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In this raper we consider the meanwhile well-known interval-arithmetic
mocifications of the Newton's method and of the so-called simplified

Hewton's method for solvirg systems of nonlinear equations.

Starting

with an interval-vector which contains a zero we give for the first time
sufficient conditions for the convergence of these methods to this solu-

tion.

If the starting interval-vector contains no solution then under

the very same conditions the method@s under consideration will break down
after a finite number of steps. The interval-arithmetic evaluatior of
the first derivative is only involved in these conditions.

1. INTRODUCTION
4

In order to modivate the results of the

later sections, we first consider a sing
le equation with one unknown. If f has a
zgro x* which is contained in the interval

X" © X, where f : X cR - R, and if the

interval-arithmetic evaluation f£'(X%) of
the derivative exists, then, if
0 € £'(xX), the method

m(x*) € x5, mx¥) em) ]
, X (1)
£4(x) J

is well-defined. Furthermore X* € X* anc
lim XX = x® hold. The order of convergerr
k+=

ce is (under some acditional conditions)
at least two. (There are meanwhile seve-
ral people who are claiming authorship
for this nice result. Therefore we omit

‘to include a list of papers where the

method (1) was discussed. Instead we re-
fer to [2], Section 7, wherc this grethnd
was discussed surely not the first time).

The paper under consideration discusses
the question, how far the.results about
(1) can be proven for the corresponding
generalization of (1) to systems of non-

‘linear eguations. This guestion has so

far not been answered in a satisfactory
manner. ) o

2t first we discuss some tools from in- °
terval-analysis. Mmong these is an expli-
cit representation of the result of the
Gaussian algorithm if it is applied to
systems with intervals as coefficients
and in the right-hand side. This repre-
sentation was first given hy P.Schwanét
in [4]. A sinmnle conclusion (Lemma 2),
which we prove by applying this repre-

sentation is the important rew tool of
this paper. i

Because of its fundamental .importance we
then introduce an example which shows
that the results on (1) obviously do not
all hold for nonlinear systems. In part
a) of the Theorem following we prove
that under certain conditions on the
starting interval-vector the modifica-
tions of Newton's method are convergent.
These conditions are dependent only on
the interval-arithmetic evaluation of the
first derivative. In part b) of this
Theorem we prove that under certain con-
ditions the methods are breaking down if
the starting interval does not contain a
zero. The idea of the proof for this re-
sult was first used by H.Cornelius in [3}

2. PRELIMINARIES

Concerning the notation and basic facts
of interval-analysis we refer to [2].
Therefore we only list the most impor-
tant concepts. The set of compact inter-
vals becomes a complete metric space if
we introduce the metric (distance)

q(A,B) = max {la1—b1f, iaz—bzi}.

The width or diameter of an interval
A= [a1,a21 is defined by

d(A) = a, - a

2 1

The absclute valuc of the interval A is
defined to be the distance

|a] := g(n,0) .

For,. interval-matrices we define these. t

concepts via the elements. If A = (n{j)
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is an interval-matrix, then for £ = 1(1)}k do
d(A) = {d{Aij}]. for example. begin T
In general we have for ) = 2(1)}n do
A(Br) € (AD)c (2) A1§+1] 5= g
. . j
for interval-mafrices A,%3 and a point- %
vector c. This was proven in [(4,p.15]. B('+1} := B{k)
"If r i{s equal to one of the unit-vectors . .
then the equality-sign holds in (2). end
This is the content of the next Lemma.
s : 'el'l;
Lemma 1. If ¢ = ¢ (= i-th-unit-vector) (n) (n)
then the equality-sign holds in (2). s B / 2n
Proof. Denote the columns of the matrix for 1 =n - 1;'1)1 do
Z by by, 1 £ i < n. Then it holds that o g
ge T == X, = (Bi(“) -7 Ai{’.‘}x,) / ni“i‘) ;
Be, = (b S )e, = h j=ier B4
£ prinnna ity i

and therefore

A(Be.) = Ab, .
“i

:
On the other hand we have

(ATz, = (A%, ..., Jp, = A8,

and thereforc the assertion follows. a}

Assume now that we have given an n by n
interval-matrix A = {Ai‘} and an inter-
val-vector b = (B,) J with n compo-
nents. By applyiné the formulas of the
Gaussian aloorithm we compute an inter-
val-vector x = {Xi] for whicp the rela-
tion % 4 )

