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A QUADRATlCALL Y CONVERGENT
KRA\\'CZYK-LIKE ALGORITHM*

G. ALEFELDt AND L. PLATZÖDER;

Abitract. In this paper we introducc a method for computing a solution of a nonlinear system. which
is similar to that proposcd by R. Krawczyk [Computing. 4 (1969). pp. 187-201]. Dur method. however.
necds coniiderably less work per step. Starting with an interval vector. we give a criterion under which
the method is convergent to the soh~tionof the system if a solution is contained in the interval vector. lf
tbc starting vcctor contains no solution then the method will break down after a finite number of steps.

(0)

1. Introduction. In 1969 R. Krawczyk[2] introduced the operator

k(x, Y) = m (x)- y!(m (x» + (J::- YI'(x»(x- m (x»,

where I: ~c Vn(R)~ Vn(R) denotes a mapping I, xs;\8 is an interval vector, m(x) is
the center of x, Y is areal n x n matrix, J::denotes the unit matrix and ('(x) is the
interval arithmetic evaluation of the derivative of ( over the interval vector x. The
result k(x, Y) is an interval vector. Using this operator, Krawczyk considered the
iteration method

(~) xk...l=k(xk,y)nxk, ks:O.

If the interval vector XOcontains a zero ,* of I, then (1) is weil defined. Under some
additional assumptions it holds that lim"..aox" = ,*, that is, the bounds of the sequence
{Xk}converge to ,*.

In 1977 the method (1) was reconsidered and discussed by R. E. Moore in a
series of papers starting with [3].

In order to get faster than linear convergence in (1), it is necessary to modify the
matrix Y with k. More precisely, the relation limk..aoy" = 1(,*)-1 should hold. Here

1'(,*) denotes the derivative at tbe point ,*. In this case, (1) re,\uires computing the
inverse of a real matrix in each step. Taking into account 2n multiplications for
forming the product YI'(x), then (1) needs 3n3multiplications per step for large n.

In this paper we introduce a quadratically convergent algorithm which needs
fewer multiplications for large n. Tbe proposed algorithm needs the amount necessary
for performing tbe triangular decomposition of a nonsingular matrix, namely n 3/3
multiplications. Instead of tbe Krawczyk operator defined by (0), we consider an
operator kn(x, ~) defined by

(2) kn(x, ~) = m (x)- IGA (~, f(m (x» - {~- f'(x)}. {x- m(x)}).

For an arbitrary interval matrix X and an interval vector y we denote by IGA (X, y)
the interval veetor which results if the Gaussian algorithm is applied.

Note tbat in (2) the coefficientmatrix is a point matrix, which implies that kn
(I, ~) eanalwaysbe computed(eventuallyafterperformingrowor columnexchanges)
if ~ i. nonlinguJar.

Before introdueing our iteration method we discusssome preliminaries.

2. Notation and prelimlnaries. It is a~sumedthat the reader has a certain knowl.
edge 01 the elementary eonceptl of interval analysis to the extent that one can find,
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:jprexample, in [1]. Proofs of the following rules may be found in [1] or they are

~
. II1entary.As already mentioned, m(x) always denotes the center of the vector x.
.. Ais an intervalmatrixthen m (A) isdefinedin an analogousmanner.

Let A be a point matrix, let B be asymmetrie interval matrix (B=-B) and let c

~asymmetrie interval vector (e:- -e:). Tben

p> (~B)c =~(Bc).

.Let~. ~ be point matrices and let c be an arbitrary interval vector. Tben

(4) c~~)e:~~(I:Ie:).

J.et~ be a point matrix and let Band C be interval matrices. Tben

15) A(B+C)=~B+~C.

JL.etB be asymmetrie interval matrix (B=-B). Tben for an arbitrary interval matrix
t. it holds that

l6) AB =lAIB
«.

'wberelAI denotes the absolute vaIue of the interval matrix A. lAI is defined in the
ffollowingmanner. For areal eompaet intervaI A = [alt a2]one first defines
( .

lAI =max {lall, la21}.

',lI A =(Al/) is the given interval matrix, then

lAI=(lAI/I).

~u A = [alt a2] is a given interval, then one defines the width of A as

dCA) = a2-alt

: andusing this, the wldth of a given interval matrix A =(All) is defined as

dCA)=(d(AI/».

. Subsequently we will use the fo11owingrules:

: (7)

(8)

(9)

A S;B ~ lAI:iiIBI,

d(~:i: B) = d(B),

d(~B) = 1~ld(B).

