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ABSTRACT

The question of the existence and uniqueness of an M-matrix which is a square
root of an M-matrix is discussed. The results are then used to derive some new
necessary and sufficient conditions for a real matrix with nonpositive off diagonal
elements to be an M-matrix.

1. INTRODUCTION

Following Ostrowski [3], a real n by n matrix A=(a,;) is called an
M-matrix if it can be written in the form

A=sI-B, >0, B=0, p(B)<s. (1)

Here p denotes the spectral radius and 1 is the unit matrix. If p(B)<s, then A
is called a nonsingular M-matrix; otherwise, a singular M-matrix.

In this paper we discuss the existence and uniqueness of an M-matrix
which is a solution of the equation

X2—-A=0, (2)

where A is a given M-matrix. A solution of (2) is called a square root of A. The
following example shows that there are M-matrices which have no square root
at all.
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EXAMPLE. Let

w0 =T} r w8 " &
o8 Ym0 oof3 1)
Since p(B)=s, it follows that A is a singular M-matrix. A short discussion

shows that (2) has no solution.

In this paper we prove that an M-matrix A has an M-matrix as a square
root if and only if A has “property c¢.” For a subset of the set of M-matrices
with “property ¢” we are able to prove that there exists only one M-matrix as
a square root. This subset contains M-matrices which are irreducible or
nonsingular. The proof of the existence of a square root is constructive. This
allows us to compute this matrix.

In Section 2 we list some definitions and well-known facts which we use in
the sequel. Section 3 contains the main results. Finally, in Section 4 we give
some new necessary and sufficient conditions for a real matrix with nonposi-
tive off diagonal elements to be an M-matrix.

2. PRELIMINARIES

DerFinviTiON 1. An n by n matrix T is called semiconvergent if and only if
the limit lim,_ ,T7 exists. (See [1, p. 152].)

The following result is established by use of the Jordan form for T (see [1,
p. 152]).

TueoreMm 1. The n by n matrix T is semiconvergent if and only if each
of the following conditions holds.

(@) o<1

(b) If p(T)=1, then all elementary divisors associated with the eigen-
value 1 of T are linear.

(c) If p(T)=1, then A€o(T) (o(T)=spectrum of T) with |A\|=1 implies
A=L

For the next result and in the sequel of this paper we use the definition of
irreducibility of a matrix, which can be found in [4, p. 18]. Notice that a 1 by
1 matrix is irreducible iff its only element is different from zero.

Tueorem 2. If T=(t,)=0, t,,>0, 1<i<n, then T is semiconvergent if
(a) and (b) of the preceding theorem hold.
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Proof. 1t is sufficient to prove that (c) of Theorem 1 holds. There exists
an n by n permutation matrix Q such that

where each square submatrix R, 1<j<m, is irreducible. See for example [4,
p. 46, (2.41)}. If T is irreducible, then m =1 and we can choose Q = I. Since
the diagonal elements of each R;; are also positive, it follows from Lemma 2.8
and Theorem 2.5 in [4, p. 41] that each R;; is primitive. (See Definition 2.2 in
[4, p. 35]). This means that for each i there is only one eigenvalue A of R,
namely p(R;;), for which |A|=p(R,;) holds. From these remarks (c) of the
preceding theorem follows. |

DEeFINITION 2. An M-matrix A is said to have “property ¢ if it can be
split into A=sI— B, s>0, B=0, where the matrix T=B/s is semiconvergent.

All nonsingular M-matrices have “property c.” There are, however, singu-
lar M-matrices which do not share this property (see [1, p. 152ff]).
Let

7=l Va0,

Then we have the following results.

THEOREM 3.

(@) AEZ™*" is a nonsingular M-matrix if and only if A~}  exists and

A71=0 (see [1, p. 134 ff.]).

(b) AEZ™" is a nonsingular M-matrix if and only if the real parts of all
eigenvalues are positive. The same characterization holds for the nonzero
eigenvalues of a singular M-matrix (see [1, pp. 134 ff., 147 ff.)).

