative machine precision eps than the following formulas result:

For i = 1(1)n:

For k = i(1)n:

)

(a)
(

i-I i-I

)
U~m+1) = Il a. - ~ L1l~1!Z+l)u~m)- ~ l~1!Z)'U.~m+l)sk d; L.J '] ]k L.J ,]]k .

j=1 j=1

For k = i + 1(1)n (i < n): (2)

(b)
{

1

(

i-I

l(~+1) = Il - a. - ~ L1l(~+l)u~1!Z)
ks (m) kt .L.J k] ]'

Uii ]=1

- i~ll(~)u~1!Z+1) -+- l(TT})(u~1!Z)- 'U~'!i+l)

)}
L.J k]], ,kt H SI .
j=1 J

Here we have assumed that the n by n matrix A may be represented exactly on the
computer under consideration. All values computed by (2) are machine numbers.
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Furthermore we assume here and in the sequel that floating point expressions are
computed in the "natural order" from left to right. For example

jl(albl + a2b2 + aaba)= jl(jl(fl(~bl) + jl(a2b2» + jl(aaba»).

In proving the next theorem we assume that the following rules hold for the
floating-point operations. Let x be a machine number and 0 the floating-point zero.
Then

jl(x - x) = 0,. jl(O. x) = jl(x. 0) = 0, fl(x :::t0) = x.

Theorem 1. Suppose the n by n matrix A has a triangular factorization
A = (I + L*) U* and that (L, U) is an .approximation to (L*, U*) which has been
computed by Grout's variant oj Gaussian elimination (see for example [4], p. 166ff.)
using a computer with relative machine precision eps. Then for allstarting values which
are sujficiently dose to (L, U), Newton's method (2) performed on the same computer
gives exactly the same valucs ajter at most 2n - 1 steps. These values remain unchanged
by Newton' s method. (Sufficiently dose means sta~ting vaZues which guarantee the
feas~Dility of the iteration (2).)

Proof. The nontrivial elements of the matrices L = (lij) and U = (Uij)are com-
puted by the following formulas (see, for example, [4], p. 185ff.):

For i = 1(1)n:

For k = i(l)n:

(

i-I

)Uik = fl aik - .E l ijUjk .1=1 (2')

For k = i + 1(1)n (i < n):

(

1

(

i-I

))Zki = fl ~ aki -.E hj'Uji .
UZt 1=1

In the first~step of Newton's method we get from (2) (a) for i = 1

u~v =Jl(alk) = alk = Ulle= UTk' 1 < k < n.

This means that for arbitrary starting values (L(O),U(O», the matrix U(I) has the
same elements as U in the first row. U(2) has, in the same manner as U(I), the same

values in the first row aS U.Again this follows from (a) for i = 1. We therefore get
for the first column of L(2)

l(2) -
jl

(

1
( Z(l)

(
* *

»))

-
jl

(

alel

)
- -z

kl - male! + kl Un - Un - - - leI,
Ull ~l

This means that after the second iteration step both the first column of L(2) and the
first row of U(2)have the same values as those computed by (2'). We now show the
following: If the first i rows of U(m) and the first i columns of L(m) have the same
values as those computed by (2'), then U(m+1)has at least in the first i + 1 rows
(and L(m+1)at least in the first i columns) the same values as those computed by (2').

2 < k < n.
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For i = 0 this assertion has been shown above. For i > 0 it follows by mathe-
matical induction in the following manner. At first we remark that L(m+1)and U(m+I)
have the same elements in the first i columns and first i rows as L(m) and U(m) have,

that is these elements are identical to those of Land tJ. This follows immediately
from (a) and (b). Therefore using (a) we get for row i + 1 of F(m+I) that

U~m+1) = jl
(
a. - ~ Lll~m+1)u(.m) - ~ l!m) .u~m+1»

)t+I,k &+I,k L.J t+I,J Jk L.J &+I,J Jk
j=1 j=1

= fl
(ai+1,k -..t ii+1,j'Uik )

