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In this raper we consider the meamThile well-kno"Tninterval-arithmetic
mo~ifications of the.~ewton's method and of the so-called srmplified
Newton's ~ethod for solvir.gsystems of nonlinear equations. Starting
with an interval-v~ctor which contains a zero we give for the first time
sufficient conditions for the converoence of these'methods to th15 solu-
tion. If the starting interval-vecto~ contains no solution then under
the very sa~e conditions the methocs under consiceration will break down
after a finite n~~ber of steps. The interval-arithmetic eva1uatiop.of
thc first derivative is on1y involved in these conditions.

1. INTRODUCTION
-I:.

In "order to m~ivate the results of the
laler scctions, we first consider a sino/
1e eguation with one unknown. If f has a
zero x. which 1s contained in the interval
'Xo c X, where f : X cF + n, ~nd if the
interval-arithmetic evaluation f' (Xk) of
the derivative exists, then, if
0 f f' CXk), the method

m (Xk) € xk, (mCXk) €:IR)

Xk+' =
{
mCXk) - f(m(xkn.

}
.

f' (Xk)

1

n xY.~
J

(1)

1s we~l-defir.ed.Furthem0re x. € xk and
1im X = x. holä. The order of convcrge~
k+'"
ce is (u~der some additional conditions)
at least two. (There are meanwhile seve-
ral people who are claiming authorship
fer this nicc result. Thcrefore we omit
to include a list of papers w~ere the
method (,) was di5cussed. Instead we rc-
fer to [2], Section 7, ~herc thi~ ~eth0d
was discusseo surely not thc first ti~c).

The paper ur.derconsideration di~cu~scs
the question, h0W far the.r~sults about
C') can be proven for thc corresponoing
generalization of (1) to systems of non-
'linear equations. This que~tion ha5 so
far not becn ~nswered in a satisfactory
manner. .

At first we rliscussso~e tools from in- .
terval-analysis. ~ong these is an expli-
cit rcpresentation of the result of thc
Gaussian algorith~ if it is 3pplied to
systems with intervals as coefficients

and in the right-hand side. This rcprc-
sentation was .first give"n hy J!.$chwanct
in [4). A si~Hle conclusion (Lemma 2),
\-lhich\-le prove by applyingthis repre-

sentation 1s the irnportant p.ew tool of
this paper. I

Because of its fundamental.importance we
then introduce an example which shows
that the results on (') obviously do not
all hold for nonlinear systems. In part
a) of thc Theorem f0110wing we provc
that undcr cer~ain conditions on the
starting interval-vector the modifica~
tions of Ncwtop.'snethod are convergent.
These conditions are dependcnt only on
the interval-arith~etic evaluation of tle
first derivative. In p3rt b) of this
Theorem we prove that under certain cor.-
ditions thc methods are breaklng down if
the starting interval doesnot contain a
zero. The ide3 of the proof for this re-
sult was firstuscrlby H.Corneliusin [3~

2. PRELIMIW\RIES

Conc~rning thc notation and basic facts
of interval-analysis we refer to [2).
Thcrefore we only list the most impor-
tant conccpts. ~he sct of co~pact inter-
v"l.lsbecomcs ~ complete metric space if
we ~ntT.oduce the metric (distance)

q(A,B) = max {Ia,-b,!, [a2-b2IJ.

The \-1idthor "diameter of an interval

A = ~21 is defined by

dCA) = a2 - a, .
~he absolute value of the interval A is
defined to be the distance

lAI := q(A,O)

For.interval-matrices we define these
concepts via the elements. If A - (A.")~.)
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is an interval-matrix, then
d (A) = (d (A, ,», for ex;mple..1.)

In general we have

,'.(IIe) ~ (ATI) c (2 )

for Interval-rnatrices~,n and a point-
vector e. This was Droven in (4,p.15].
'If e is'equal to on~ of the up.it-vectors
then the equality-sign holds in (2).
This is the content of the next Lemma.

Lemma 1. If f = fl (= i-th'unit-vector)
then the equality-sign holes in (2).

Proof. Denote t~e columns of thc matrix
~ by bi' 1 ~ i < n. Then it holds that

TI!i = (!tl,...,:'n)!i = hi
and therefore

~(U!i) = :\bi .
On thc other hand wc havc

(~l1)!i = (!\~l'''''!\''n)~i= '\!ti

and therefore the assertion follows.