: L]

-1

fx=n "% ] A€ b €n)eax
holds. See [1,Section 15} or [4,p.20£f],
for example. If we set All) :=n__,

1 <1,j) <n, and B{1} := g, , o

1 <1 < n, then thé formulad are as fol-
lows (see [4,p.23], for example).Vo ex-
plicitly list these formulas since we ha-
ve to make explicit use of them):

for k = 1{(1)n - 1 do
becin

for i =k + 1{1)n do
becin

for j = k + 1(1)n do

Akl

pAlkt1) o (k) _ (k) ik

13 T My xj ;Tii

Kk

Alx)

plktl) . (k) plk) ik

gk ! * i k ;(k}
kk -

end;

e have assumed that no division by an
interval which contains zero occurs. In
this case we say that the feasibility of
the Gaussian algorithm is guaranteed.
The feasibility is not dependent on the
right-hand side vector b.

In the formulas above we have not taken
into account exchanges of rows or co-
lumns which are eventuaally necessary in
order to prevent cdivision ky an interval
which contains zero. If one programs the
above formulas then the uprer index can
be suppressed.

I1f we define the interval-matrices

A ‘
. .
" |
i (}Z} S
] . 41,k b
_ (k) : N
Ek - i Ay . :, 1<k<n 1,
O roape
. (k) -
‘. T 1!
(k)
l P T
. (1 ]
I "% |
- i
e L gm T e,
i | .
!O '.I E
N L
O
_ " () re o oAn) 2y
Ek - -1 n'k,k+1"‘ LSty
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then we have for the irterval-vector cal-
culated above - using

; = @ {

- Gromn B 00 Bonmnd =

-
n-2 2
the representation

n-1 n-1(nnb}"')'
which was first given by H.Schwandt in
[4,p-24ff). As in [4) we denote this in-
terval-vector kv IGA (A,B), that is we
have the representation

x = D1(€1{32(32{...{D (T

IGA (A,b) ' _ (3)

By A

il n
A« (e

n_1{52£ﬁ1h)1-.}
Notice that it is not possible to omit
the parenthesis in general. In order to
formulate the next result, we define an
interval-matrix IGA{A) by using the in-
terval-matrices occuring on the right-
hand side of (3): I

IGR(A) :

-
-3
et

= 31[51(...Dn(f

I PO {_ 5. 2% ORI

Then the fellowing holds.

Lemma 2. Tor it holés that

1 <1 <n.
IGA(A.fi) = IGR{&}-Ei

where e, denotes the i-th unit-vector.

Proof. Starting with the representation
(3) of 1IGA(A,ry) we get the assertiop
by applying repeatedly Lemma 1. D

The last Lemnma states that the i-th co-
lumn of the matrix IGR(A) is equal to the
interval-vector which one obtains if one
applies the Gaussian algorithm to the
interval-matrix A ané the right-hand si-
de r,. In order to comrute IGA () it is
therdfore %ot necessary to know the ma-
trices appearing on the right-hand side
of (4) explicitly. IGA(A) can he compu-
ted by "formally inverting” the.interval-
matrix A by aprlying the Gaussian Rlgo-
rithm.

Finally we need the following result.

Lemma 3. For an interval-matrix A and a
point vector b it always holds that

IGA(A,B) € IGE(A)+b . )

The proof can be founéd in [4,p.33). It
is performecd by applying (2) in the re-
presentation (3) of IGA(A,b).

Assume now that there is given a mapping
b : x €D c V. (IR) = VL(R). Ve consi-
der the followirng methods for computing

(]
(2%
A

)
a zero x° of b in x

{m(xP} € x*, (m(xF) € v (R)
X

FH(xk} =m(x') - IGA(&'(XQ).
(s} x

b (m(x 1))
ka¥1 k
\

(simplified Newton's method).. ..