= Ui+1,b i + 1 < k < n.
J=1

To complete the proof we have to show the following: If for some m > 0 the first i
rows of U(m)and the first i - 1 columns of L<m)have the same elements as the cor-

responding rows and columns of Land U,then L(m+1) has at least in the first i columns
(and U(m+1)at least in the first i rows) the same elements as L (and U) have. For
i = 1 we have proved this assertion above. For i > 1 we again remark that it fol-
lows from (a) that U(m+1)has at least in the first i rows the same elements as tJhas.
Similarly, it follows from (b) that L(m+1)has at least in the first i - 1 columns the
same elements as L has. For column i of L(m-H) it follows using (b)

(

1

(

i-I i-I

))
l(f!!+1) = j l - a. - '\'. Lll(~+l)u~~) - '\' l(~)u~~+1) + l(f!!) (u~~) ~u~~+1» )

.

kt (m) b L.J kJ J& L.J kJ Jt kt H U
Uii j=1 j=1

(

1

(

i-I

))= jl ~ aki - 0 + ~' hjUii + 0 = hi>
UZt J=1

i + 1 < k < n.

After at most 2n - 1 steps we therefore arrive at the pair (L, tJ). 0

. "Ve therefore have the negative result that nothing is gained using Newton's
method (2) in order to improve an approximate factorization computed by Gaussian
elimination.

3. Iterative improvement of bounds

In this section we propose a method which improves lower and upper bounds for
the elements of L* and U* iteratively. We suppose that the elements of L* and U*
are enclosed in compact intervals L~j) and U~j):

l":.E L~~)&J 'J ' u!. E U(O)tJ ij . (3)

Such intervals could, for example, be computed from an error estimation or one
could compute such inclusion intervals by simply applying Gaussian algorithm and
rounding outwards in a systematic way during the elimination process. (See, for
example, [1], pp. 218.) We again denote byF(L, U) the mapping from ]Rn"to ]Rns
defined by

F(L, U) = A - (I + L) tJ.
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Since

F(L*, U*) - F(L, U) = -(1 + L*) (U* - U) - (L* - L) U

it folIows that

A - (1 + L) U = (1 + L*) (U* - U) + (L* - L) U.

Solving alternately for a row of U* - U and for a column of L* - Land assuming
for the moment that theelements of the underlined matrix L* are known, we get
the following identities after some simplification:

For i = l(l)n:
i-I i-I

u7i. = aik - L Z~Ujk - L It/ufk - Ujk),
j=1 j=1

i < k < n,

l *. - ~
{ak

' - i'} lk*' U " - ~ Z*.(u'!'.- U ..

)}
kt - 'L] 1t ..:...,; -k]]t 1"

Uij j=1 j=1

i < k < n.

If we set

Z.. ._ [(0) E L (O)
t1 . - ij ij , U ..'- U (O) E U(O)

'1 . - ij ij

and using

l'!'. E L~q)-tJ JJ ' Z* E L (O)

-kj kj ,

then because of (3) we get by the property of inclusion monotonicity of interval
arithmetic (see, for example, [1], p. 7),

{

i-I i-I

}
'll'!' E a. - ~ L~~)'ll~O)- ~ L~q)(U~l) - 'll~0») n U!O) =' U!I) i < k < ntk tk L tJ Jk L tJ Jk Jk tk' ,k' = = ,

j=1 j=1

{

1

(

i-I i

)}
* ~ (1) (0) (0) (0) (0) (0). (1)' <

lkjE ~C?)aki-.~LkjUji -.LLkj(Uji -Uji) nLki=.Lki, ~<k=n.
'll" J=1 J=1

The systematic repetition of these arguments gives us the following iteration method:

For i = l(l)n: )

{

i-I i-I

}

u~m+l) = a. - ~ L~T!t+1)u~m) - ~ L~TfI) (u~mt1) - 'll~m») n u~m),k ,k L tJ Jk L JJ Jk Jk tk ,
j=1 j=1

i < k < n, :- (4)

L(T1}+I) =
{

~
(
a . - iy; L(T1}+I)u~TfI)- ;, VT1})(U<'T!t+l) -U~T!t»

))}
n VT1})

kt (m) kt .L kJ Jt ."'-' kJ J' Jt kt ,
'llii J=1 J=1

i< k< n. J

As for the first step one can show that the following result holds. Details of the proof
are omitted.
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Theorem 2. Let the matrix A have a lactorization A = (1 + L*) U*. 11 (3) holas
and if we ehoose l~m) E L(n;.) u~m) E u~m) then lor all m > 0 we have:k kJ':k :k , =

* E U(m)
Uik ik'

l* E L (m)
ki ki' 0

Remarks.