(¢) If A and B are n by n M-matrices and if ABEZ"*", then AB is an
M-matrix (see [1, p. 159, Exercise 5.2]).
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If we define
0!1 oy a,
a; a, :
[al,...,an]:—_— . ' . . ’ (3)
C
O a,
then

n

[f!p---,an]'[ﬁpv--,ﬁn]: alﬁi’aiﬁz+“231s---s 2 “an~k+1 .

k=1

Therefore the set of matrices of the form (3) is closed under ordinary matrix
multiplication.

3. SQUARE ROOTS OF M-MATRICES

Let there be given an n by n matrix A. We know from the definition of an
M-matrix that there exists an >0 such that

A=sI-P, P=0, p(P)<s.

If As>0 and A=(s+As)I—(AsI+P), then using the Perron-Frobenius
theorem [4, p. 46], it follows that p(AsI+P)=As+p(P)<As-+s. From this
remark we conclude that there exists an s,>0 such that for all s=s, we can
represent the M-matrix A in the following manner:

A=sI-P=s(I-P/s)=s(I—P)
with P=P/s, diagP>0, p(P)<1 (MM)

(diag P denotes the diagonal part of P). Since A /s=I1— P, one knows a square
root of A if one knows a square root of I—P.

It is obvious that A has an M-matrix as a square root if and only if I— P has
an M-matrix as a square root. Therefore we can restrict the discussion in the
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following lemma to M-matrices which have the special form

A=I-P, P=0, diagP>0, p(P)<l.

LEmma 1. Let there be given an n by n matrix P=(p;;)=0 where
p(P)=<1 and diag P>0. Let a=1. Then the following three statements hold:

(a) There exists an n by n matrix B=0 where p(B)<aand I — P =(al —
B)? if and only if the iteration method

Xi1= 5o [P+ (a®=DI+XZ],  X,=0, (4)

is convergent. In this case B=X*=lm,_ X;, X*=0, p(X*)<q, diag X*>0,
and (al—X*)2=I—P.
(b) If (4) is convergent, it follows that P and X* /a are semiconvergent.
(c) If P is semiconvergent, then (4) is convergent for all = 1. Denoting in
this case the limit of the iteration method

Y£+1:%(P+Ya'2)» Y,=0,

by Y*, the equation

al—X*=]—Y*
holds.
Proof. (a), =: We prove by induction that the sequence which is

computed using (4) is increasing and bounded. Assuming X, ,,=X;, X,;<B,
which is obviously true for i=0, it follows that

1 1 '
Xipo= 5o [PH(P=DI+X}, |2 o [P+ (e* - DI+X7] =X,y
and
e 2 2
B—Xi+1+B—E[P+(a —-1)I+Xx?|

[1-P—(a®1—2aB+X2)] ;g& [1-P—(aI-B)*] =0.

1
T 2a
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Therefore the iteration method (4) is convergent. For its limit X* we have
lim;_ ,X;=X*<B, (al—X*)?=I—P, diag X*>0, X*>0. Because of 0<X*
<B, it follows that p(X*)<p(B)<a from the Perron-Frobenius theorem [4,
p. 46, Theorem 2.7].

«: Assuming the convergence of the method (4), we have X*=1lim,_ X,
=0 and I—P=(al—X*)>. Let U be a matrix which transforms P into Jordan
form:

1, O

U iPl= " .

where

Setting Z,: =U"'X,U, we get from (4)
[ _
ZiH:%[U IPU+(a2-1)1+Z%], Zy=0, (5)

and therefore each diagonal element p of U 'PU is related to a diagonal
element AP of Z, , | by the equation

N+0= o[t (=1 + (0)7]. ®)

We prove by mathematical induction that p(X;)<a and therefore that
p(X*)<a holds. For i=0 this is trivially the case. Using p(P)=<1 and the
induction hypothesis, we have

i 1 i. 1
I +1)IQ§E [l +e®—1+]ADP] R (Jg —14+2a%) <a. (7)