= Sﬂ4xk} n x
[m{x“) e X, (m(x*) €V_(R)

ey = nedy - TeAm ("),

]

m)
b (m(x")))

k

[
I k41
b1

\

(gewton's method)

= ‘;‘I(xk) n x

Usually one chooses m(:k) € xk to be the
center of the interval-vector xK if the-
re is no specific information about the
locaticon of x* in =X, We con't assume

A TTATiIT

this choice, "however.

Roth the methods (SH) and (N) compute
sequences of interval-vectors enclosing
the zero x*. (SN) uses the fixéd matrix
b'(x®) whereas h'(xX) has to be computed
in each step of (11). As a conseguence of
this (HN) is at least quadratically con-
vergent whereas (SN) normally converges
only linearly. (N) may be considered to
ke the immediate generalization of (1)
to systems and is identical for n = 1

to (1).

vithout geing into the details of a procf
we mention the following existence sta-
tement (see [1,p.70,Satz 3.4]).
Lemma 4. If

e (x®) = u(x") &x°
then h has a solution ir x% and no solu-

i TR0 @
Tion in xO ~ su(x0). If x° g_FN(x )= 9
then b has ro solution in x7.° o

Poth the methods (SI1) and () have Leen
considered repeatedly. Sce [5],[6). Ne-
vertheless there don't exist results,
which ensure convergence of these me-
thods. The following simple example shous
that the convergence can not be assurec
uncder the .analogous vweak conditions as
it was the case for (1). This example
vas discusseé@ Ly H.Schwandt in [4.P-
g5ff]. Ve reneat the discussion because
of its fundamental importance.

I'xamrle: Let. x 2 ]

. )

and
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X2 ey o g
b (x) = .

x -
{ . J
The vector
1/} + /5)
2 i
x* = 1
" 1 + l
e
is the unigque solution of the system_
b{x) = o in the interval-vector
o 1 . [t 1931
Y (11, 191
Choosing m(x?) as the center of x° then
one gets
-3 90771,]
5 88" 12584 &
H(x ) = N (x° o> x
[2 58C i 4
[ 8* 7144’
and therefopre x = x°. Therefore, i{f we

choose m(xX) to be the center of xk, we
- have

x° = x1 = ... = xk = ... and
k
lim x° = x° $ 2% o]
ke =

3. CONVERGENCE STATE:ILHTS

In the Theorem followino, we state and
prove some convergence results concer-
ning the methods (SN) and ().

Theorem. Let there be given an interval-
vector x° € D € V,(IR) and a maprina

B : x°2cDcV, (Il) - Vp( R), whose Fre-
chet- der;vatlve has an interval- arlthme-
tic evaluation.

We assume that IGA(@'(! )) exists.

(a) Suppose that p(A) < 1 ( =sgectral
radius) where

= |E-16A(" (x*)) -5 (x| ()

or that p(B) <« 1 where

o

= AGAB N - [F (2) . 1 (6)

If b has a zero x* in x® then the s¢quen

ces computed by (SN} or (N) are well-
defined and it holds that 1lim x' = x°,
If one chooses m(xK) to k+e -
be the center of x* then the condition
p(B) < 1 can be replaced by p(3) < 2.

(b) If p(A) <1 where A is defincd by
(5) and it b has no zero in xP then there
is a kg >0 depending on the method

G. Alefeld :

*

such that both (SN) and (N) are well;
defined for 0O < k < ko. It holds, howe-
ver ,that

k k
eN(x 9) n x © = @ and

k k .
Mx ) nx©®=¢g,
that is both methods are bfeaking down
after a finite number of steps because
of empty intersections.

Proof. At first we recall the following
fact (sec [Z,Fection 191, for example):
If % has a zero x° in x° and if
IGh{h'(Yo}, h(n(xo)]) exists, then

x* € N(x9) and therefore x *e N (x°)nxO=x1
that is the intersection is not empty.