1. It is interesting to note that the feasibility of (4) is guaranteed for starting
intervals which have arbitrarily large but finite width. The only divisions occur
during the computation of L~i+l). Since 0 =f= Uri E U~i) it is always possible tQ
choose 0 =f= u~i)E U~i)which guarantees the feasibility of (4).

2. Note that it is not necessary to choose l}.7)E Lki), U~k)E U~k) in order that
Theorem 2 is valid. The same is the case for the next theorem. On the other hand.

this choice is quite natural since lZi E L}.i), utk E U~k)by assumption.

The following theorem may be verified using essentially the same techniques as in
Theorem 1 and we therefore omit the details.

Theorem 3. Under the assumption 01 the preceding theorem, method (4) gives the
exact lactorization after at most 2n - 1 iteration steps. (Here we again assume that
all operations are performed without rounding errors.) 0

For the proof of the next theorem and in the sequel we need some additional
concepts. For areal compact interval A = [al' a2] we denote

d(A):= a2 - al

as diameter or width of A.

Similarly

lAI := max {laI!' la21}

is called absolute value of A.

We list some simple rules, the proofs of which may be found in [1], p. 20ff., for
example.

(a) A cB~ lAI < IBI

(b) d(A) = jA - AI
(c) aE JR~d(a) =0

(d) d(A =I:B) = d(A) + d(B)

(e) d(AB) < d(A) IBI + lAI d(B)

(f) a E JR ~ d(aB) = d(Ba) = laid(B).

Theorem 4. Let d(m):= max {max {d(L~j»),d(U~j»)}}. Then it holds lor (4) that
l~i.j~n

d(m+1) < a(d(m»)2

witk a nonnegative real number a, which is independent of m: The u;idths 01 the inter-
vals are approximately squared in each step.
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Proof. (Mathematical induction) Applying the rules (a)-(f) we get from (4):

For i = 1(1)n:

For k = i(l)n:
i-I i~1

d(U1f:+1» < I:d(L~j+1» lujf:>I + I:d(L~j» /Ujf:+l) - ujf:)I
;=1 ;=1

i-I

+ I: IL1j)1 d(ujf:+l)).
;=1 (4')

For k = i + 1(1)n (i < n):

d(D1I}+1) < ~
{

i~d(DTTf+1» lu~~)
1 + ~d(DTTf» IU~~+1) - u~~)

1kJ -
I (~) I !-- kJ JJ ~ kJ]I JJ
uiJ J=1 J=1

+ i IL~j)1 d(Uji+1»
}
.

J=1

Now define

For i = 1(1)n:

{

i-I

- .I:(ßij IU}~)I+ 1 + IL~~)I {Xjk),
IXik - J=1

0, otherwise,

ß . =

{
I

~q)
{

.I}ßki IU}?) I + i (1 + IL~~)I lXii)
}

'
kz Uiz J=1 J=1

0, otherwise,

k = i(1)n,

(4")

k = i + 1(l)n,

and finally

IX = max {max {lXii"ßki}}.
l~i,k~n

Using definition (4") we immediately get from (4') for i = 1 that

d(U~~+1» < IXlk(d<m»2, 1 < k < n,
and

d(L~';+1» < ßkl (d<m»2, 1 < k < n.

Assurne now that für the first i - 1 rows and columns

d(U:r+1» < IXlk(d<m»2,

d(L~ry+1» < ßkl(d<m»2,

l<k<n

}
l~k<n

(4''')

hold (1 < l < i - 1). This is certainly true for l = 1. Then we get from (4') and (4")

i-I i-I i-I

d(u1~+1» < J.; ßij IU}2) I (d<m»2 + I: (d<m»2 + I: IL~j)1 IXjk(d<m»2 = IXik(d<m»2,
;=1 ;=1 ;=1

i < k < n.
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Similarly,
1

{

i-I i i

}d(Lki+1)} < IU~?) ~ßkj IU}~)I (d(m)}2 + j~ (d(m)}2 + jE ILtj) I aji(d(m)}2

= ßki(d(m»)2, i < k < n.

