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1. Introduction

In this paper we consider a class of iteration methods for solving si-

multaneous systems of nonlinear equations. These methods compute in

each iteration step lower and upper bounds for all components of the

unknown solution vector. Enclosing the solution repeatedly is under

practical consideration advantageous since rounding outwards in a sys-

tematic manner one has guaranteed error bounds for the solution. Es-

pecially for very large systems this seems to be of great importance. .

since one has observed that - using an arbitrary iteration method -

the method comes to a rest although the iterates are still far away

from the solution.

The main advantage of the methods considered in this paper consists in

the fact that for certain classes of problems (which actually occur in

practice) they are convergent to the solution under weaker conditions

than known'methods wh ich also enclose the solution monotonously. For

example, we don't have to assume convexity or similar conditions from

which convexity can be derived. If these methods are applied to large

systems which originate from the approximation of partial differential

equations then the convergence is extremely slow. In this paper we

discuss a simple device for constructing a sequence of real vectors

which is fa?ter convergent to the solution than the bounds of the

enclosing vectors.

2. The method (INSI) and some theoretical results

We assume that the reader has a certain knowledge of interval-analysis

to the extent one can find it, for example, in [2].All facts from in-

terval-analysis which are only mentioned without proof can be found in

[2]. In this paper we denote real numbers and real n-vectors by

x,y,... . Real matrices are denoted by X,Y,... . Real compact intervals
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and vectors, the components of which are intervals, are denoted by

[x],[y],... . Similarly interval-matrices are denoted by [X],[Y],... .

d([x]) denotes the width (or ~iameter) of the interval [x].

l[x]1 = max lxi is called absolute value of the interval [x]. For in-
x€[x]

terval-vectors and interval-matrices these concepts are defined via the

elements. For example, if [A] = ([a..]) is an n by n interval-matrix1)
then defA]) = (d([a. .]» is areal n by n matrix. If f : Rn + Rn

1)
has a derivative then f' ([x]) denotes the so-called interval-arith-

metic evaluation of the derivative cver the interval-vector [x]. See,

for example [2], Section 3. The interval-arithmetic evaluation of the

derivative is an interval-matrix. We consider the splitting

f' ([x]) = D([x]) - L([x]) - U([x]) (1)

of this matrix where D([x]) denotes the diagonal part and where L([x])

and U([x]) are the parts below and above the main diagonal,respective-

ly.

We start with an interval-vector [x]o and consider a sequence of in-

terval-vectors [x]k, which are computed by the following iteration me-

thod:

[x]k+1 = [y]k+1 0

k k
)[x] (m([x]) areal n-vector

- k
{

k k k+1
)- D([x] ). L([x] )(m([x] ) - [y] +

k k k
)

k
) }+ U([x] )lm([x] ) - [x] + f(m([x] )

[x]k

(2)

k
Choose m ([x] ) €

[y]k+1 = m([x]k)

k=O,1,2,... .

The diagonal interval-matrix D([x]k) is defined in the following man-
k

(

k
)

- k .
(

k
)ner. Let D([x] ) = diag d.. ([x] ) . Then D([x] ) = d1ag 1/d.. ([x] ) .

11 k -1 11
(Please note that the notation D([x]) would not make sense since

for interval-matrices no inverses exist in the ordinary sense ). For
kk

clarity we st.ress the fact that the real n-vector m ([x] ) e [x] can

be chosen arbitrarily in the interval-vector [x]k.

The method (2) is called !nterval-arithmetic version of the ~ewton-

~ingle-step method with forming !ntersections (INSI). The method was

introduced in [1] where, however, only the case was.considered that
k k

m([x] ) is the center of [x] .

The following results hold for (INST). For our considerations the re-

.sult about the asymptotic convergence factor is of fundamentalimportanc~
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Theorem 1. Let f: D::m.n ~:Rn be a mapping whieh has a eontinuous

derivative on theopen set D. Assurnethat f has a zero x:: in D.. Fur-

thermore we assume that for all [x]o = D with x:: e [x]o the interval-
arithmetie evaluation f'([x]o) of the derivative exists and that

f'«(x]o) is split aeeording to (1). Let 0 $ d..([x]o), 1< i < n,- 1.1.

where D([X]o) = diag(dii ([x]o»).

a) If p ((lD(X:q I - IL(x::) 1)-1 . lu(x:q IJ < 1 (p denotes the spee-
tral-radius) where

f' (x::) = D(x::) - L(x::) - u(x::)

then lim [x]k = x:: for all interval-veetors whieh have suffieiently- k~co

small width d ([x]o) and for whieh x:: e [x]o holds.

b) For the asymptotie eonvergenee faetor of the method (INSI) it

holds that

R1(INSI),x::).::.p ((ID(X:ql - IL(x:ql)-1 . Iu(x:ql] .
If D(x::)..:: 0 , L(x::) ..:: 0 , U(x::) ..:: 0 then the equality-sign holds in

this last inequality.
.