We now discuss the fo11owingproblem: Let there be given a system of linear
simultaneousequations. Assume that the data of the given system are known to lie
in certain intervals, that is, let there be given an interval matrix A (the "eoefficient
matrix") and an intervaI vector b (the "right-hand side" of the system). Tbe set of
solutionsof a11linear systems described by these data can be enclosed by applying
(heGaussian algorithm in a formal manner (see [1, § 15], for example). Tbe result is
an interval vector IGA (A, b) which can be represented in the followingform:

,10) IGA(A,b):= DI(TI(.. . Tn-l(Dn(Gn-I('. . (G2(Glb)'. . ).

Tbe matrices Dh . . . , D", Tl, . . . , T"-h Gh . . . . G"-h are eertain interval matriees

whicharedependenton A andwhichin thc cascwhcrcA is a point matrix are also
POintmatrices. Apreeise deseription of these matrices is not of importance in tbis
paper. Tbe interested reader may find it in [4]. (H. Schwandt [4] was tbe first to
state (10).)
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Using the matrices occurring on the right-hand side of (lO)we define the interval
matrix .

(11) IGA (A) := D1(T1(.. . T"-I(D,,(G"-1 . . . (G2G1). . . ).

If ~ is a nonsingular point matrix, then it is easy to see that

(12)
.1

IGA(~)=l)l(Tl(" 'T,,-I(I),,(G,,-I'" (G2Gl)'" )=~- .

(Choose b := ~i,1:i i:ii n, where ~i denotes the ith unit vector).
After these preparations we prove the followingresults.
LEMMA1. Let ~ be a nonsingular real point matrix.
a) Foran arbitraryintervalvector b it holds that

~ -lb S;IGA (~, b).

b) If d(a)~ßd(b), ß ~O, then

d(lGA (~, a»~ßd(lGA (~, b».

Proof. a) Using (12) and applying (4) repeatedly, it followsthat

~ -lb = IGA (~) . b = I)I(Tl( . . . 1.),,(G"-1 . . . (G2Gl) . . . ) . b

s;1.)1{Tl(' . . 1.),,(G"-1 . . . (G2Gl)' . .). b}

s; I.)I(Tl( . . .Q" (G"-1 . . . (G2(Glb) . . . )

=IGA (~, b).

b) Using(10)and applying(9)repeatedlyit followsthat

d(IGA (~, a) = 11.)111Tll.. 'IG21IGlld(a)

:ißII.)IIITll. . 'IG21IGlld(b)

= ßd (IGA (~, b». 0

LEMMA2. Let therebe given an interva/ vector XOwith d (xo)> Q.Assume that
f: ~ S; VII(R)... V" (R) is a mapping for which the interval arithmetic evaluation f'(xo)
of the derivative exists. Assume that the point matrix ~o := m(f(x~) is nonsingular and
~~ .

(13) d (kn(xo, 1;10»:;iad (xo),

where O:iia < 1. Then ('(xo)does not contain any singularpoint matrix.
Proof. Applying (8) and (9) it followsfrom (0) that

(14) d(k(xo,1;1(1»= I~- l;Iolf'(xo)ld(xO).

We show that for the Krawczyk operator k(xo,I;IÖI)defined by (0) and the operator
kn(xo,1;10)defined by (2), the inequality

(15) d(k(xo, l;Iöl»:id(kn(xo, 1;10»

holds. If (15)has been shown, then using (13)and(14)it followsthat

I~ - l;Iolf'(xo)ld(xo):i ad(xo).
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Applying [6, Cor. 3 of Thm. 1.5], it follows that the spectral radius p of the real
. matrix 11::-l:\ölf(xo)1 is less than one. If 'f. e f'(xO),then (7) implies

11::- J,Jöl'f.l ~ 11::- J,Jölf'(xo)l.

From the Perron-Frobenius theory for nonnegative matrices it follows that
p(J:: - ~öl'f.) < 1. Hence (~- (~- BölX)r1 =X-IBo exists.

We are now going to prove (15). We apply Lemma 1a) with

~ :=~o,

b:= f(m(xo»-{J,Jo-(xo)}. {xo-m(xo)}

and get the inc1usion relation

lr\öl{f(m(xO» -{Ir\o- f(xo)} .{xo- m (xo)}}

S; IGA (~o, f(m (xo» - {~o - f(xo)} .{xo - m (xo)}).