From these relations the assertion

d(m+1) < lX(d(m)}2

follows. 0

4. Discussion of rounding errors

Method (4) performed on a computer using finite precision arithmetic may behave
quite different from the theoretical behaviour. In order to discuss this point in detail
we first list some preliminaries.

We assume that the foul' arithmetic operations for intervals are performed in
such a manner that the lower endpoint of the exact result is rounded downwards to
the next machine number and rounding is performed in the analogous way for the
right endpoint of the exact result (if rounding is necessary at all).For details see, for '

example, [2]. If * denotes one of the arithmetic operations +, -, X, / for real
intervals and if

A*B = [(A*Bh, (A*Bh]'

then we have for the actually computed interval

fl(A*B) = [(1 - ed (A*Bh, (1 + e2) (A*Bh]. (5)
I

Here we have 1811/2,k21/2 < eps (= machine precision) and the signs of 81and 82
have to be chosen in such a manner that

-81(A*Bh < 0, G2(A*B)2> O.

Therefore we can also write

fl(A*B) = A*B + [-Gl(A*Bh, G2(A*Bh) C A*B + E[-IA*BJ, IA*BI]

= A*B + IA*BI[-i, g], (6)

where i = max (1811,1821)< 2eps. We therefore have the following inequality for
the width of the comjmted interval :

d(fl(A*B}) < d(A*B) + 2i IA*BI.

It shows that the absolute value of A *B is essentially responsible for the difference
between the exact width and the compute~ on~.

Before coming back to the iteration method (4) we consider the following
problem:
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Let there be given machine intervals (that means real intervals the endpoints of
which are machine numbers), say,

00, Ao, Bo, Do, Al, BI, DI, ..., An-I>Bn-I>Dn-l

and a machine number an:

The expression

1
Rn = - {Oo- Ao(Bo - Do) - Al (BI - Dd - ... - An-t (Bn-l - Dn-d}

an

now has to be computed.
Theoretically we can use the following algorithm:

{

so:=oo,

(S) Si :. Si-l - Ai-l (Bi-t - Di-d,
Rn.- Sn/an.

1 < i < n,

In practice, however, we are actually performing the following operations:

{

So: = So : = 00,

(S)~i :.-=-fl(~-t - fl(Ai-l . fl(Bi-l - Di-d)),
Rn . - fi(Sn/an)'

1 <i< n,

For the following considerations we are defining e as e := 2 eps.
Assume for the moment that So = So = 00, S1>..., Sn-] have already been com-

puted. Then we have from (6)

fl(Bn-t - Dn-l) C Bn-t - Dn-t + IBn-1 - Dn-ll [-e, e],

fl(An-dl(Bn-t - Du-t)) C An-I(Bn-1 - Dn-l + IBn-t - Dn-ll [-e, e])

+ IAn-t(Bn-t - Dn-t

+IBn-t - Dn-ll [-c;, c]) I [-e, c;]

C An-l (Bn-t - Dn-d

+ IAn-IIIBn-1 - Dn-ll [-2e - e2, 2e + e2]

and therefore

Sn C Sn-t - An-l (Bn-l - Dn-t)

- IAn-tIIBn-t - Dn-tl [-2e - e2,2c;+ e2]

+ ISn-t - An-I(Bn-t - Dn-t)

- IAn-tIIBn-1 - Dn-ll [-2e - C;2,2c;+ e2]1 [-c;, c;j

C Sn-l - An-I{Bn-t - Dn-l) + ISn-11[-e, e]

+ IAn-IIIBn-1 - Dn-ll [-3c; - 3c;2- e3,3e + 3C;2 + e3]. J

1
} (7)
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Using mathematieal indueation we now show that
n-l

