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Summary. We prove that if the matrix A has the strueture whieh results
from the so-ealled "red-blaek" ordering and if A is an H-matrix then the
symmetrie SO R method (ealled the SSO R method) is eonvergent for
0< w < 2. In the special ease that A is even an M-matrix we show that the
symmetrie single-step method eannot be aeeelerated by the SSO R method.
Symmetry of the matrix A is not assumed.

Subject Classifications: AMS(MOS): 65FlO CR: 5.14

1. Introduction

Let there be given the linear system

Ax=b, (1)

where A is a nonsingular n by n matrix. If the diagonal part D of the matrix A
is nonsingular then we define the strietly lower triangular matrix Land the
strietly upper triangular matrix U by the eorresponding parts of the matrix

cf1 =1 -D-1 A=L+ U.

cf1 is usually ealled the total-step or Jacobi matrix belonging to A. If we define

:Ero= (1- WL)-1 {(1- w)1 + w U}

Oltro= (I - W U)-l {(1- w)1 + wL}
and finally

Y:v = Oltro:E ro (2)

then the iteration method

Uk+1= :froUk + w(2 - w)(1 - w U)-1(I - WL)-1 b
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is called symmetrie successive overrelaxation iteration method (SSOR). In the
special case w = 1 it is called symmetrie single-step method (SSM). If we want
to express the dependency of Yw on Athen we write Y;;. Similarly we write
,I t instead of ,11 and 2;; instead of 2 w'

W. Niethammer [2] has pointed out that with the exception of the first
step, (SSOR) can be performed with the same amount of work one needs for
the successive overrelaxation method. (SSOR) is convergent for all starting
values if the spectral radius of the matrix 9;, is smaller than one, p(9;,) < 1.

2. Results

In Theorem 2.1 in [6, p. 463] the following result was proven:
1f A is symmetrie then p(~) < 1 if and only if A is positive definite and

0<w<2 .

In [1] we were able to prove the following Theorem: 1f AE<r;,n then the
following statements are equivalent:

a) A is a nonsingular H-Matrix.
b) For all B from the set of equimodular matrices Q(A) and for all w from the

interval 0< w < 2/(1 + p(lftD) it holds that p(Y:) < 1.
In this Theorem <r;,ndenotes the set of all n by n complex matrices with all

diagonal entries nonzero. Given any complex matrix A = (ai)E<r;,n, we define
its comparison matrix A(A) = (C(i) by

C(..= la..
1

1<z'< nII ll' ==,

C(ij= -lai)' i =4=j.

Furthermore we define für an arbitrary matrix A = (ai)E<r;,n the set of
equimodular matrices by

Q(A)={B=(bi)llbijl=laijl, 1<i,j<n}.

It is obvious that A and A(A) are elements of the set Q(A). Any real matrix A

=(aij) with aij~0, i =4=j, can be written as

A=Tl-C

satisfying T> 0 and C > O.
Following Ostrowski [3] such a matrix is called a nonsingular M-Matrix if

T> p( C) holds. A complex matrix A is called nonsingular H-matrix if A(A) is a
nonsingular M-matrix.

In this paper we will make special assumptions about the structure of A. In
other respects we assurne that the same assumptions hold as in [1]. The
structure which we assurne that A has is

A=
(
D1 H

)K D2
(3)
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where Dl and D2 are diagonal matrices. Matrices having this structure are the
result of the discretization of elliptic boundary value problems if the unknowns
are collected using the so-called red-black ordering. See [6, p. 159], for exam-
pIe.

We don't assume symmetry of the matrix A. In general, symmetry does
indeed not hold for the aforementioned dass of problems.

Before we state oUf result we mention that one can prove that 0< w < 2 is a
necessary condition for the convergence of (SSO R). We omit the details and
simply refer to the proof of Kahan's theorem in [4, p. 75].

After these preliminaries we prove the following generalization of the
aforementioned Theorem from [1]:

Theorem 1. Let A = (ai) E<L;l,nand let A have the form (3). Then the following
statements are equivalent:

(a) A is a nonsingular H-matrix.
(b) For all BEQ(A) andfor all O<w<2 it holds that p(9;;,)< 1.

