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ABSTRACT

The question of the existence and uniqueness of an M-matrix which is a square
root of an M-matrix is discussed. The results are then used to derive some new

necessary and sufficient conditions for a real matrix with nonpositive off diagonal
elements to be an M-matrix.

1. INTRODUCTION

Following Ostrowski [3], a real n by n matrix A=(ai;) is called an
M-matrix if it can be written in the fonn

A=sI- B, s>O, B~O, p(B)~s. (1)

Here p denotes the spectral radius and I is the writ matrix. If p(B)<s, then A
is called a rwnsingular M-matrix; otherwise, a singular M-matrix.

In this paper we discuss the existence and uniqueness of an M-matrix
which is a solution of the equation

x2- A=O, (2)

where A is a given M-matrix.A solution of (2) is called a square root of A. The
following example shows that there are M-matriceswhich have no square root
at all.
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E:~AMPLE. Let

A=(g
-1

)0 =sI-B, s>O, B=(~ ~).
Since p(B)= s, it follows that A is a singular M-matrix. A short discussion
shows that (2) has no solution.

In this paper we prove that an M-matrixA has an M-matrix as a square
root if and only if A has "property c." For a subset of the set of M-matrices
with uproperty c" we are able to prove that there exists only one M-matrix as
a square root. This subset contains M-matrices which are irreducible or
nonsingular. The proof of the existence of a square foot is constructive. This
allows us to compute this matrix.

In Section 2 we list some definitions and well-knownfacts which we use in
the sequel. Section 3 contains the main results. Finally, in Section 4 we give
some new necessary and sufficient conditions for a real matrix with nonposi-
tive off diagonal elements to be an M-matrix.

2. PREUMINARIES

DEFINITION1. An n by n matrix T is called semiconvergent if and only if
the limit lim;-rooT; exists. (See [1, p. 152].)

The following result is established by use of the Jordan form for T (see [1,
p. 152]).

THEOREM1. The n by n matrix T is semiconvergentif and only if each
of the following conditions holds.

(a) p(T)~ 1.
(b) If p(T)= 1, then all elementary divisors associated with the eigen-

value 1 of T are linear.
(c) If p(T)= 1, then AEa(T) (a(T)=spectrum of T) with lAI= 1 implies

A=l.

For the next result and in the sequeIof this paper we use the definition of
irreducibility of a matrix, which can be found in [4, p. 18]. Notice that a 1 by
1 matrix is irreducible iff its only element is different from zero.

THEOREM2. If T=(tj;r~O, tjj>O, 1~i~n, then T is semiconvergent if
(a) and (b) of the preceding theorem hold.
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Proof. It is sufficient to prove timt (c) of Theorem 1 holds. There exists
an n by n pennutation matrix Q such that

where eaeh square submatrix Rif' 1:S:;;i:S:;;m, is irreducible. See for example [4,
p. 46, (2.41)]. If T is irreducible, then m =1 and we can ehoose Q =1. Since
the diagonal elements of eaeh R ii are also positive, it followsfrom Lemma 2.8
and Theorem 2.5 in [4, p. 41] that eaeh Rii is primitive. (See Definition 2.2 in
[4, p. 35]). This means that for eaeh i there is only one eigenvalue A of Rji'
namely p(Ri;), for whieh 1:\I=p(Rji) holds. From these remarks (e) of the
preceding theorem follows. 11

DEFINITION2. An M-matrix A is said to have "property c" if it can be
split into A =sI - B, s> 0, B~ 0, where the matrix T= B/ s is semiconvergent.

All nonsingular M-matrieeshave "property e." There are, however, singu-
lar M-matriees whieh do not share this property (see [1, p. 152ff]).

Let

znXn: = {A= (aii)laii:S:;;O,i*t}.

Then we have the following results.

THEOREM3.

(a) A EznXn is a nonsingular M-matrix if and only if A -1 exists and
A -l~O (see [1, p. 134 ff.]).

(b) A E zn X n is a nonsingular M-matrix if and only if the real parts of all
eigen va lues are positive. The same characterization holds for the nonzero
eigen va lues of a singular M-matrix (see [1, pp. 134 H., 147 H.]).

(e) lf A and Bare n by n M-matrices and if ABEznXn, then AB is an
M-matrix (see [1, p. 159, Exercise 5.2]).