Using (2), the right-hand side of this relation may be written as m(xo)-kn(xo, ~o).
We now show that the left-hand side is equal to m(x~-k(xo, Ir\öl).Tben

(16) k(xO~ Ir\öl) s;;;kn(xo, Ir\o)

holds, from which (15) follows.
Using (5) and (3) the left-hand side of the above inc1usionrelation may in fact

be written as

J,Jöl{f(m(x~)-{J,Jo-f(xo)}. {xo-m(xo)}}

= ~ölf(m (xo» - {Ir\ö1 (Ir\o - f'(xo»}(xO - m (xo»

= Ir\ölf(m (x~) -{I:: -Ir\ölf'(xo)} . {xo- m (xo)}

=m(xo)-k(xo, ~Öl). 0

As shown in the proofof Lemma 2, formula (15) Is a consequence of (16). (16)
means that the result of the Krawczykoperator is alwaysa subset of the corresponding
result of the operator (2). However, as we already have pointed out, the new operator
is much cheaper to evaluate.

E. Kaucher and S. M. Rump [9] have considered an iterative method using (2),
which is similar to (1). Tbeir experience is-probably as a consequence of (16)-that
the accuracy obtained for k ~ cx:>is better with (1).

3. The al&orithm. Let there be given an interval vector XOs;;;~ and a mapping
f: ~ s;;; V" (R)~ V"(R) for which the interval arithmetic evaluation of the derivative
exists. We then consider AIgorithm A below.

For large n this algorithm needs nJ/3 multiplicationsper step (besidescomputing
f(m(xk» and f'(Xk».Tbis is the number of operations necessary for performing the
triangulardecompositionof ~k' Of course,we assumethat the statementIr\k:= ~k is
performedby storingthe triangulardecompositionof ~Ic' Tbe same holds for the
statement ~k := ~k-l' Tbe use of n2 additional storage placesmight be considered as
a disadvantageof this algorithm.
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A1.GORITHM A

"0 := m(f(xO»

Xl := )m(XO, 1;10)n XO

For k Si:1 do

be&in

~k := m(f(xk»

Compute kn(xlt,~k)
U d(kn(xlt,~k»:iad(xlt) then

be&in
k+l.

Im(
k A )n k

x .= X,.k X

'k :=~It
end
else

(.)

be&in
,,, :='''-1
Compute )m(Xk,1.\,,)

Xk+l := )m(xlt, ~,,) nkn(x", 1;1,,)nXk

end

end

(..)

We now prove the following.
THEOREM. Let there be given a mapping f: ~ s; Vn(R)"" Vn(R) and an interval

vectorx°s;~ with d(x~>9 for which f(x~ exists.Assume that "°:= m(f(xo» is
nonsingular and that

(17) d ()m(xo,'°» :i ad (x~

where O:ia < 1.

a) If XOcontains a zero " of f, then A/gorithm Ais we// defined and limk-+coX1c=
" holds. If for some norm

(18) d«f(x»IJ):a clld(x)11

ho/ds, then Algorithm A is at leastquadratica//yconvergent.
b) If XOcontains no zero of f, then after a finite number of steps Algorithm A

breaksdown becauseof empty intersection.
Proof. a) Because of Lemma 2, none of the matrices ~", k Si:1, is singular if (17)

holds. Therefore AisweIl defined as long as no empty interseetion occurs. For tbe
followingreasons tbe in~erseetionis not empty: If x" containsa zero " whiebis.

assumed for k = 0, then for an arbitrary nonsingular point matrix ~ tbe relation

" e k(Xk,~-1)

bolds. This was already proven in [2]. In a similar manner the relation

" e kn(xk,~)

can be sbown. We omit the details. Hence it is elear that in pedorming Algorithm
A, neitherat(*)nor at (..) eanthe intersectionbeempty. Furthermore ,* e xt+ 1holds.
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We now prove that

d("k)~akd("o}, k ~ 1,
k k k

holds. Because of O:iia < 1 and ,* e" , k i: 0, it then c1early follows that limk..oo" =
,"'. From the assumption (17) the assertion holds true for k = 1. Assume now that

(19) d("k)~akd("o)

for 1 ;:ik :iiko, which we have just shown to be true for ko = 1 by assumption. If now
"ka+l is computed by using the statement (*), that is, if

"ku+l= kn("ko, ~ku) n "ku

. holds, then it follows that

(20) d (kn(xko,~~) :a ad (xIeO),

and because of the induction hypotheses (19) we finallyhave

d(Xko+l):ii a ko+ld(xo).