If now x* € xK fnr some k>0 and if
the vector IGA (W' (xk )., h(m{xk))} exists,
then using mat ematical induction one
shows x* € N(x™) n x from yvhich it
follows that the sequence {xX)} computed
by using (N) is well-define The exi-
stence of IGA(E'(xK), B(m(xX))) can be
seen 1E the following manner: Assume

that x™ exists for some k > O. Then be-
cause of forming intersections in (N) we
have x* < x® and using inclusion monoto-
nicity it follows that b* (xK) < §'(x°).

Using acain inclusion monotonicity it
follows the existence of IGA(h'(xX))
since IGA{h‘(xU}} exists. From the exi-
stence of IGA(Y" (xX)) it follows that
IGA(%'(xX),b) exists for an arbitrary
1ntervalvvector h,

Thus we have shown that (N) is well-de-
fined if ICA(b'(x?)) exists and if b has
a-zero x* in x©. -

Thé proof that (SH) is well-defined can
be performed similarly.

e now assume (5) and prove (a).

k
In doing this we use the fact b(m(x))
can be represented as .

B im(eX)) = Blnlx5)). ~ & (x*)
. . - (7)

k . - =k ..k_ -
= ?(n(x 1 ‘) + (m(x") - x‘)
wvhere {m(x : x'} is a- real point-matrix
for wﬁlcﬁ
Tm(xF)) . x*) € 7* (x5) (8)

holds. See the beginning of Section 19
in [2), for example. Using kesides of
these facts Lemma 3, the relation (2)
and the fornula (7) in Section 10 of (21
ve obtain the following:
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n(xX) - x*

= m")-x"-16A (" (=), b(n(x*)))
€ m(x*)-x*.16A (8" () b (m (%))
= m () -x*-1an (e (X)) .

3,2 () -x*))

n

m(!ki—x‘—IGA{b'(xk)}o

: '{y'(xk){m(xk)-x')}

n

m(xk)—f'h{IGn(h'{xk}){

b (")) (m(x*)-x*)

n

(E-1GA (5" (X)) -5 (x*)) (m(x*) -x*) .

m{xk) € xk and

12 - Tea (X)) » v FN] <A e
follows that

Because of

k

Ifok).- §‘| <A |x" - f’l R
Using
q{xk.f'} = ixk-f'i , -
a6y x*) = NS -x)

this can be written as .

(M) x*) < A qF,x") .

Because of x* € N{;k} n xk+1 < N{;k)

it also holds that

k+1 k,
atx ™ x) < gy, 2" < A g, x%)

and therefore

Lag a(x®,x*) .

a(<**1,x%) < a

From this inequality follows the asser-
tion 1lim xK = x%.

ko= =

The proof of (a) for the method (S1) un-
der the assumption (5) needs only some

- minor modifications compared with the .
preceding proof for (N). Ve omit the de-
tails.-

We now prove (a) under the assumption (6).
In this casc we perform the proof for
" (Si}) . Because of the remarks at the be-
ginning of the proof of this Theorem it
is clear that the sequence {xF)} is well-
defined. Applying Lemma 3 we get for k>0

Sn{xk} = m(xk) - 1ICA(R" (%), h(m{xk)n
' c rn(x}:) - JGA(b' {xo}) -h(m[xk)].

Using both (12),(19) in Sectinon 10 of [2]

as well as (7),(8) of this paper ancé ta-
¥ing into account that
Intx¥)-x*] < a(x¥) it follows that

atsn (X)) < a(zea (v’ (x°))) - |b (X)) |

a(IGnA( " (x°)))
. l3(m(xk).x'){m(rk}—x')]
1 o L] ) k k
< @(IGA(h' (x 7)) |n' (x)] d(x")
<aaer (°)-1p 2] axF).
k+1

Recause of x

= SN{:%) n xk it follows
that k+1 .
X

at**) <z a®)

anc¢ therefore

A L+
a™"y < 2 ax®)
from which the assertion lim'xk = x*
follows. k+w= =

1f lone cheooses m(xk) to be the center of
x", then it follows that

Im(¥)-x*] < 3 aes®) .

Using this relatior the proof can be com
pleted alsoc ir the case of p (D) < 2.

The proof of (2) for (M) under the as-
sumption (Z) can ke performed similarly.
Ve omit the details. :

Ve now prove (b).