Ru R12
. ..

R1m

QTQT= I

R22

I, l:S:;;m:S:;;n,0
Rmm
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Il we denne

al az
al

an
az

[al,...,an] := (3)
az

0 al !

then

[al,...,an]'[ßI,...,ßn]=
[

aIßI,aIß2+azßI"'" ~ akßn-k+I
]

'

k=l

Therefore the set of matrices of the form (3) is closed under ordinary matrix
muJtiplication.

3. SQUARE BOOTS OF M-MATRICES

Let there be given an n by n matrix A. We know from the definition of an
M-matrix that there exists an s> 0 such that

A=sI-P, P~o, p(P)~s.

H ßs>O and A=(s+ßs)I:-(ßsI+.P), then using the Perron-Frobenius
theorem [4, p. 46], it follows that p(6.sI+.P)=ßs+p(p)~ßs+s. From this
remark we conclude that there exists an so>O such that for all s~so we can
represent the M-matrixA in the following manner:

A=sI-.P=s(I-Pjs )=s(I-P)

with P=P/s, diag P>O, p(P)~l (MM)

(diag P denotes the diagonal part of P). Since A j s=1- P, one knows a square
root of A if one knows a square root of 1- P.

It is obvious that A has an M-matrixas a square root if and only if 1- P has
an M~matrixas a square root. Therefore we can restrict the discussion in the

--- - -_u-
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following lemma to M-matrices which have the special fonn

A=I-P, P~O, diagP>O, p(P)~l.

LEMMA1. Let there be given an n by n matrix P=(Pii)~O where
p( P) ~ 1 and diag P> O.Let a ~ 1. Tfum the following three statements hold:

,(a) There exists an n by n matrix B ~O where p(B)~ a and I - P =(aI-
B)2 if and only if the iteration method

XHl= ;a [P+(a2-1)I+X;], Xo=o, (4)

is convergent. In this case B~X* =limj-+ooXj,X*~o, p(X*)~a, diag X*>O,
and (aI-X*)2=I-P.

(b) If (4) is convergent, it follows that P and X*/ aare semiconvergent.
(c) If P is semiconvergent,then (4) is convergentfar all a~ 1.Denotingin

this case the limit of the iteration method

YHl=!(P+ Yj2), Yo=O,

by Y*, the equation

aI-X*=I- y*

holds.

Praof. (a), ~: We prove by induction that the sequence which is
computed using (4) is increasing and bounded. Assuming XHl~Xj, Xi~B,
which is obviously true for i = 0, it follows that

Xi+2= 2~ [P+(a2-1)I+X;+1]~ 21a[P+(a2-1)I+X;]=XHl

and

B-XHl =B- 21a[P+(a2-1)I+Xn

= ~
[ I-P-( a2I-2aB+X~) ] ~~ [I-P-(aI-B)2] =0.2a J 2a
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Therefore the iteration method (4) is convergent. For its limit X* we have
limj-+ooXj-X*~B, (al-X*)2=I-P, diagX*>O, X*~O. Because oEO~X*
~B, it follows that p(X*)~p(B)~a from the Perron-Frobenius theorem [4,
p. 46, Theorem 2.7].

<=:Assuming the convergence of the method (4), we have X*=limi-+ooXj
;;?;0 and 1- P= (al - X*)2. Let U be a matrix which transforrns P into Jordan
form:

11 0
u-1 PU =

0 h

where

0

l~j~k.
1

'A.1

Setting Zj:=U-1XjU, we get from (4)

- 1 [ -1 ( 2
) 2]ZH 1- 2a U PU+ a - 1 1+ Zj , Zo=O, (5)

and therefore each diagonal element J.Lof U-1 PU is related to a diagonal
element 'A(Hl) of ZHl by the equation

'A(Hl)= 2~ [J.L+(a2-1)+('A(i»2]. (6)

We prove by mathematical induction that p( Xj)~ a and therefore that
p(X*)~a holds. For i=O this is trivially the case. Using p(P)~1 and the
induction hypothesis, we have

1'A(i+l)l~ ~ [IJ.LI+a2-1 + 1'A(i)12]~ ~ (IJ.LI-l+2a2) <a.2a 2a (7)

'A. 11

I

1-=1

I

0
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Therefore the assertion holds with B: =X*.