Assume now that we ~ave given an n by n

interval-matrix A = (Ai') and an inter-
val-vector b = (B) J with n cornpo-
nents. By applYin~ the forrnulas of the
Gaussian al<.!orithrnwe cornpute an intcr-

v~l-vector x = (Xi) for whic? thc rela-
t10n ,-1

{x = ~ b ! ~ € " b € !t} c x

holds- See [l,~ection 151 or [4,p.20ff],for example.If ~e set A,1) := ~'"
1 < i,j < n, and BP) :=1)B, 1)
1 < i < n, then th~ formula~ arp. as fol-
lows (see [4,p.23], for examFle).~~ p.x-
plicitly list these farnulas since we ha-
vc to make explicit use of them):

for k = l(l)n - 1 da
beain
~

for i = k + 1 (l)n do
~

for j = k +-1 (l)n d~

(k)

A(k+l) .= A (k) - ,,(k) Aik
i ' . i '- Hk'-:-m) ) ) r .

'kr.

A (k)
n(k+l) .= B(k) - B(k) ~_i 0 i k "Od

"'kk
end;

for t = 1(1)k do
begin

end

for j = t( 1) n do

A (k+1) -= A (k)

tj 0 tj

n (!r+1) -= B (k)
t . t

~e have ~ssunedthat no divisionby an
interval which contains zero occurs. In
this cas~ ve say th3t thc feasihility of
the Gaussian i\lgorithmis guarantced.
Thc feasi~11ity 1s not dependent on the
right-hand side vector b.

In the fo~ulas above we havc not taken
1nto account exchanges of rows or co-
lumnswhich are evcnt',lallynccessary1n
order to prevcnt civ1sion by an interval
which contains zero. If one programs the
above forMulas then the upr-erinccx can
bc suppressed.

0

If we define the interval-~atrices

~y. : =

.. 0-
y .-

~y :=

)
f

1.

O !. I. 1 .

i (}:) I

I Ay+1,k I
,I - - (k) . I,

I 1\Y.k' . . : '
;10 =(y) nO"'1!

r P'y, I
' - --o:-r " .
l - 1"kl-: -' J.

1<k<n - 1,

h

;0.. 0 :

I ~ i
I l' (n). I
IO

-kk'o 1-

! . . I
l - 0 r,j

" '~k~n,

1

[1.. .1-1\.(~) () ) ,

nJe,k+1'" -A (r.) I

I ( )
,. (\kn \,1~k~n-'

l ' .' I I, 0../ I. , J

end;

X = B(n) Ir.(n)n n nn

for i = n - , (- 1 ) 1 da
n

X = (B(n) -' L' A)X,) II\(n)
1 i '" 1) 1 11

)=1+
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then we havc fer the i~terval-vector c~l-
culated above - using

b := (1"n-' ("'n-2("'«("2«("1 )'H)-

the representati0n

x = 1:', n~:, (1'12(:':2('" (Dn-' (:<:n-l (J:1nb)...),

which W3S first given by H.Schwandt in
[4,p.24ff1. ~s in [41 we denote this in-
terval-vector by 'IG~ (~,D), that is we
havc the represcntation

IGA (J\,h) (3)

= D, (E, (...E l (D (~ ' «'j2 (~ h)~..) .n- n n- "

Notice that it is not possible to oMit
the parenthesis in general. In order to
formulate the next result, we define an
interval-matrix IG~(~) by using-the in-
terval-matrices occuring on the right-
hand side of (3): I

IGA('-) (4)

= 1},(ß,(...Dn«<"n-,(...(<'I2(!O')"')'

Then the fcllovlingholds.

Lemma 2. For 1 < i < n. it holds that

IGA(~'~i) = IGA(~)'~i

vlhere denotes the i-th unit-vector.
~i

Proof. Starting with the representation
~f IGA(~'~i) we g~t the assertio~
by applying reFeatedly Lemma ,. 0

The last Le=a states that.the i-th co-
lumn 61 the hoatrixIG~(~) is equal to tle
inte.v;:::3-vectorwhich ODe obtains if one
applies the Gaussian algorithm to the
intervaI-Datrix ~ aDe the right-hand si-
de r " In order to comGuteIGA(~) it is
ther~fore ~ot'necessary to know thc ~a-
trices appearing on the right-hand sidc
of (4) explicitly. IGA(') can rc compu-
ted by "formally inverting" t~c-i~terva~
~atrix ~ by aprlying the Gaussian ~lgo-
rithm.
Finally we need thc followin~ rcsult.