ON SQUARE ROOTS OF M-MATRICES 125

Therefore the assertion holds with B: =X*,

(b): Let (4) be convergent, and assume that P is not semiconvergent.
Again let U be a matrix which transforms P into Jordan form. Since p(P)<1
and diag P>0, it follows, using Theorem 2, that at least one of the sub-
matrices J;, 1<j<k, has the form

1'}' O

O 1
where the order of J. is greater than one. Let this be the case for j: =j. Setting
again Z,=U"'X,U, we see from (5) that Z, has the form

J» O

O Q)
]f_ﬁ") has the form
I {08,
1

The sequence (B{") is computed by the recursion

pi=oc[1+ (-1 +(80)],  BO=0.

Since this sequence is increasing and bounded, it is convergent and lim B8{"=a.
Assume now that the sequence (B5") which is computed using the iteration
method

; 1 che
Bé:+l):2_a(1+2ﬁgt}ﬁz('t))’ 32(0):0 (8)
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is convergent. Setting lim S5 =B, we get from (8)

ol
B=5-(1+2aB),

which is a contradiction. Therefore the sequence (Z;) and hence the sequence
(X;) cannot be convergent. Contradiction! This means that P is semiconver-
gent. It remains to be shown that also X* /& is semiconvergent. Since by
Lemma 1(a), diag X*>0 and therefore also diag (X* /a)>0, it is sufficient by
Theorem 2 to show that (a) and (b) of Theorem 1 hold. In part (a) of Lemma
1 we have shown that p(X*)<a, and therefore it follows that p(X* /a)<1.
This is (a) of Theorem 1. Let now p(X*/a)=1. In order to prove (b) of
Theorem 1, we have to show that all elementary divisors associated with the
eigenvalue 1 of X* /a are linear. Passing to the limit in (6), it follows that
every eigenvalue p of P is associated with an eigenvalue A of X* by the
equation 1—p=(a—A)% If now A/a=1, then p=1 follows. Passing to the
limit in (5), it follows that if p is an eigenvalue of P the elementary divisors of
which are linear, then the elementary divisors of the related eigenvalue A are
also linear. Since P is semiconvergent, (b) of Theorem 1 holds for P and
therefore also for X* /a.

(c): Let P be semiconvergent. Then P belongs to the class M (see [2, p.
47]). Hence a natural matrix norm exists for which [[P||<1 holds. Using
mathematical induction, we prove that the sequence computed using (4) is
norm-bounded. If || X, ||<ea, which is the case for i=0, then it follows that

e 1
1K IS5 (1P = 11X 112) S 5= (1+ e~ 1+a?) =a.

The sequence is also increasing, and therefore it is convergent. Setting again
Z,=U"'X,U and in addition Z,=U~'Y,U, we have

© O » O
z.= . Z= -

@) o O jo
Here J{* and f,.“), 1<j<k, are matrices of the form

]f(,-)x [B{:'),“.’By{:)], .]i(i): [ﬁii))_“, )8,,(:]] 4
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where the elements are computed in the following way:

B+D= % [A,.+ (e®=1)+ (BE”)2]= =0,

=43+ (89)],  BP=o,

[\‘J|H

B
: 1 o

BLit= o [1 _}_232(:}5?)] ; B =0,
(;+1)_1[1+23{t)3(:)] 32(0):0,

and in general

, 1 < :. |
ﬁr(r'-l}__z_ 2 (I}ﬁr(—*)f+l’ ﬁr{O):O
B 2 ) > 3£r€vr..
pE =0 3 B0 fP=0
=1

Py

(In order to simplify the notation we suppress the fact that the elements are
actually dependent also on j.) Setting B, =lim,_ .8, B, =lim,_ 8", 1<r
<v,, we have (a— f,)*=1— A, and therefore 8, =a—/1— A, . [Since A=1
— P is an M-matrix, all eigenvalues of A have nonnegative real parts. See
Theorem 3, part (b). Since a— 8, is an eigenvalue of al — X*, which is an
M-matrix by (a), we have to choose the unique square root of 1 — A, which has
a nonnegative real part.] Since also 8, =1—/1— A;, we have Bl = a 1+Bl
Using mathematical induction, we are able to prove that B, =B, r=1(1)»,.
This can be done for all j, 1<j< k. This means

U™ X*U=(a—1)I+U"Y*U,

and therefore we have proved the assertion. B

Using the preceding lemma, we can establish the following result.