(b): Let (4) be convergent, and assume that P is not semiconvergent.
Againlet V be a matrixwhichtransformsP into Jordan form.Sincep(P) ~ 1
and diag P>O, it folIows, using Theorem 2, that at least one of the sub-
matrices 1;, 1~i~k, has the form

0

1

1

where the order of 1;is greater than one. Let this be the case for i: =i: Setting
again Zi =V-I XiV' we see from (5) that Zi has the form

Jfi) 0
Z.=I

0 J1i)

Jii) has the form
i

J(i) =
[ß

(i) ß (i)

]
;- I ,..., .
1 pr

The sequence (ß1i» is computed by the recursion

ß1i+I)= 2~ [1+(a2-1)+(ß1i»)2], ßfO)=0.

Since this sequence is increasing and bounded, it is convergent and lim ßfi)=a.
Assume now that the sequence (ß4i» which is computed using the iteration
method

ß (i+I)= ~ (1+2 ß (i)Q(i» )2 2a I fJ2 ' ßiO)= 0 (8)

1 1

I

.

J.=1

I

0
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is eonvergent. Setting limßij)=ß, we get from (8)

1
ß= 2a (1 +2aß),

whieh is a eontradietion. Therefore the sequenee (Zj) and henee the sequenee
(Xj) eannot be eonvergent. Contradietion! This means that P is semieonver-
gent. It remains to be shown that also X*/ a is semiconvergent. Sinee by
Lemma l(a), diag X*>O and therefore also diag (X* ja»O, it is sufficient by
Theorem 2 to show that (a) and (b) of Theorem 1 hold. In part (a) of Lemma
1 we have shown that p(X*)~a, and therefore it follows that p(X* /a)~l.
TIris is (a) of Theorem 1. Let now p(X*ja) =L In order to prove (b) of
Theorem 1, we have to showthat all elementary divisors associated with the
eigenvalue I of X*j a are linear. Passing to the limit in (6), it follows that
every eigenvalue J.Lof P is associated with an eigenvalue >..of X* by the
equation I-J.L=(a->..)2. If now >..ja=l, then J.L=1 folIows. Passing to the
limit in (5), it folIows that if J.Lis an eigenvalue of P the elementary divisors of
whieh are linear, then the elementary divisors of the related eigenvalue >..are
also linear. Sinee P is semiconvergent, (b) of Theorem I holds for P and
therefore also for X*ja.

(e): Let P be semiconvergent. Then P belongs to the dass M (see [2, p.
47]). Henee a natural matrix nonn exists for which 11 P 11 ~ 1 holds. Using
mathematieal induction, we prove that the sequenee computed using (4) is
nonn-bounded. H 11 Xj 11 ~ a, whieh is the case for i =0, then it follows that

IIXi+IIl~ 21a(IIPII+a2-1+IIXiI12)~ 21a(l+a2-I+a2)=a.

The sequenee is also inereasing, and therefore it is convergent. Setting again
Zi= V-lXiV and in addition ii= V-IyjV, we have

Here 1;(i)and ~(i), 1~i~k, are matrices of the fonn

r(i)= [ß
(i) ß (i)

]Ji I ,..., Vi ' JO)=[ß
-(i) ß-(i)

]; I ,..., P; ,

lfi) 0
(ifi)

0

Zj= I

' Z-i-

0 IP) \0 j1i)
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where the elements are computed in the following way:

. ß1Hl)= 21a [~\+(a2-1)+(ßli»)2], ß (O)=o1 ,

ß1H 1)=! [ A;+ (ßli) )2], ßt)=o,

ß(Hl)= ~ [1+2ß (i)a(i)
]2 2a 2 fJl ' ßJO)=0,

ßJH 1)= 4 [1 + 2ßii)ßli)], ß-(O)=o2 '

and in general

r

ß (Hl)= ~ '" ß (i)a(i) ß (O)=O
r 2a.L.J I fJr-l+ l' r

1=1 .

ß-(i+l)=! ~ ß-(i)J5(i) ß-(O)=0
r 2.L.J I fJr-l+l' r

1=1

3~r~p.. 1

(In order to simplify the notation we suppress the fact that the elements are
all d d al .