LeffiQa3. For an interval-matrix ~ and a

point vect6r ~ it ah!ays hnlus that-

IGA(~,~) ~ IG~(~)'~ .

The proof can be foune in [4.p.331. It
is performecby a!,plying(2) in the rr=-
~resentation (3)of IGA(~.~J.

AssumÖ now that there is given u ~apping
~ : x ~ D 5.Vn( IR) Vn( R). Pe cons1-
der the following rnethodsfo~ co~puting

. 0

a zero ~ nf ~ in x
( }

J
J-: « k

) ( ) J

I

m (x € x
.

' "I X € V n F.

~ k 0
~!J(x') = l'1(x) - JG]>.("'(J( J.

( S1J) i . k, b (m(x »)

Ixk+' = Sn-(xk) n x~
l

(~im!,li fied ~e\-1ton'5 methodL. .. .

{m(xk) € xk, (m(xk) € Vn(IR»
I } J- k
N(x') = J:1(x') - IGA(~'(X ),

(U) ~
j ~(m(xY:»)
I k+l - " (

k
) n k

lX -"x x

(~e\o'ton 's wethod)

Usually one chooses m(xk) € xl<to be the
center of the interval-vector xk if the-
re 15 no specific information about the
loc~tion of ~* in xk" We con't assume
this. chnice,"however.

Both the T'lethods (SI~) and (N) compute
sequences cf interval-vectors enclosing
thc zero J(*" (SN) uses the fixea matrix
b' (xo) wh~re~s b' (xk) has to be cOl'1puted
in each ste!,cf' (In. As a consequence of
this (N) is at least ~uadratically con-
vergcnt ~hereas (SN) normally converges
only linearly. (1'1) ~ay be consideredto
he thc immediate generalization of (')
to syste~s and is identical for n = ,
to (1).

Pi thout gein<) into toe details of a ~roof
\-Temention the following existence sta-
te~ent (see [1,p.70,Satz 3.4).

Le!'1"1a4. If

!'='" (Jo) = JJ (xo) ~xo.

th~n b has a solution ir. xo and no solu-
tI()Ti in xn c:JJ(xO). If xO n SI" (xo). = (Ij

. has Da sol u t'i on in xO-., 0

0

poth thc P>E'thods (511) and (!:) havc }-,een

consi~ered repeatedly. See [5),[6). Ne-
verthelesst~ere ~on~t exist results,
which ensure convergence nf~hese me-
t~ods. '!'he felloHing simple.example Sh:J,.lS

that thc convergencc can nnt bc assurec
under the~nalogous weat conditions as
it was the case f~r ('): This example
was discussed hv B.Schwandt in [4.p-
eSff). Pe reoeai thc discu5sion because
of its funda~~ntal importance. .

r.xamT'le: x ~ IX)
lyJ

andLet.
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[

-X2 2

I! (!) = + y - '
1

l x - y J
The vector

.x

[

1/, + /512 I
I

1 + /51
2 J

is the unique solution of the_system.
~(~) = ~ in the interval-vector

,
(

[11, 19 J
1° , . .

x = 10 (11, 191)

Choosing m{xO) as the center of xo then
one gets

r

3 90771 1

{- 8:' :::~41 \I
(

, JUV, 1 I

l 3' 1144 )

f
1 ° -

and there ~re x = x . Therefore, if wechoose m{x ) to be the center af xk, we
have

° 1 kx = x = .., = x

SN{xo) = N{xo) =
0

=> x-

and

1 . k ° J. .1m x = x T x .
k-+<o

3. CONVERGENCE STATE,IEUTS

In the Theorem followinq, we state anc
prave so~e convergence results concer-
ning the rnethods (SN) ~nd (~).

Theorem. Let there be given an interval-
vector xo 5 D = Vn (B) and a maprinq
I.! : XU = D = Vn (:R) - _Vn ( ]R), whosc Fre-
chet-derivative has an interval-arithme-

tic evaluation~ °
We assume that IGA{~' (x » exlsts.

(a) Suppose that p (1.) < ,
radius) where .