For the definition of the asymptotie eonvergenee faetor of a method

whieh eomputes interval-veetors see [2], Appendix A. The very long

proof of Theorem 1 ean be found in [3].

The eonvergenee result lim [x]k = x::

k~co

loeal one. Under eertain assumptions about the interval-arithmetieeval-

uation f' ([x]o) of the derivative we ean get explieit eonditions un-

der whieh the statement lim [x]k = x:: holds. These eonditions are as
k~co

from the preeeding Theorem 1s a

follows:

The interval-matrix [A] = ([aij]) has property (K) iff

ail. a~. > 0, 1 < i,j < n ,) 1.)- -

holds, where [ai O] = [a~., a~oJ .

'J 1J 1J

In order to formulate the next result we need the eoneept of an M-ma-

trix. Areal n by n matrix A = (a..) is ealled M-matrix 1ff a.. < 0,
. 1.) 1J -

i t j, and A-1 > o. See [8], for example.

Theorem 2. The simultaneous system of nonlinear equations is assumed

to have a zero x:: in D. Furthermore we assume that there exists an

interval-veetor [x]o cD w1th x:: € [x]o for whieh the interval-arith-
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metic evaluation f' ([x]o) of the derivative exists. Assume thatall

real matrices from f'{[x]o) are M-matrices. Then the method (INSI)

is well-defined and the following hold:

a) x~ € [x]k , k ~ 0 .

0 1 k k+1
[x] ~ [x] = ... ~ [x] ~ [x] ~ ...

1'. [ ]
k ~~ x = X"

k-+-oo

R1(INSI),X~) = p( (D{X~) - L(X~»)-1 U{X~») .
.

b)

c)

d)

The proof may be performed by using the fact that under the assump-
0

tions of this Theorem f' ([x] ) has property (K). For details see [3].

3. Application to elliptic difference equations

We are now going to demonstrate that the assumptions of the preceding

Theorem can be realized with nonlinear systems which originate from

elliptic boundary problems by replacing the derivatives by finite dif-

ferences. We consider the partial differential equation

- F{x,y,u,u ,u,u ,u ) = 0
xy xx yy

in R c]R2

and the boundary condition

u{x,y) = y(x,y) on aR .

R denotes a simply connected bounded region with boundary aRe

We assumethat F has derivatives with respect to

for which

uxx and u
yy

F > m > 0,U -xx
F > m > 0
uyy

hold. We choose a fixed step-size h in both directions, replace the

derivatives by central difference quotients and obtain - after neglec-

ting the discretization error - at the point (x. ,y.) the equation
J. J

- 9
(

u.. - u

ij xi'y )
"u,., J.+1,) i-1 j

J.J 2h'

U
i '+1 - U

i '-1. ,) ,)
2h

U
i 1 ' - 2 u . '. + u. 1 '
+ ,J J.) J.- ,J

h2

u - 2u . + u, .

1)
i,j+1 i) J.,)- = 0 .

h2

u. . is an approximation for the unknown functionvalue u(x.,y ).).1,) J.
Setting Zk = u.. , z = (z.), these equations may be gathered up toJ.J J.

G1{z) = 0 where the number n of equations is the same as the n~~ber
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i..l,j 'iJ i.#'v

R
uR

';,i+1

4j-l

of unknowns. eWe omit the details which ~re necessary to perform the

approximation of the differential equation and the boundary conditions

for points which are close to the boundary dR of R.)

We assume that F < 0u- arid that h is choosen such small that

IFU I ~ < Fu .x xx IFU I ~ < FuY yy

hold.Under these conditions it holds that for all Z €En the deriva-

tive G1{z) is an M-matrix. See [7]. From this it follows that

G1. : Rn -+ JRn is a so-called M-function, which implies that G1 (z) = 0

has at most one solution. See [5] and [6J. Assume now that G1 is sur-
jective. (Sufficient conditions for the surjectivity of an M-function

may be foundin [5] and [6J).Then G1{z) = 0 has exactly one solution

x~. By continuity it then follows that for sufficiently small width

d{[x]o) of [x]o and with x~ € [x]o all matrices from the interval-

arithmetic evaluation Gi ([x]o) of the derivative of G1 are M-matrices.
Hence the assumptions of Theorem 2 hold for these interval-vectors.