If on the other hand "ko+lis computed by the statement (**),then

(21) d(xko+l) :iid(kn(XkO, ~ko»'

Tbe way '-'kois formed shows that there is a k where 0< k :i ko- 1 such that
,;

J.\ko = ~k= mU'(x ».

Because of (*) we have for this k

(22) d(kn(xk,~,»:iad(xle)

and therefore

(23) d(X'+l) ~ ad(x').

Using mathematical induction we now prove the following:

(24) d(x'+1+1):ial+ld(x'), OSj;:iko-k.

For j = 0, (24) is identical to (23). If (24) holds for some j ~ 0 (j < k 0 - k) then applying
(7) and (24) it follows that

d(f(m (x'+1+1})+{~ku- f'(x'+1+1)}.{X'+/+1- m (x'+i+1)}}

= I~ko_f(x'+1+1)ld(x'+I+l)

:aal+ll~ko -f'(x")ld(x')

= al+l d(f(m (xl()}+{~ko - f'(x')} . {xl( - m (x')}).

Taking into account (22) and applying Lemma1b),it therefore follows that

d(kn(X'+I+I, ~ko)}~ al+ld(kn(x", ~ko» ~ al+2d(x"}.

Tberefore it also holds that

d(x "+1+2):idtkn(x'+I+l, ~ko» S ai+2d(x"),

which completes the proof of (24). For j =ko = {C,(24) reads

d (xtll+l) ~ a to-i+l d (XK).

\



216 O. ALEFELD ANDL PLATZÖDER

Uslna (19) witb k :- k wc finallybavc thc.asscrtion

d(X"o+l):ia"o+1d(x'1.

. Wo aro now aoina to provo thc statcmcnt coneernina the ordcr of conVergenee
No matter wbether X"+I11computcd uslna (.) or (..), wc bave-because of forming
intmections-

(25) d (Xk+l):i d (kn(x",~,,)}

wbcre"'Ie - m«((xle».Ulina (2), the reprcsentation (lO) and the formulas (6), (8) and
(9) we let

d(kD(x", "'k»:i 10111Tll. . .IG,,-II. . .IG21IGll d({~" -r(x")} . {x"- m(xle)}}
(26)

:i1J .i. d«((Xk» .d(Xk}

wbere

(27) 10111111.. .IG"-II' . . IG21IGll:ia.

with a point matrix IJ wbich is independent of k. (Note that the matriccs occurring
on the loft-hand aide of (27) are dependent on k. Sinee ~IeE(Xk) s; (x'1, sinee 1'(xC;
may be considcred 10 be a compact set of matriccs and sinee finally (x'1 does not
contain any ainp1ar point matrix, the product on the left-band side of (27) may be
boundcd indepcndently of k). Uslng (18) and some monotone vcctor norm and fina11y
usinl the norm cquivalencc theorem, we let from (2S)and (26) the assertion

Ud (x" + I)U :i -rUd (x" )02.

b) U the intcrscction at (.) or (..) is never empty, then in the same manner as
bofore one show.

d (Xle+l):i oe"+1d (xC;.

Bccausc of

XO~X1~X2~... ,

i~ follow. 1imc..eox" - ,* wbere ,* is somc vector. From this fact it follows that also
~..eom(r(,"»-r(,*)..Bocausc of (.) and (..), wehave

Xlr.+lS;kD(x", .,.,,).

Sincob(x, ~) depcnds continuously on x and ~ we bave

" -kD(,., (,*» -,*- IGA«((,~),«,*» -,._(,.}-11('.)

for k .. co and benee the contradiction f(,.) - 9 follows. 0
Let us dose tbia seCtionwith lomc remarks on thc condition (17) whicb is tbe

contra! assumption in our theorem. 1bis condition bolds,for example. if kD(xo,'o} c:XO

and if kD(xo,~ contains no boundary point of xo. (In thc more leneral casc wherc
kD(x°, Vo) s:x , It can be shown-usinl Brouwer's fixcd point theorem-that in XOa
1Gl0J* of ((').0 exists.)However, (11) can hold without b(xo,Vo)C:xo beinl truc.

In plasma we note that the assumption (18) whicb we bave usod for provini thc
statement about the order of converlcncc 11not a very stronl condition. Sec [1, § 3],
for oxample.
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4. Numerical examples.
Example 1. Let tbere be given tbe non linear system

2 2 1
f(~)=(X 1 ~ X2 - )=9

Xl +X2

where ~ =(X h X2) T. If we cboose tbe interval vector

Xo=(
[0, 1]

)[0, 1] ,

.then tbe condition (17) does not bold. Tberefore a bisection procedure is used until
tbis condition bolds. One of tbe two interval vectors appearing during tbis process is
stored in a last-in-first-out array. Tbe bisectionprocedure is continued usingtbe otber
one until eitber tbe conditiond(kn(xo,JjJo»<d(xo)bolds or a specificcriterionfor
nonexistence of a solution bolds.