Ve assume that for all k > C the inter-
sections SH(xK) n ¥ andé ﬁ(xk) n x¥ are
not empty. Then kroth methods are well-
defined for all k > O ané it holds that

+
«© > 11 o xk > xk 1 h =

from which it follows that the segquence
is converging to an interval-vector x*.
t'e now consider the sejuence {m(x*)}.

This sequence is containecd in the1c0m-
pact set x°. By applying Bolzano-Weier-
strass we conclude that therE exjists a
convergent sub-sequence {m(x i))1=o'

cuppose that lim méx i)=z'. For the ele-

{ =+

K
ments of the sequence {m(x 1)} it nolas

-k
that m(x 1) € xki. From thiskremark it
fcllows that besides of limx 1
1-m

R
= K
we also have x* € 1".

Using the continuity of the operations
involved in the method (5N) we get from
the eguations
k k . k
[SN({ i} = m(x i)—IGA(h'(xOJ,h{m{x H)%

4 k.41 k k
ix i =sN(x 1) nx?
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T
the relations

m* = £* - 1GA(s' (x°), B(x*))

k
where m* := lim SN(x 1) = SN(x*)

i+

From the second g¢quation it follows that
x* < n* and therefore that z* € m*. Hen-

ce
]

1® € x* - IGA(h' (x0), B(x*}))

or, by applying Lemma 3, i
s € IGA(B' (x9),B(2*))
< IGA(5" (x7)) - B(x*) .

Applying (1) in Section 10 of [2] it fol-
lows that there exists a point-matrix

X € IGA(b'(x°)) such that g = X-b(z").

If X is nonsingular, we have the contra-
diction a(. = n. The nonsingularity of
X follows from the condition p(l} < 1 in
the following manner: If q € h (xo} then

|E - :_c‘J] < JE - 166" (xT)) -5 (zD) ]

Applying the Perron-Frobenius Theorem
for nonnegative matrices it follows that

P(E - XD < p(|E - XU[) < p(A) <1 .
Hence

-1 e z1
(XU} = (E - (E=X])

-1
exists, from which the existence of X

follows. This is the prooF of (b) for

{SN). The proof of (b) for (1) needs on-

ly some small supplements which we omit.
o

As already mentioned above (SH) exhihits
. only linear convergence whereas (N)
shows under some additional assumptions
at least quadratic convergence behaviour.
From this point of view the following
fact which holds both for (Sii) ard (M)
is of interest: If one chooses m{xX) to
be the center of xX then at least one of
the components of xk*1 has its width
smaller than the half of the width of the
corresponding component of xK. This fol-
lows from the following Lemma 5 by choo-
sing m{xX) to be the center of V.

Lemma 5. Let the assumption of the pre-
ceding Theorem hold. Suppose that for

the matrix A defined by (5) the conditi-
on p(A)<1 holds. If b has a zero x° in

(Su) and (M) it holds that m(zF) € zF*!
LE m(xK) # x*(m(xX) € xK).

Proof. we perform the rroof for (W).Sup-

pose that mixk) € xk*1.

Then it follows
that m(x¥) e N(X).

Using the relation

N(x*) - x* c (E-IGA(B' (x))-
S PR CTC S B

which was derived in the proof of the

preceding Theorem we therefore get

m{xk)—f‘ = H(xk)'f'

c (E-IGAM" (x*)) 8" (")) (m () -x7).
From this‘relation it follows that
[m(xkj—x-} < |¥—IGh(?!xk}) .

. ?(xkli ]m{xk)—f‘l

<A ]m(:k}fx‘l
Since 0l§ <1 we obtain the contradiction
that wm{x<} = x*. The proof for (SN) can
be performed similarly. Ve omit the de-
tails. o

The next Lemma shows that the statements
of the preceding Lemma are also true if
there exists no zero of b in x°.

Lemma 6. Let the assumptions of the
Theorem hold. Suppose that for the matrix
A defined by (5) the condition p(d) < 1.
holds. If B has no zero in x° then both
for (H) and (Sn) it holds that

mixk) ¢ x¥F1 if m(xF) € xk. (of course

we assume thaty k<k, where ko is defined
by the statement (b) of the Theorenm).