If F has the special form

- F(x,y,u,u ,u,u ,u ) =x y xx yy
-

(A(X,y)u) ~ (C(x,y)u) + f{x,y,u)x x y y

where A > m > 0 , C > m > 0 , f > 0 , then it is advantageous to useu-
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the following approximations:

1 h
(Aux)x ~ h2 {A(x+2,y)[u(x+h,y) - u(x,y)] -

1
(Cu) ~ h2Y Y

~A(X-;,y)[U(X,y)

~ h
{~(x,y~)[u(x,y+h)

(,. h
-jt(x,y-2) [u(x,y)

- u(x-h,y) J}

- u(x,y)] -

- u(x,y-h)]}

Thts leads to a nonlinear system of the form

G2(Z) = Az + ~(z)= 0, ~(z) = (4),(z.») ,~ ~

where A 1s a symmetric, positive definite M-matrix and where the deriv-

ative of ~: mn +mn is isotone. G2(z) is for arbitrarily choosen

step-size h a surjective M-function, that is G2(z) = 0 has exactly
one solution xx.

Furthermore this solution is enclosed by the real n-vectors
1 -1 2 1z = - A . 1~(o)1 and z = - z

1 .. 2z < x" < z

See [4], p. 460. Since ~ is isotone we can set the lower bounds of

the diagonal elements of the interval-arithmetic evaluation ~'([xlo)

equal to zero if these bounds are negative. Since A is an M-matrix it

then follows that all point-matrices which are contained in G2([x]o)

are M~matrices, that isthe assumptions of Theorem 2 hold. We stress

the fact that for the system G2(z) = 0 no assumptions about the width

of [x]o are needed in order that the assumptions ofTheorem 2 hold.

The only really important assumption about [x]o is the inclusion

x~ e [x]o of the solution ~x. As shown above such an [x]o can be com-

puted by solving a linear system of simultaneous equations.

If one applies (INSI) to systems of the form Gl(z) = 0 or G2(z) = 0

then one observes that the convergence is extremely show. This is

especially the case if the number of unknowns becomes larger and lar-

ger. The reason is that the spectral-radius p( (D(XX)-L(x:q)-l U(x:q J

approaches one if h goes to zero. By part d) of Theorem 2 this implies

that the same is the case for the asymptotic convergence factor

R1 (INSI) ,x::). For this reason (INSI) can not-be considered to be a

realistic method for computing the solution of Gl(z) = 0 or G2(z) = 0.

On the other hand we consider the fact that (INSI) applied to G2(z) is

convergent to XX (without important additional assumptions) fQr all
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starting interval-vectors which enclose x::as an advantageous property

which we would not like to giye up.

4. The proposed modification of (INSI)

In order to compute sequences of vectors which are converging faster

to the solution than the bounds of the interval-vectors computed using
- k k

(INSI) we now use the fact that m{[x]") € [x] can be choosen arbitra-

rily in each step of (INSI). Therefore we introduce an instruction for

choosing m{[x]k), which uses only data which are already

(INSI) and for which there is a chance that the sequence

faster convergent to x~ than the bounds of {[x]k}.

known from
k

{m{[x] )} is

In order to formulate this ihstruction we need a so~called cut-off

p{u,[x]) = (K(U.,[X].») .1 1.

Using p we consider the following method, called (INSI) + (SOR), which

differs from (INSI) only by adding an exp11cit rule for the selection
k

of m{[x] ).

Choose m ([x]o)

11) .=1.-1 .

[y]k+1 = m{[x]k)

to be center of [x]o.

11) =
k

[x]k+1 = [y]k+1 n

IId{[x]k+1 )11""
Y =
k IId{[x]k)lI""

{

1+/~-Yk

I1)k-1

- D{[x]k) {L{[x]k) (m([x]k)_[y]k+1) +
k - k k

)
k

) }+ U([x] ) (m{[x] )-[x] +f(m([x] )

[x]k

(if d ([x]k) f 0)

if
Yk :f:1

(3)

otherwise

..

function K which 1s defined in the following manner:
Let w €E and the interval

[x] -= [x1,x2] be given. Then

1:1

'

W < x1 }

K{W,[Xl) , w € [x]

x2 ' w > x2

For [x] = ([x].) , u = (u.) we define1. 1
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..
. k+1. k

(
(

k
) (

k
)

J

-1 k.

[

u = m{[x] )-wk m D([

..

X]) -wk m L{[x]) of{m[x])

m{[x]k+1) = p(uk+1, [x]k+1)

k = 0,1,2,... .

(m(D{[x]k») and m(L{[x]k») are arbitrary real matrices which are taken
from D([x]k) and L{[x]k) respectively. Naturally one can choose the

centers of these matricesJ. In [3J,p. 38 ff,it is demonstrated in de-
tail why with the given choice of m{[x]k) one can be rather sure, that

k .

the sequence {m ([x] )}

bounds of the sequence

converges considerably faster to x:~than the
k

{[x] }.