) S ttin ß
- li ß (i) ß

- - li ß-(i) 1::;:::::actu y epen ent so on 1. e g r- mi-oe r , r- mi-co r , "",r

~1Ii' we have (a - ßI)2 =1- A; and therefore ß1 =a-~I- A;. [SinceA = I
- P is an M-matrix, all eigenvalues of A have nonnegative real parts. See
Theorem 3, part (b). Since a - ß1 is an eigenvalue of aI - X*, which is an
M-matrix by (a), we have to choose ~e unique square root of 1- A;which h~
a nonnegative real part.] Since also ß1 =1- ~1- A;, we have ß1 = a -1 + ßI.
Using mathematical induction, we are able to prove that ßr= ßr' r = 1(1)11;.
This can be done for all i, 1~ i~ k. Thismeans

U-1X*U=(a-l)I+ U-Iy*U,

and therefore we have proved the assertion.

Using the preceding lemma, we can establish the following result.

EI

THEOREM4. Let A be an n by nM-matrix, and kt A=s(l-P) be a
representation of A of the form (MM). A has an M-matrix as a square root if
and only if A has "property c." In this case kt y* denote the limit of the
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seq~e generatedby

YHl=!(P+ Y?), Yo=O.

Then IS (I - Y*) is an M-matrix with "property c" which is a square root oi
A. For any other M-matrix Z* which is a square root oi A the relation
Z*::;;,IS(I- Y*) hOUM.

Praof If A has an M-matrixas a square root, then we get from Lemma 1,
parts (a) and (b), that Pis semiconvergent and therefore that A has "property
c." The other direction follows from Lemma 1, parts (a) and (c). From
Lemma 1, part (b), we also obtain that the matrix {S(I - Y*) has "property
c."

Finally let Z* be an M-matrix which is a square root of A, and let
Z*=ßI - B, ß~ {S, be a representation of this matrix of the form (MM). The
matrix 1- P can be written in the form

)

2
A ß _!!....

]-p=... =L,,] {s ,

where ß j IS ~ 1. Setting a: =ß j {S and denoting by X* the limit of the
sequence generated by

XHI = 21a[P+ (a2-1)I+X;], Xo=o,

we get from Lemma 1, parts (a) and (c), that X*::;;,BjlS and aI-BjlS::;;'aI
- X*=al-[(a-I)I+ Y*]=1- Y*, that is,

r; (1- Y*)~ßI- B=Z*.

This shows that the matrix IS(1- Y*) is the largest M-matrixwhich is a square
rootofA. .

We consider now the 2 by 2 zero matrix A =O.Each M-matrixof the form

B=(g ~) ,
b::;;'O,

is a square root of A which has "property c:' Therefore the problem of
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finding an M-matrix whieh is a square root of an M-matrix with"property e"
is in general not uniquely solvable. However, for a certain subset of the set of
M-matriees with "property e" the following theorem shows the uniqueness of
the solution of this problem. This subset eontains the set of nonsingular
M:-matrieesand the set of irreducible M-matriees.

THEOREM5. An M-matrixA=(ai;) has exactly one M-matrixas a square
root if 0 is at rrwst a simple zero of the characteristic polyrwmwl of A.

Proof. HO is at most a simple zero of the eharaeteristie polynomial of A,
then A has "property e" and Theorem 4 guarantees the existenee of an
M-matrix which is a square root of A. Assume again that Ais expressed in the
form (MM), that is, A=s(I-P). We know from Theorem 4 that if y* is the
limit of the sequenee (Yi) generated by

Yi+I = k(P+ yi2), Yo=O,

then 1- y* is an M-matrix whieh is a square root of 1- P. We assume that
there exists another M-matrix Z* whieh is a square root of 1- P, and that
Z*=aI-B, a~l, denotes a representation of the form (MM).

From Lemma 1, part (a), we know that if X*denotes the limit of the
sequenee generated by

Xi+I= 21a [P+(a2-1)I+X;], Xo=O,

then

B~X*, (aI- X*)2=I- P= (aI- B)2.