~ = I:-IGA{~'(xO».~' (xe) I

( =sfectral

(5)

or that p{~) <, where

~ = d{IGA{~' (xo») .I~' (xc) 1.-

If b has a zero x. in xO then the
ces' computed EY . (sN) ~ (N) are
deflned and it holds that lim-xY-
If one chooses m(xK) to k-~
bc the center of xk thcn the condition
p (D) < 1 can be replacec by p Cl) < 2.

, (6)

s~r;uerr-
well-
= x'.

(b) If p(~) < 1 \-,here } 1s dcfincd by
(5) and ir b has no zero in XU then there

1s a ko 2 Ö ~endinq on thc me~hod

such thatboth (SN)and (~) are well-
defined for 0 ~ k ~ ko' It holds. howc-
~,that

k k
~~(x °) n x 0 = 0 and

k k
~(x °) n x 0 = 0

that is both ~ethods are breaking down
after a finite number of steps because
of e~rty Intersections.

Proof. At first we reca!~ the followlng
fact (sec (2.~ection 19J. for example)~
If ~ has a zero x. in xO a~d if
IGA(h' (xo), h{~(xo») exists. then
x. €'~{xO)aöd therefore x.€ N(xo)nxo=xl,
that is the Intersection isnot empty.
If now x. € xk for some k>O and if
the vector IGA{h' (xk), b{m{xk») exiSts,

then using ~at~~rnatical'inductionone
ShO"IS x' € tl{x -) n xk, from ,,!hich it
follow~ that th~ sequence {xk} computed

by using (N) is wcll-define~. The exl-
~tence of IGA{b'(xk}, b{n(x ») can be

seen 1R the foilowing ~anner: Assurnethat x exists for some k > O. Then be-
causc of formlng intersectlons In (N) we
have xk c xo and using inclusion monoto-
nlcity It follows that I!'(xk) =~' (xc).

0

Us1n'] agaln inclusion monotonicitv 1t
follows the exlstence of IGA(b' (xk»
since IGA{b'{xO» cxists. Fro~ the exl-
stcnce of iGA{~'{xk» it follows that
IGA{~'{xk) ,b) exists for an arbltrary
intcrval-vector b.

Thus we have sho~m that (N) is well-de-
fincd if ICA(b' (xe»~ exists and lf b has
il-zero z;.1n ~o. .

Thc pronf that - (S:-I) is ,...ell-defineco can
be perforned si~11arly.

toTenO"1 assume (5) and prove (a).
k

Tn doing this we us~ the fact ~(~(x »
can be represcnted ilS

b{!"!(xk» = Id~(xk» - ~(x.). . . .
k - - -- H\-- .= :-!{~ (x ), x.) . (m(x" ) - x.)" .

k
where 2{m{x ),x') is a real point-matriX
for whlch

(7)

J{m{xy.» ,x') € .,'{xk) (8 )

holds. See the beqinning of ~ectlon 19
1n (2J, for example. Us1ng ~esides of
these facts Le~~a 3~ thc relation (2) .

ilndthe fornula (7) in Section 10of (2]
\-'eabtai n the folloHing :
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~:(xk) - x'

k ~ k
= m(x )-X*-IGA(b'(x'), b(m(x »). . .

~ m(xk)-~*,IGA(~'(Xk»'~(m(xY.»
k k .

= m(x )-X*-IG~(b'(x ».. ,

'{3(m("Y.) ,X') (r.dxk)-x*)}. . ,
k. k

c m (X )- X - I GA (h ' (x ».. .

.{b' (xk) (m(xk)-x.)}
, ,

(
k .

{
k

~ m " )-~ - IGA(~'(x »'.

'b' (x}:)} (m(xk)-x.)
, .

k k k
= (r-IGA(h'(x »'h'(x »(rn(x )-x*),. .

k J:
Because of m(x ) € x' and

I~ - IGA(~' (xk)] . ~. (xk» I < ~
follows that

it

k k
IN(x ).- x*' ~ A Ix' - x*'

Using

q(xk,x.) ~ Ixk-x*:
. .

k k
q (N (x ), x *) == IN (x ) -x *1

this can be writtcn as -

k * k *
q(N(x ),~ ).5.~ q(x ,~ )