We finally remark that the instruction which is used for computing

uk+1 (and therefore also for computing m{[x]k+1» may be considered to

be an approximate step of the Newton-SOR-method applied to f{x) = O.
(Concerning the Newton-SOR-method see [4], p.217 ff).

In passing we note that instead of performing one approximate step of

. the Newton-SOR-method one can do the same using any other iteration

method which promises to converge faster to x:~than the bounds of the

sequence {[x]k}. In [3] the use of the ADI-method was discussed in

some detail. The numerical results are even much better than with the

resultslistetsubsequentlyfor (INSI) +(SOR). However,no theoretical

foundation can be given in this case because of the fact that certain

matrices do not commute.

5. Numerical examples

Example 1-.

As a first example we consider the equation

U3

t.u = 1+X2+y2
in (0,1) x (0,1)

with the boundary conditions

u{x,y) = x + 2y on i3R

u(x,o) = 1 and u (x, 1) = 2-e x for x € [0,1]

u{o,y) = 1 and u (1 ,y) = 2-eY for y € [0,1]

Example 2.

t.u = e U
in (O, 1) x (0,1) = R
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(Please note that the results of this paper are not limited to rectan-

gular regions. Numerical examples for which the boundary is curvilin-

ear are given in [3)}.

In the tables given subsequently we have compared our results with

those from the paper "Aspects of Nonlinear Block-SuccessiveOverrelax-

ation" by L.A.Hagemann and T.A.Porsching (SIAM J. Numer.Anal., ~,

316-335 (1975}). In that paper a very lengthy instruction is given

which forces the normally only local convergent nonlinear block-succes-

sive overrelaxation method to converge to the solution x::.Therefore

this modification is comparable to our method (INSI) + (SOR) where by

(INSI) convergence is guaranteed for all interval-vectors which

enclose the solution.

In both examples the following termination.criteria were used:

k -6
IId([xl )11 < 2'10 for00 -

11 uk+1 - m ([x]k>ll < 10-600 -

IIxk+1 - xklloo < 10-6

(INSI)

for (INSI) + (SOR)

for (H-P).

In order to make a fair judgement on the proposed method (INSI) + (SOR)

one has to'take into account that the interval-operations necessary

for performing this method have been prograrnmed using subroutines. If

there would be available a realization of the interval-operations

which - concerning the execution time - is comparable to the usual

floating-point operations, then the proposed method would compare even
more favorable.

The exarnples have been computed using a CYBER 175 of the Wissenschaft-

liches Rechenzentrum Berlin (WRB).



Example 1

Both for (INSI) and for (INSI) + (SOR) all components of the starting vector [x]o
.00

have been chosen to be the interval [-1,2]. Por (H-P) we chose x = (xi) ,
0

xi = 2 for all i.

XEstimated va lues.

)(::Means the point overrelaxation method using the strategygiven by !!,agemann and
~orsching in the paper mentioned in the text.

h 1 1 1 1 1 1 1 1
"4 8 16 20 32 6if 9f 128

1 2 9 48 225 361 961 3969 16129n=(h' -1)

Steps 21 90 366 572 1466 5856::' --- 2 34 2 4 ::
(IN SI) Time (sec) 0.067 1.624 30.448 76.368 521.922 :' 38. 85::hours2.39 'hours ---

(IN SI) + Steps 11 22 47 61 105 248 400

(SOR) Time (sec) 0.041 0.473 4.605 9.548 45.3 431.8 1396 1. 17):hours
......

.... Steps 22 39 69 88 123 237 339 ......

(HP)"'"- Time (sec) 0.04 0.403 2..950 6.081 24.5 183.9 518



Example 2

Both for (INS I) and for (INSI) + (SOR) all components of the starting
0

vector [x] have been chosen to be the interval [0,3]. For (H-P) we
000

chose x = (xi)' xi = 3.

"

. 'Estimated value.

""Means the point overrelaxation method using the strategy given by

gagemann and ~orsching in the paper mentioned in the text.

h
1 1 1 1 1 1 1 1
"4 "8 16 20 32 64 9T 128

1 2 9 49 225 361 961 . 3969 16129n=(- -1)h

Steps 19 81 324 507 1298
(INS I) ITime(sec) 0.043 0.943 17.54 44.2 301

(INSI) + Steps 10 21 46 59 102 248 393

(SOR) Time (sec) 0.029 0.311 3.164 6.554 30.4 298.128 987 49:Cmin

Steps 21 39 77 74 122 251 342 -.J
(HP) '0: I 0;)

- Time (sec) 0.051 0.507 4.718 7.911 3309 258.1 692.5
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