Proo! We consider the (SSOR)-matrix 9;;,=O/t0)20)belonging to A. Because of
the special form (3), 20) can be written as

ff =
(

(1-W)11 wF
)

0) (l-w)wG w2GF+(1-w)12'

11 and 12 are unit matrices and we have set

F:= -D11H, G:= -D21K.

See [6, p. 237], for example. Completely analogously one shows

O/t =
(
(1-W)11+w2FG (l-W)F

)
.

0) wG (l-w)lz

If we define (see [6, p. 256])

, 20),0 = (
(1- w)11

. 0

WF

)12
and

(
11 0

)20,0)= wG (1- w)12

then

20,0) 20),0 = 20)' (4)

Correspondingly one has

20),020,0) = O/to)

and therefore

~ = O/to)20)= 20),020,0) 20,0) 20),0'



116 G. Alefeld

Since the spectral radius p(Y:) remains unchanged if the order of the matrices
appearing on the right-hand side is changed (see [6, p. 15, Theorem 1.11]) we
have the result that Y: has the same spectral radius as the matrix

~ 2 2
Y:: = 20,w2w,0

has. If we define w= w(2 - w) then it holds that

2ii,w= 20,c:o, 22 0 =2, 0'w, w,

(see [6, p. 256ff]). Therefore, using (4), we have

g =2 0 ,2, 0 =2,w ,w w, w

2c:o=(I -w(2-w)L)-1{(I-w)2 1 +w(2-w) U}.

(5)

(6)

where

Wehave 0< w < 2 iff 0< w:S 1. Therefore, assuming (3), the following holds:
(i) p(2i) < 1 for some w, 0< w ~ 1, iff p(9"~) < 1 for the corresponding w,

0<w<2.

In order to perform the proof of this theorem we use the following equiva-
lent statements:

(ii) A is a nonsingular H -matrix.
(iii) For all BEQ(A) it holds that p(eff)~p(eff(A»)<1.
(iv) For all BEQ(A) and for all

0< w < 2/(1 + p(leff 1))it holds that p(2g) < 1.

(See [5, Theorem 1].)

(a)~(b): If A is a nonsingular H-matrix, that is if (ii) holds, then it follows
from (iv) that p(2g) < 1 for all 0< w< 1 and for all BEQ(A). Using (i) it follows
that p(9":) < 1 for all 0<w<2 and for arbitrary BEQ(A).

(b)~(a): If on the other hand p(9":)<1 for all 0<w<2 and for arbitrary
BEQ(A) then we can choose B=.ß(A). Because of eff(A)~O it follows
p(2f(A») < 1<=>p(eff(A»)< 1 by the Stein-Rosenberg-Theorem. For w=1 it
follows from (i) that p(2f(A») < 1 and therefore that p(eff(A») < 1. Since (ii)
follows from (iii) we have that A is a nonsingular H-matrix. 0

Without going into details we mention that both the Corollaries from [1]
hold for matrices of the form (3), where w is now allowed to lie in the interval
0 < w < 2.

The next Theorem discusses the case that A is an M-matrix.

Theorem 2. 1f A = (ai) is an M-matrix of the form (3) then

min p(Y:)=p(~).
0<w<2

Proof We consider the splitting A = M - N where

D

M= ( \ (1-w(2-w)L),w2-w
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D (l-co)2

N= ((I-co)2+co(2-co)U)= (2 ' D+DU.co~-~ co -co

We have M-1N=2'w' Because of p(~)=p(2'w) and since (l-co)2j[co(2-co)]
takes on its minimum for co= 1 in the interval 0< co< 2 the result follows from

a simple generalization of Theorem 3.15 in [4J. 0

We therefore have the negative result, that also in the ease that A is an M-
matrix of the form (3), (SSM) can not be aeeelerated by using (SSOR). If A is a
symmetrie and positive definite matrix of the form (3) the same result ean
already be found in [6, p. 464, Theorem 2.2].
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