"k- k+1
Because of x. € ~(x ) n X
it also holds that

-T-
c t! (x ')

k+1 k k
q (x ,x*) .5. q (N (x ), X*) < " q (x ,x')

and therefore

. k+1 k+1 0 *
q(x ,x.).5.~ q(x ,x ) ,

From this inequality follo~s the asser-
tion li~ xk == x*,

k"'''
,

The proof of (a) for the method (~n) un-
der the assumption (5) needs only sone
minoI' rnodifications comparec1 "lith the
pr.eceding pro':>'f .for HO. '-1eomit thc de-
tails.-

We now prove (a) under the assuml'tion (6),

. In tbis casc wc perform the proof for
. (EH),- Becauseof the Femarksat the be-
ginning of the I'roofof this Theorem it
is clear that thc sequence {xk} 1s wcll-
defined, Applying Lemma 3 we get for Y.~O

k k 0 Y.
S~Hx ) = mIx ) - IGA(b' (x ), b (m(:t»)- .,

c m(xY.) - JGl'.(b'(xo»'b (m(xk».

Using both (12), (19) in ~ection 10 of [2J
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as weIl as (7),(8) of this paper anc ta-
king into account that

IM(xk)_~*1 .5. cl (xY.) 1t follows that

d (SN (xk» .5. c (IG1d~' (xo»). I~(!'I (xk» I
=- cl (JG1\ (h' (xo») .

. 13(I!\(xk) ,x.)(m(xk)-x*)I. , ,

~ d(JGA(~'(xo»'I~,(~k)1 cl(xk)

~ d(IG]>(~'(xo»'I~'txo)1d(xk).
k+1 k k

Becauseof x = ~:1 (x ) n x it follows
that

d(xk+1) < ~ c(xk)

anc therefore

d(xk+1).5. ~k+1 c(xo) ,

from which thc ass~rtion lim-xk ~ x.
follO\~s,

k
Illone choosesmIx ) to be the centerofx , then it folIows that

Im(xk)-~*I .5.~ d(xk)

k+'"

Using this relation the proof can be com-
pleted also in thc case of p(D) < 2.

The proof of (a) for (H) uneer the as-
sumptio~ (2) can ~e performed s1milarly.
Fe omit thc details.

~e now prove (b).
'-~eassumethat for all k > C the inter-

sect10ns SJHxY.) n xY. a~c N(xk) n xk are
not e~pty, Then ~oth methods are well-
dcfined for all Y. > 0 and it holds that

0 1 k k+1
x ::> x ::> ..' X ::> x.., ,

from which 1t follows that the sequence
1s converglng to an interval-vector .*.
t-~enow cons1der the se'Juence {m (xk) }.
This sequcnce i5 conta1nec 1n th~com-
pact set xe. By apFly1ng Bolzano-ke1er-

stra5S we conclude that therR ex1sts a
convergentsub-seouence{mIx 1)J1 .
, - k =0
~uppose that 11m mtx i)=I*, For the ele-

1+" .'k
ments of t~e sequence {mIx I)} it holds

. k kithat m(~ 1) € x . From th1s remark it
k1 "*fellows that besides of 11m x JC"

we also have I* € I-.
1+00

Us1ng bhe continuity of the operations
1nvolvecl 1n the method (SN) we get from
the equat10ns.

{ k ki' ki

t

SN(x: 1) = rn(x ) - I GA(~ . (x0) , ~ (m(. ») .
k ~1 k k1 .- x:1 = ~N(x 1) n x



I

228 G. Alefeld
"

the relations

{

m* = ~* - IGA(b' (xo), b (J:*»

1';* = m* n 1';*

where
k

m * : = I im SN (x i) = SN (x. ) .
i..'"

From thc second cquation it follovs that
1';*c w* and therefore that ~* e m*. Hen-
ce

x. e ~* - IGA(b'(xo), b(z*)} ,

or, by applying Lemma 3,

0 € IGA(b' (x°},b (z'))

c IGA(b' (xo» . b (z.) .

Applying (1) in Section 10 of [2) it fol-
lows that there exists a point-matrix
X e IGA(b' (xo}) such that 0 = ~'h(z*).
If X 15 non5ingular, we have the'cöntra-
dictlon b(ä*} = D. The nonsingularity of
X follows from the condition p(A) < 1 in
the following manner:.lf V € ~'(xo) then

I~ - ~~I ~ I~ - IGA(~,(xP»'~'(x0)1 = ~.