Sn C Sn + [-€, €]17 ISil
1=0

n-l

+ [-3€ - 3e2 - e3, 3€ + 3e2 + e3]L' IAillBi - Dd
1=0

(8)

holds. For n = 1 we have from (7) using So = So = 00

SI C So - Ao(Bo - Do) + ISol [-€, €]

+ IAollBo - Dol [-3e - 3e2 - €3, 3€ + 3e2 + e3]

= SI + [-e, e] ISol + [-3e - 382 - 83,38 + 382 + €3] IAollBo - Dol

and therefore the assertion holds for n = 1. If (8) holds for some n > 1, then replaeing
n by n + 1 in (7) and using (S) we have

Sn+! C Sn - An(Bn - Dn) + [-€, 8] ISnl

+ [-38 - 382 - [-;3,38 + 3e2 + 83] IAnllBn - Dnl
n

C Sn+! + [-8,8]17 ISil
1=0

n

+ [-38 - 382 - 83,38 + 382 + 83]17IAillBi - Dd
1=0

whieh is (8) with n replaeed by n + 1. Employing (6) onee more we have the final
result

- Sn ISnl
RnC-+-[-8,8l.

an la'nl
(9)

We are now using (8) and (9) in order to diseuss the behaviour of (4) with respeet to
rounding errors.

Let Ul7:)(i < k < n) and Lki) (i < k < n) be given as maehine intervals for some
m > 0 and for i = 1(1)n.

Let Ulr+1)and Lki+1) be defined by (4) and define

{

i-I i-I

}
(j~m+l) .= a. - \' DJ'!!+1)u~m) - ~' L~J'!!)(u<.m+1) - u~m») n u<.m)

~k . tk Li!J Jk ~ ~J Jk Jk ~k ,
j=1 j=1

[},"!-+1). =
{

~
(

0 . - i~1 D,"!-+l)u~J'!!)- ~L("!) (U~J'!!+1)- u~J'!!»

))}
n L~m)

kt . (m)'kt.~ kJ Jt .Li kJ J! J! !k
Uii J=1 J=1

(10)

and

u<m+l).= f l(u\m+1»)tk' tk' D,"!-+1) . = Il(I},"!-+1»)kt. kt' (11)

that is U~r+1) and L~i+1) denote the evaluation of (10) using floating point inter val
arithmetie.
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Applying (8) and (9) to (11) we arrive at the following relations:

For i = l(l)n:

For k = i(l)n:

u~m+1) C fj~m+1) + [-::: :::] r~m+1)tk = tk , tk

where

(a)

2i-2

r~~+1):= L ISil
j=1

i-I

+ (3 + 3s + S2) L (IL~j+1)llujT)1 + IL~j)IIUj~+1) -- uj%')I) .j=1 (12)

For k = i + l(l)n:

I)"!+1) c J}"!+1) + [-s S] r{"!+1h =h 'kt

where

1

{

2i-l

rki+1):= ~ ;; ITil + ITzd+ (3+ 3:::+ :::2)
IUii I }=1

X
(~ILkj+l)lluji)1 +.1: ILkJ>IIU}i+1)- uji)I )}}=1 }=1

(Si and Ti are the actually computed intermediate results if algorithm (S) is used
for the computation of u1%,+1)and Lki+1) respectively. These intermediate results
are also dependent oni and k. For ease of notation we suppress this dependency).

Using (12) we now prove that the following relations hold:
For i = l(l)n:

For k = i(l)n:

(b)

u~m+1) C u~m+1) + [-s S] f~m+1)tk = tk 'tk

where

(a)
i-I i-I

f~m+1) . = \' f~~n+l) lu~m)
1 + Y' IL~Tf!)