TueorReEM 4. Let A be an n by n M-matrix, and let A=s(I—P) be a
representation of A of the form (MM). A has an M-matrix as a square root if
and only if A has “property ¢.” In this case let Y* denote the limit of the
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sequence generated by
)‘}+1=%(P+Y52), Y,=0.

Then ys (I—Y*) is an M-matrix with “property c¢” which is a square root of
A. For any other M-matrix Z* which is a square root of A the relation
Z*< /s (I—Y*) holds.

Proof. 1f A has an M-matrix as a square root, then we get from Lemma 1,
parts (a) and (b), that P is semiconvergent and therefore that A has “property
c.” The other direction follows from Lemma 1, parts (a) and (¢). From
Lemma 1, part (b), we also obtain that the matrix Vs (I—Y*) has “property
c.

Finally let Z* be an M-matrix which is a square root of A, and let
Z*=BI—B, B=/s, be a representation of this matrix of the form (MM). The
matrix I— P can be written in the form

where B//s =1. Setting a:=f//s and denoting by X* the limit of the
sequence generated by

X:.+I=%[P+(a2-—l)l+}(?], K=,

we get from Lemma 1, parts (a) and (c), that X*<B//s and al —B//s <al
—X*=al—[(a—1I+Y*]=I—-Y*, that is,

/s (I-Y*)=BI—B=2Z*.

This shows that the matrix 5 (I— Y*) is the largest M-matrix which is a square
root of A. B

We consider now the 2 by 2 zero matrix A=0. Each M-matrix of the form

_(0 b <
5=(5 o) b=o

is a square root of A which has “property c.” Therefore the problem of
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finding an M-matrix which is a square root of an M-matrix with “property c¢”
is in general not uniquely solvable. However, for a certain subset of the set of
M-matrices with “property ¢” the following theorem shows the uniqueness of
the solution of this problem. This subset contains the set of nonsingular
M-matrices and the set of irreducible M-matrices.

TueOREM 5. An M-matrix A=(a,;) has exactly one M-matrix as a squafe
root if O is at most a simple zero of the characteristic polynomial of A.

Proof. 1f 0 is at most a simple zero of the characteristic polynomial of A,
then A has “property ¢” and Theorem 4 guarantees the existence of an
M-matrix which is a square root of A. Assume again that A is expressed in the
form (MM), that is, A=s(I—P). We know from Theorem 4 that if Y* is the
limit of the sequence (Y;) generated by

Yf+1:%(P+Ysz)’ Y,=0,

then I—Y* is an M-matrix which is a square root of I—P. We assume that
there exists another M-matrix Z* which is a square root of I—P, and that
Z*=al—B, a=>1, denotes a representation of the form (MM).

From Lemma 1, part (a), we know that if X* denotes the limit of the
sequence generated by

1
Xi+l=§(—x*[P+(a2—-1)I+Xf], X=0,

then
B=X*, (al—X*)’=I-P=(al—B)’.

Let Q be a permutation matrix which transforms the matrix B into the
reducible normal form

= T 22 g
B=0BO"= | . .|, 1=m=n,

where each square submatrix B, is irreducible, since we have diag B>0. If B
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is irreducible, then m=1 and we can choose Q=1. Because B=X*=>0 we get

X11 X12 v le
% T X22 Xi’.m
X=0X*Q'= O . . ,
X

where B;; and X;; have the same size.
We first show that X;; = B;;, 1<j<m. We know that X, < B, and we
assume X;; 7 B;; for some j. From the Perron-Frobenius theorem for irreduc-

ible matrices it follows that p(B;;)> p(X,;). From (al — X*)?=(al — B)* it
follows (al — B)?=(al — X)?, and therefore (al — Bfr').2 =(al — Xﬁ)z. Set-
tingu: = p(B;;)< a, there must exist an eigenvalue fi of X, such that

2 o
(a—p)" =(a—g),
or
(p—E)(pti)=2a(p—p).