Applying thc Perron-Yrobenius Theorem
for nonnegative-matricesit follmlsthat

pÜ - ~1} ~ p ( II - :'111) < p (A) < 1

l1ence

(:<11)- 1 = (E - (I- ~J )} .z1.. - . .. .
. -1

exists, from which the existence of X
foliows. Thi5 15 the p~oof of (b) for
(sin. The proof of (h) -for- (tJ) needs on-
ly some small suppl~~ents whlch we omit.

0

As already mentioned above (Sn) exhinits
. only linear convergencewhereas (N)
shows under some additional assumptions
at least quadratic convergence bchaviouL
From this point of view the following
fact which holds both for (S..) ar.d (1'1)
is of interest: If one chooses m(xk)_to
be the center of xk then at least one of
the components of xk+l h~s its width
smaller than the half of the width of fuc
corresponding component of xk. This fol-
lows fro~ the following Lemma 5 ~y choo-
sing m(xk) to be the center of x~.

Lemma 5. Let the assUMpt10n of thc pre-
ced1nq Theorem hold. Suppose that for
the matrix ~ defined by (5) thc conditi-
on p(A}<1 holds. If b has a zero x* in
the interval-vector- xo then both for--
(SN) and (U) it.holds that m(xK) ~ x~+1
g m(~ # x*(mh"r-e xJt).

.
Proof.Ne performthe proof for (H).SUf-
pose thatm(xk} e xk+l. Then it follows
that M(xk) e N(xk). Us1ng the relation

Nlxk} - ~. ~ I~-IGA(~; (xk».
k k

. b' I x }} (m(x ) -x .}

which was derivcd in the Froof of the
preccdingTheorem~e thereforeget

(
k

)
. k

)
.

m x -x c nIx -x -. .
k k k

~ (r - I GA (b .()I ». ~' (x » (In( X 1- x') .

From this relation it follows that
- ,

!m(xkl-x.'2 1~-IGA(~(xk)} .
k k

. ~(x 11 \m(x )-~.I
k

< ~ Im(x }-x., .-" -

Since P(~k<1 wc obtain the contradictionthat m(~ ) = x~. The proof for (SN) can
be performed similarly. ~e omit the de-
tails. 0

The next Le~ma shows that the statements
of thc preceding Lemma are also true 1f
there exists no zero of ~ 1n xO.

Lemma 6. Let the assumptions of the
Theorem hold. suppose that for thc matrix
~ defined by (5) the condition p(~) < 1.
holds. If h has no zero in XU the" both
for In) ~nd (~U) it holds that
~Ixk) ~ XY.T11f m(xy.}e xk. (of course
we assume tha~k2ko where ko 1s deflnec
ny the statement (b) of the Theorcn). I

Proof. Consider again The method (N).
Assume that m(JCk) e xk+ . -':hen It föl-
10\ols that m (xk) € :Hxk} and hence that

0 e IGldh' (xk» . b (mlxk) ).

U5ing the corrcsponding reasoning as in
the proof of part (b) of the Theorem we
arrive at the contra"diction'that m(xk)
is a zero of b. 0

Decause of Le~a 6 we can hope that it
will not takea largenumberof steps
until the"intersection becor.\esempty,
that is, until we ha~e shown that therc
is no zero in xo.

4. ZEROES OF COHPLEX rOLYUm-Ul\LS'

In this sectlon wc con31der the more sp~
cial problem of computing a zero of a

n 1
complcx ~olynoMial pIz) = r aiz , whcre

1=0

ai e~. (Thcoretically w~ could pro:ceJ
by splitting p(z) into its real- anQ
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imaginary part ane then discussing the
2x2 nonlinear syste~.) Suppose that
Z C Xl + 1X2(i=l=1)is a rectanqularin-
terval, which contains a zero z~ of pIz).
Then it can be shown, that

. p(z)
z € z - op(Z,z)

provided 0 ~ op(Z,z).Here z is
in Z and the'"slopen' op(Z,z) 1s
in the following manner: Set

containee
defined

n

ci-l = I a,zj-i
j=1 ) .

i=1(1)n,

and

(

n i-l
]

Op
(Z.z)= ,I Ci-1 Z H'J.=1

where the subscript H means that the po-
lynomial has to be evaluated using Hor-
ner's scheme. See [7J for details. Set-
ting Zo = Z and denQting the interval
computed above by Z we can form the in-
tersection with Zo ane then repeat this
step. This gives us the following itera-
tion method:

-. . . P(zk)

Zk+1 = 1zk - ÖP(Zk,Zk)}

(zk € Zr.) .