1
-;;~m+l) I r\m+1)

tk . k.J t} }k t} tk T tk .
j=1 j=2

For k = i + l(l)n:

(13)

IY,!+1) C L{"!+I) + [-s E] f{J?'I+l}kt = kt , kt

(b)

where

1

{

i-I i

}

f{J?'I+1)= ~ \' f{"!+I) !u{.'!I) I+ \' IL{"!) If~Tf!+1) + r{"!+1)b
I \Tf!) I .k.J k} }t ...: k}}t kt.
Uu }=1 }=2 .I

The proof follows by mathematical induction on i: For i = 1 we have from (4), (10)
and (11) that

U{m+l) - U-{m+1) - u {m+1) - alk - lk - lk - llc, 1 < k < n,

and therefore using (12)

u {m+l) C
,

U-(m+l) I [-" E] r{m+1) - UOn+1) + [- E ,,] r-{m+1)
lk = lk T v, lk -, lk ,<0 lk

2 Numerische Mathematik 12
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where r~~+1) = f~k+1) = O. Therefore the first part of (13) holds for i = 1. Similarly
using the second part of (12)we have

Dm+1) c L-(m+l) + [-s S] r(m+l)kl = kl ., kl , 1 < k < n,

where

r(m+l) = ~
{

~ IT ' I+ (3 + 3s + S2) ILlm) IIU('!I+1) - U(f!!)

I}
kl I ~~)I ,L..i 1 kl 11 11

Uu }=1

and since

L(m+1) - L(m+1)kl - kl

the second part of (13) also holds for i = 1 (with fk~+1) = ri~+1».
Suppose now that (13) holds for the first i - 1 rows and columns, respectively.

Then we have from (12) for the ith row .

u~m+1)C U-~m+1)+ [-" ,,] r ~m+l),k = ,k . <0, <0 'k .

Using (10) and the induction hypothesis it follows that

i-I i-I
u~m+1) C a. - ~ D~+1)u~m) - Y' L~~) (u~m+1) - u~m» + [-s S] r~m+1),k = I" L..i '} }k "-' '}}k }k '}k

j=1 j=1

i-I

Ca, ,,
- ~ (L~~+1) + [-e e] f~,!,+I) u~m)

=. .L..i '} , '} }k
}=1

i-I

- L L1j)(U}k+1) + [-s, e] f}k+1) - U}k» + [-e, e] r~k+1)
j=1

C U!m+1) + [-" ,,] f~m+1)= ,k ""'<0 ,k .

The relation

I/,l}+1) C L("!+1) + [-e e] f("!+1)kJ =k. 'k'

is proven analogously.
The derived relations may be interpreted in the following manner: Suppose that

all elements of L* have absolute value not greater than one. H the widths of the

intervals L~j) are small, then IL~j)1and - because of forming intersections - also
IL~j+l)l is not much greater than one. Under the similar assumption that the widths
of the U1r) are small it follows by the same reasoning that

IU~k+1)- u1r)1< IU1k) - U~k)1 = d(U~r)

since u~m+1)C u~m) u~m)E u!m) and hence lu~m+1) - u~m)
1

is small,k = .k,.k .k , .k ,k .
Therefore for small widths of the enclosing intervals in the mth step, it follows

from (12) that the difference 2sr~k+1)between d(U~k+1»and d«(j~k+1) is essentially
dependent on the behaviour of the size of the elements l'u1k)Iand of the computed
intermediate sums. The same is true for the difference 2sr~+1) between d(Lki+1»
and d(Lki+1» with the additional property that small values of lu~i)1can make the
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estimation of this difference even worse. From (13) we have

d (u ~m+1») < d(u\m+1)} + 2cr~m+1)

}

tk = tk tk,

d(L~"!+1») < d(Lk7+1J) + 2cr~i+1).
(14)

Assume again that L* has elements with absolute value not greater than one and
that the widths of the L~i) are small. Then we conclude from (13) (a) that the be-
haviour of r~k+l)is essentiallY dependent on the size of the elements IU~k)l.The same
is true for r~7+1Jwith the additional property that again small values of lu~r)1can
make r~~Hl)even larger. Since both the first terms of the right-hand sides in (14)
are by Theorem 4 approximately the squares of the same terms in the preceding
step one can get slowly growing bounds for d(U~k+1»)and d(Lki+1»)if the elements
of U* above the main diagonal are not too large in absolute value, if the elements
of L* are in absolute value not larger than one and if finally the absolute value of
the intermediate results are not too large. Otherwise, one has to use higher precision
in order that the bounds become more accurate.
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