Since || <p, we get p+fi=2a, which is a contradiction. Therefore we have
Xﬁ=Bﬁ, 1<j<m.

Since 1 is at most a simple zero of the characteristic polynomial of P, we
know from (6) that a is at most a simple zero of the characteristic polynomial

of X. Therefore we know that at most one of the diagonal blocks X i; of X has
the eigenvalue a. We prove by mathematical induction that

holds.

_ For k—1=0 we have already shown the assertion. From (al —B)?=(al—
X)? it follows that

and therefore
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Using the induction hypothesis it foll_ows that

XyBy+ By Xy —2aBy =X X+ X Xp— 20Xy,
and therefore

(Xy—al )(By—Xy) + (By— Xy ) (Xj—al ) =0. (9)

Since the matrices al — X;; and al — X, are M-matrices and since at most one
of these two is singular, it follows that Equation (9) has only the trivial
solution, that is, B;, = X;. (See [5, p. 262, Theorem 8.5.1].) Therefore we have
B=X*, and using Lemma 1, part (c), we obtain

al=B=pl—-X*=1—-Y*.

Therefore ys (I — Y*) is the only M-matrix which is a square root of the given
matrix A. i

4. SOME CHARACTERIZATIONS OF M-MATRICES

In [1, p. 134 ff.] there is listed a series of conditions which characterize
matrices A EZ"*" that are nonsingular M-matrices or singular M-matrices
with “property c.” Using the Theorem 4 of the preceding section we can
establish the following results.

CoroLLaRY 1. AEZ" " is a nonsingular M-matrix if and only if there
exists a nonsingular M-matrix Y* for which A=(Y*)? holds.

Proof. If AEZ™ " is a nonsingular M-matrix, then the assertion follows
from Theorem 4, since A has “property c.” If on the other hand Y* is a
nonsingular M-matrix, then using Theorem 3, part (a), it follows from A =(Y*)?
that A is a nonsingular M-matrix. a8

CoROLLARY 2. A EZ"*" is a nonsingular M-matrix if and only if there
exists a nonnegative matrix Z* for which A(Z*)*>=1 holds.

Proof. Let AEZ™"" and let Z*=0. Then it follows from A(Z*)>=1 that
A~! exists and A7'=0 holds. Using Theorem 3 this means that A is a
nonsingular M-matrix. If on the other hand A is a nonsingular M-matrix, then
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Theorem 4 guarantees the existence of a nonsingular M-matrix Y* for which
A=(Y*)? holds. Therefore the equation A(Z*)*=1, Z=(Y*)"1=0, follows.
[

The next result deals with the singular case.

COROLLARY 3. A EZ"*" is a singular M-matrix with “property ¢ if and
only if there exists a singular M-matrix Y* with “property ¢” for which
A=(Y*)? holds.

Proof. If A€EZ"™" is a singular M-matrix with “property c,” then the
assertion follows from Theorem 4. If on the other hand Y* is a singular
M-matrix with A=(Y*)?, then using Theorem 3, part (c), it follows that A is a
singular M-matrix. We have to show that A has “property c¢.” Since Y* has
“property c,” it follows from Lemma (4.11) in [1, p. 153] that rankY*=
rank(Y*)2. This implies the equation rank (Y*)>=rank(Y*)* or rank A=
rank A%, Applying again Lemma (4.11) from [1], we have the result that A has
“property c.” ' B

The authors are very much indebted to Professor Hans Schneider for his
many suggestions for improving an earlier version of this paper.
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