The followingresult ~, similarly to the
Theorem - holds for method (9).

(9) n Zk'

Lemma 7. Let there be given a rectanqular
interval 'Zo'and a polvnomial pIz), which
has a zero z. € Zoo Set -' 7

Ci-'1 "" r.I a, zj-i
]
.

\ )'=1 J 0 - 11

anu'-

- f n i-1
100 (Z . Z ) - .

l
I C, 1

Z .

. 0 0 i=1 J.- JH

Then~f 0 ~ op(Zo'Zo) and if either

I

op(Z ,Z )'

1

.

gl = 1 - ep(z:,z:) < 1

q2 = d (öp(Z 1 Z ) ]top(Zo,Za) I <: --n' n

or

then method (9) is well-e~ined ane it

holds that lim Zk = z.~If there isonok-+OD
zero of p(z) in Zo' then (9) will break
down after a finite number of steps. 0

,
Concernin<;Jthe width d (Z).and the absolu-
te value 121 of a rectangular interval
the reader should consult [2J. We do not
go into the details of a proof and rather
give a n~~erical example. ;In th1s exarnple
we have chosen zk € Zk to be the center

ll9

of Zk'

, Example.Cons1derthe polynomial

pIz) = z'-z'+4.5 z2+11z+17

discussed in (8). Choosing

Zo = [1.4,1.5J + i[2.4,2.5J

we get

ql = 0.6683 , q2 <=0.7836.

Hence (9) is eitherconvergent- iJ 20
'contains a zeror z' of pIz} - or other-
wise after a finite number of steps the
method will break down because of empty
intersection.-

After 6 iteration steps we get '

Z6 = [1.500 000 000 000,
1 . 500 000 000 000 J

+ i [2.500 000 000 000,
2.500 000000 000).

For Z = [1.45,1.75J + i[2.25,2.55)
0 j

one has ql = 2.9529 and q2 = 3.9532
so that none of the sufficient conver-
gence conditions of Le~~a 7 hold. NeVer-
thelesswe haveafter 5 steps of (9)the
same interval as before.

For Zo = [1.4,1.6]+ i[2,2.4999999J me-
thod (9) breaks down after 5 steps be-
cause of empty intersections, which me-
ans that this Zo aoes not contain a zero
of p (z). .

The example was computed using the Pas-
cal SC system of the Institute of App11-
ed ~~thematics at the University of
Karlsruhe [9 J.

The author greatfully acknowledgesthe
help of Dr.H.Cornelius who has performed
all of the programming.

REFERENCES

(1) C.Alefeld:IntervallanalytischeMe-
thoden bei nichtlinearen Gleichungen.
Ubertlicke Mathematik 1979. 63-78.
Bibliogtaph1sches ~nstitut Mannheim
(1979). ' -

[21 G.Alefeld. ~.Herzberger: Einführung
in die Intervallrechnung. Reihe In-
formatik 12, Bibliographisches In-
stitut Mannheim (1974).

(3) !!.Cornelius: Unpublished manuscript
(1981) .

(4) H.Schwandt:~chnelle fast global ~~
vergente Verfahren für die-Fünf-
Punkt-Diskretisierung der Poisson-
gleichung mit Dirichletschen Rand-
bedingungen auf Rechteckgebieten.
Dissertation. Fachbereich ~lathematlk
der TU Berlin (1981).



230 G. Alefe/d

[5] R.E.Moore: Interval Analysis. Pren-
. tice Hall, Englewood Cliffs, N.J.,

1966. -

[6] K.Nickel: On the Newton method in
interval analysis, MRC Technical Sunr
mary Report 1136, Oniverslty of
Wlsconsln, Madison WI, 1971.

[7] G.Alefeld: Bounding the sIope of
polynomial operators and some appli-
catlons. Computing 26, 227-237
(1981).

[81.R.Krawczyk':Iterationsverfahren zur
Best1mmung komplexer Nullstellen.
ZAM.'i 50, T58-T61 (1970).

[9) G.Bohlender et al.: PASCAL-SC:j
A PASCAL for Contemporary ~cientific
Computation. IBM Research Report,
RC 9009, 1981.

,


