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Abstract — Zusammenfassung

Bounding the Slope of Polynomial Operators and Some Applications. We discuss several systematic
possibilities for removing certain intervals when using an interval expression of the derivative in
iterative methods. In general, the speed of convergence is accelerated in this way. Starting from a
different point of view the same problem has been treated recently in [5].

Zur EinschlieBung von Steigungen bei Polynomoperatoren und einige Anwendungen. In dieser Arbeit
werden mehrere systematische Moglichkeiten angegeben, die es erlauben, bei der Verwendung der
intervallmiBigen Auswertung der Ableitung in Iterationsverfahren gewisse Intervalle durch reelle
Zahlen zu ersetzen. Dadurch wird im allgemeinen die Konvergenz beschleunigt. Die gleiche Problem-
stellung wurde bereits von einem anderen Ausgangspunkt ausgehend in [5] betrachtet.

1. Introduction

Let p: R— R be a real polynomial and let X, be an interval which contains a
zero x* of p. If the difference quotient of p is included in the interval Y, (0 ¢ ¥,),

P (Xo)—p (x¥)

—— €Yy, (xo€Xy)
0

then we have the inclusion

x*e{xoup(xc)} NXo=:X:X,
Yo

for arbitrary x, € X,.

See for example [1, p.83ff.]. The width of the interval X, which includes the
zero x* is only dependent on the interval Y, for a given x,. An obvious method
for finding a Y, that encloses the difference quotient is found by applying the
mean value theorem: For some n € X, it holds that

p(xo)—p (x*) _

o Pmep (Xo)=:Y,.
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Here p’ (X,) denotes the interval arithmetic evaluation of the derivative of p. To
be more precise: p’ (X,) denotes the interval arithmetic evaluation of one of the
infinitely many possible arithmetic representations of p’. See for example [1,
p.28 ff.]. The systematic repetition gives us a method (V) which converges
quadratically to x*:

x; € X;

Xf+1={x,- p(x;) }mXi i=0.1.2 . V)
P (X)

The fundamental idea of using the mean value theorem in this way stems from
Sunaga [11]. The method (V) was studied systematically by R. E. Moore [7].

The applicability of (V) is not limited to polynomials. One can apply this method
to every function f whose derivative has an interval arithmetic evaluation.

In a recent paper Hansen [5] has described some rules which allow us to replace
certain intervals by real numbers in the interval arithmetic evaluation of f’. This
can have a striking effect on the width of the enclosing intervals which are
computed by using (V). Unfortunately the possibilities for replacing intervals by
real numbers which have been discussed in [5] are not complete and are not in a
form which allows us to make systematic use of them. This is especially the case
if one wishes to program these rules on a computer.

In the following we present a finite set of possibilities for enclosing the difference
quotient. A partial ordering is defined in this set and it is shown that the optimal
inclusion can be computed in a systematic manner. Furthermore 1if this optimal
inclusion is used in connection with (V) then it does not require more arithmetic
operations than the interval arithmetic evaluation of the derivative. We obtain
these results starting with completely different considerations than in [5]. For the
examples given in [5] the optimal inclusions are identical to those given in [5].
The results of our paper cannot generally be compared with those of [5] since in
[ 5] no general rules are given. The notation and definitions from interval arithmetic
are the same as those used in [1].

2. Enclosing the Difference Quotient

Let there be given a real polynomial

n

p@=Z

i=0

Then we have

p(x)—p(y)= Z a;
i=0

PR
Y. a ) x"‘l)(x—y) (1)
J=:
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and )
P)=p0)= 2, a4(x'~y)

Il

(.; G _; V' xj_1> (x—=y)

(; (Z “jxj“") J’H)(x—y)- ey

For a fixed ye X and arbitrary xe X we get from (1) using the inclusion
monotonicity of interval arithmetic (see [1, p. 28 ff.]) that

p(x)_p(y) E(i ¢y Xi—z) ::‘Ii
i=1 H

x—=y

EJZ:: Z Cf—l Xi_l

i=1

where the real numbers ¢;_, are defined by

c-1:=Y, ;¥ 7% i=1()n.
J—1

The subscript H means here and in the sequel that the expression is evaluated
using Horner’s scheme. On the other hand in evaluating J, we compute re-
cursively the powers X" by X°=1 and X"=X""! X, r>1, multiplying these
powers by the corresponding coefficients and forming the sum of these intervals.
The inclusion J, =J, follows from the so-called subdistributive law of interval
arithmetic (see [1, p. 4]).

For a real number y and intervals A;, j=0 (1) n— 1, the equation

Z A4 yiulz( Z Ay yi_1>
i=1 i=1

H
is always true.