Let Q be a permutation matrix whieh transforms the matrix B into the
reducible normal form

where eaeh square submatrix Bii is irreducible, sinee we have diag B>O. If B

Bu B12 . ..
BIm

B=QBQT= I 0
B22 B2m

. I, 1 mn,

Bmm
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is irreducible, then m=l andwecanchooseQ==I.BecauseB~X*~O we get

where Bii and Xii have the same size.
We first show that Xjj=Bii' l~i~m. We know that Xii~Bii' andwe

assume Xii =1=Bjj for some i. From the Perron-Frobenius theorem for irreduc-
ible matrices it follows that p(Bjj» P(Xii)' From (al - X*)2 =(aI - B)2 it
follows (al - 13)2=(al -X)2, and therefore (al - Bii)2 =(aI - X jj)2. Set-
tingp.: =p( Bii) ~ a, there must exist an eigenvalue fi.of Xii such that

(a-p.)2=(a-fi )2,

or

(p.-fi )(p.+fi) =2a(p.-fi).

Since lfil<p., we get p.+fi=2a, which is a contradiction. Therefore we have
X..=B.., 1~ 1'~m.

77 77 .

Since 1 is at most a simple zero of the characteristic polynomial of P, we
know from (6) thata is at most a simple zero of the characteristic polynomial
of X. Therefore we know that at most one of the diagonal blocks Xii of Xhas
the eigenvalue a. We prove by mathematical induction that .

X1k=B1k, O~k-l~m-l,

holds.

For k-l=O we have already shown the assertion. From (aI- B)2=(aI-
X)2 it follows that

132- 2a13=X2- 2aX,

and therefore

k k

~ BliBjk -2aB1k= ~ X1iXjk -2aX1k.
j=l j=l

;:.

Xu X12 .. .
X1m

X=QX*QT= I

X22 X2m

0
Xmm
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Using the induction hypothesis it followsthat

XllBlk + B1kXkk -2aB1k=XllX1k + X1kXkk -2aX1k,

and therefore

(Xu-al)( Blk - X1k) + (B1k- X1k)(Xkk -al) =0. (9)

Since the matrices al- XII and al- Xkk are M-matrices and since at most one
of these two is singular, it follows that Equation (9) has only the trivial
solution, that is, B1k=X1k. (See [5, p. 262, Theorem 8.5.1].) Therefore we have
B=X*, and using Lemma I, part (c), we obtain

aI-B=aI-X*=I- Y*.

Therefore .;s(I - Y*) is the only M-matrix which is a square root of the given
matrix A. 111

4. SOME CHARACTERIZATIONS OF M-MATRICES

In [I, p. 134 H.] there is listed aseries of conditions which characterize
matrices A EznXn that are nonsingular M-matrices or singular M-matrices
with "property c." Using the Theorem 4 of the preceding section we can
establish the following results.

COROLLARY1. A Eznxn is a rwnsingular M-matrix if and only if there
exists a rwnsingular M-matrix y* for which A =(y*)2 holds.

Proof If A Eznxn is a nonsingular M-matrix, then the assertion follows
from Theorem 4, since A has "property c." If onthe other hand y* is a
nonsingular M-matrix,then using Theorem 3, part (a), it followsfrom A =(y*)2
that A is a nonsingular M-matrix. 11

COROLLARY2. A EznXn is a nonsingular M-matrix if and only if there
exists a rwnnegative matrix Z* for which A(Z*)2=1 holds.

Proof. Let A EznXn and let Z*~O. Then it followsfrom A(Z*)2=I that
A -1 exists and A -l~O holds. Using Theorem 3 this means that A is a
nonsingular M-matrix. If on the other hand A is a nonsingular M-matrix,then
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Theorem 4 guarantees the existence of a nonsingular M-matrix y* for which
A=(y*)2 holds. Therefore the equation A(Z*)2=I, Z=(y*)-l~O, folIows.

11

The next result deals with the singular case.

COROLLARY3. A E zn X n is a singularM-matrixwith "propertyc" if and
only if there exists a singular M-matrix y* with "property c" for wh ich
A =(y*)2 holds.

Proof. If A EznXn is a singular M-matrix with "property c," then the
assertion follows from Theorem 4. If on the other hand y* is a singular
M-matrixwith A=(y*)2, then using Theorem 3, part (c), it follows that A is a
singular M-matrix. We have to show that A has "property c." Since y* has
"property c," it follows from Lemma (4.11) in [1, p. 153] that rankY*=
rank (y*)2. This implies the equation rank (y*)2=rank(Y*)4 or rank A=
rank A2. Applying again Lemma (4.11) from [1], we have the result that A has
"property c." EI

The authOTs are very much indebted to Professor Hans Schneider fOT his
many suggestions fOT improving an earlier version of this paper.
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