Proof. Consider again %he method (N).
Assume that m(xX) € xX Then it fol-
lows that m{xK) € :H(xX) and hence that

s € IGA(B' (x)) - b(m(x")).
Using the corresponding reasoning as in

the proof of part (b) of the Theorem we
arrive at the contradiction that m{x")

is a zero of b. o

Because of Lemma 6 we can hope that it
will not take a large number of steps
until the intersection becomes empty.
that is, until we have shown that therc
is no zero in x°.

4. ZEROES OF CONMPLEX POLYUOMIALS

In this section we consider the more SF®
cial problem of computing a zero of 3
n
i
complex polynomial plz) = [ aczh, where€
. i=o

a; € C. (Theoretically we could proCEea
by splitting p(z) into its real- and
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imaginary part and then discussing the
2x2 nonlinear system.) Suppose that

z = X7 + 1X5(i=Y-1) is a rectangular in-
terval, which contains a zero z" of plz).
Then it can be shown, that

z* e z - h—EiEl-

sp(%,z)
provided O £ &p(Z,z). Here z is contained
in 2 and the:"slope" 8p(Z,z) is defined
in the following manner: Set

n ;
Byen B 3 ajzj—i, i=1(1)n, -
3=1 )
and #
§pl2,z) = [izlci*1 g1-1

H

where the subscript H means that the po-
lynomial has to be evaluated using Hor-
ner's scheme. See [7] for details. Set-
ting Z5, = & and dengting the interval
computed above by Z we can form the in-
tersection with Z_ and then repeat this
step. This gives us the following itera-
tion method:

plz )

2 _uE i k

(9 2., {zk EETE;TE;T} N2y,

{zk €2,) .
The following result -. similarly to the
Theorem - holds for method (9).

Lemma 7. Let there be given a rectanqular

interval Z,, and a polvnomial p(z), which

has a zero z* € Zo. Set _ -
13 -1
Co o = a, z3” ]
i~ iz :
jE1 4 By
and

o
6p(30,zo} =

Then 1f O z'aptzo.zo) and if either

3
ﬁp(zo,zo}

i - <1
Ep ( 0.205

94

= 1 3 . u
q, d[%éplzc.zoi]lﬁp{zo'zo)[ gl

then method (9) is well-defined and it

holds that 1im Zk = z=*_ If there is. no

k—+
zero of pl(z) in Z5, then (9) will break
down after a finite number of steps. D

Concerning the width d{Z) .and the absolu
te value ?Zl of a rectangular interval
the reader should consult {2]. We do not
go into the details of a proof and rather
give a2 numerical example. In this example
we have chosen z, € 2y to be the center

.
i

of zk.

- Example. Consider the polynomial

plz) = z%-2%+4.5 z2+11z+17
discussed in [8]. Choosing
z, = [1.4,1.51 + if2:452:5])

we get

q, = 0.6683 , g, = 0.7836.

_ Hence (9) is either convergent - if 2,
‘¢contains a zeror z* of plz) - or other-

wise after a finite number of steps the
method will break down because of empty
intersection.

After 6 iteration steps we get -

2, = [1.500 000 000 000,
1.500 000 000 000}

+ 4 [2.500 OO0 OO0 00O,
2.500 000 00O 000].

For z_ = [1.45,1.75] + 1[2.25,2.55]

i
one has gy = 2.9529 and q, = 3.9532

so that none of the sufficient conver-
gence conditions of Lemma 7 hold. Never-
theless we have after 5 steps of (9) the
same interval as before.

For Zo = [1.4,1.6] + 4[2,2.4999999]) me-
thod (9) breaks down after 5 steps be-
cause of empty intersections, which me-
ans that this Z, does not contain a zexo
of plz).

The example was computed using the Pas-
cal SC system of the Institute of Appli-
ed Mathematics at the University of
¥Karlsruhe [9].

The author greatfully acknowledges the
help of Dr.H.Cornelius who has performed
all of the programming.
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