We have used tbe same bisection process as it was discussed in [7, pp. 1058-1059].
After four bisection steps we get the interval vector

XO=(
[0.5, 0.75]

)[0.5,0.75]

for whicbd(kn(xo,\\o»~ad(x~, a < 1,holds.After the firststep of AlgoritbmA we
obtain

Xl nkn(xl, ~l) = 0

from wbich we conclude that tbis last XOdoes not contain a solution of f(~) = 9.
The next interval vector for wbicb tbe condition d (kn(xo, I}o»:2ad (x~, a < 1,

bolds is .

°
(

[0.75,1] )x = [0.5,0.75].

After 5 steps of AlgoritbmA where the statement (.) was alwaysperformed, the
intervalvectorcouldno Ionger be improvedusingtbe macbineunderconsideration.
Table 1 contains IId(Xk)lIoo. .

TABLE 1

k ßd(x")1Lo

0
1
2
3
4
5
6

0.25x 10°
0.1062 x 10°

0.2149 X 10-1

0.7897 X 10-3
0.1073 X 10-5
0.1994 X 10-11
0.1066 X 10-13

Example 2. We consider tbe nonlinear boundary value problem

y";;; y +liin Y. y(O)= O. y(l) = 1.



218 G. ALEFELD AND L PLATZÖDER

U one chooses n points in the interval (O,1) in equal distance from each other and
approximates the derivative by the central differences of the second order, then one
gets the nonlinear system of simultaneous equations

2x1- X2+ h2(XI+sin Xl) ==0,

-XI-l +2X,-XI+1 +h2{xl +sin X,)=0,

-XII-l +2xlI +h2{xlI +sin xlI)-1 = 0,

i=2(1)n-l,

whereh - 1/(n+1). .

We choose n - 2S and compute an interval vector XOwhicb inc1udes the unique
solution of this system by applying [8, 13.4.6c]. For this interval vector we have that
d(kn(xo, 'o»:iiiad(x~, a < 1. After 8 iteration steps of Algorithm A the enc10sing
interval vector could no longer be improved using the machine under consideration.
Subsequently, we tabulate the iterates X~3 whichenc10sethe approximation for y(!>.
The iterates Xi, k - 2,3, have been computed by tbe statement (*),whereas (**)was
used for k - 4(1)8. All rounding errors have been taken into account during tbe
computation process.

The inftuenceof rounding errors on Algorithm A was not discussedin § 3 of this
paper. However, as was pointed out by an (anonymous to us) referee, these rounding
errors can have a great inftuence on the practical behaviour of this algorithm. This
can also be seen from the results given in Table 2. Theoretically the statement (*) of
the algorithmwillbe uscd infinitelyoften, as soon as the region in whichthe algorithm
is quadratically convergent is reached. Using a computer with fixed mantissa length
for floating point numbers, this behaviour will be violated as soon as the limiting
accuracyof the computer under considerationhas been reached. Tbe possibleimprove-
menu trom one stcp to the next can only be very small (if an improvement is possible
at all). Therefore the fol1owingiterates are al1computed using (**). Actually. this
means a waste of computer time. This can be avoided, for e'$ample,by mQdifyingthe
Algorithm A in the following manner: As soon as d(kn(x", ~k»>ad(xlt) holds for
some k i: 1, where a is defined by (17), we don't compute new values of ~Ic in the
following steps, that is, we simply replace tbe statements of AIgorithm A beginning
with line 4 by

Xk+l 11:kn(x", ~~ nXk,

Of course, one can also use more sophisticated modifications of tbe algorithm.
Both examples were computed using a Cyber 170 at tbe Zentraleinheit

Rechenzentrumof theTechnica1Universityof Berlin,WestGermany.

k s=k.

TABLE 2

k X3

0 [-.50000000000045. .50000000000045]
1 [ .39599988315603. .40526948941198]
2 [ .87 07361927. .88 824 53066]
3 [ .398688025 54373. .398688025 54426]
4 [ .398688025 54375. .398688025 54422]
5 [ .398688025 54376. .398688025 54422]
6 [ .398688025 54377. .398688025 54422]
7 [ .398688025 54378. .398688 02554422]
8 [ .398688025 54379, .398688025 54422]
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