Together with the subdistributive law of interval arithmetic it follows from (2)
that

X—y = =1

p(x)_p(y) c -Zl (Ci—l)H yi—lz( Z (Ci—l)H yi—l)ﬂz : J3g

> =

g‘}'d.::
i

Ci—4 yi_lz( Z Ci—y yi_l)
i=1

H

Il

1

holds for fixed y and arbitrary x € X where

(Cf~1)H=( Y, an’f"i) , i=1(1)n
=i H
and ’

n

Biy=Y @ X" l=1jn.

j=i



230 G. Alefeld:

We now prove the following
Theorem: For the expressions defined above the following relations are valid:
a) JicJ,&J,
by JicJ,&J,
&) Je=p (X):= i pa, X"
=1

v

Proof: In order to simplify the notation we restrict ourselves to the case of a
fourth order polynomial. In the general case the Theorem can be proved in an
analogous manner.

a) and c): We only have to show that J, = J, < p’ (X) holds.

Using the inclusion monotonicity of interval arithmetic and the validity of
a(B+C)=aB+aC for a real number a and intervals B and C we obtain

Jy= Z cioy X' l=(a,+a, y+az y*+a, y}) X+
=1
(a,+asy+a, y*) X+

(a3 +a, y) X2+

iy X°c

N

a,+a, X+a; X*+a, X3+
tayy+azyX+a,y X*+
+ayy*+a, P X+
+a, y =

= a;+a, X+a3 X*+a, X3+
+(ay+azs X+a,y X?*) y+
(as+a, X)y* +

+a,y*=J,

In

a,+a, X+as X*+a, X>+
a,X+ay X?+a, X+
+a3 X*+a, X3+

+a, X3=:p (X).
b) We only have to show J, = J;:

=((as X +(as+a, y) X +ay+as y+a,y*) X +a,+a, y+az y*+a, y?
S((ay X+a3) X+asyX+a,+azy+a, yz) X+a +a,y+azy*+a,y’
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I

(ag X +as) X+a,)+a,y X +as y+a, y?) X +a,+a, y+a3 y* +a, )
(((“4 X +as) X+az)+(a4 X+az)y+a, y2) X+a;+a,y+a; y:+ay }’3
(aga X +a3) X +a,) X+(as X +a3)y X+a, v X +a,+a, y+a y> +a, y°
(ay X +az) X +a,) X +a,)y°
(
(

n |

Il

+

(ag X+az) X +a,)y
+(ay X +as) y?
+a,y’=J;. B
Remark 1: J, and J; are in general not comparable with respect to inclusion.
Either of the cases J, <J; and J; < J, are possible. We consider the example
p(x)=x>—x* X=[-12], y=1.
Then we have

Jy=(a,+a,y+a; yz) X0+(a2+a3 y) X +as X2=X2:[._2’ 4]
and
Jy=((as X +a,) X +a,)y°+ (a3 X +a,) y+a; y?

=(X-=1) X+(X-1)+1
=l =04,
and therefore J, < J;.
If on the other hand we choose y=0 then ¢;_,=a, i=1(1)n.

From this it follows that

n

J,=Y a, X!

i=1

J3=(Z ai.Xi_l) »
i=1 H

To be more specific we again consider the above example

p(x)=x>—x? with y=0 and X=[0,2].

and

and therefore J; < J,.

We now obtain

J,=X2—-X=[-2,4]
and

Ji=(X-1)X=[-22]
with Jy;<J,.

Remark 2: In order to evaluate J, or J » 1t 1s at first necessary to compute the
numbers

n

Cf‘l: Z ajyj_i, Izl(l]ﬂ.

j=i
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If the value of p at the point y is also required, which is for example the case if we
perform method (V) from section 1 then no additional arithmetic work is necessary
for getting the ¢;_,. These numbers are intermediate results if one uses Horner’s
scheme for the evaluation of p (y):

Let

Then the formulae for Horner’s scheme read
pﬂ ' - aﬂ

Pi-1:=piy+a;_,, i=n(—1)}1
and we have po=p(y).
On the other hand we have by definition

n

cn—2=any+an"l

Co =cCy+a,.

Therefore we have ¢;_, =p;, i=1(1)n.

3. Example

p(x)=x"+3x5—4x*—12x*—x3-3x+4x+12

X=[18 3] y¥=2.
We obtain
Jy=[173.2362; 2400]

J,=[161.4762, 2411.76]
J5=[24.72, 2400]
J,=[—870.2933, 3443.5296]

(7' (X))g=[71.799808, 6520]

P (X)=[—2378.791292, 8970.592].

The polynomial p has a zero in X,=[1.8, 2.4] (see J. Herzberger: Bemerkungen
zu einem Verfahren von R. E. Moore, ZAMM 53, 356—358, 1973). We compute
this zero by using method (V) from section 1 choosing x; =m (X)) (= the midpoint
of the interval X)) and replacing p’ (X;) by p’ (X;)g. The following table 1 contains
the iterates.
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Table 1

X;

i

0 |[18, 24]

1 j[1.8, 2072 761 807 7482]
2 [[1974 290 005 2812, 2072 761 807 7842]
3 |[1994 875 714 7483, 2005 921 548 2353]
4 |[1.999 988 823 4200, 2000 011 539 0070]
5 |[1.999 999 999 9894 2000 000 000 0107]
6 |[2.0, 20]

Method (V') is obtained from (V) by replacing p’ (X;)y by J, in each iteration
step (Table 2).

Table 2

X;

i

0 |[18, 24]

1 [[1941 953 810 8826, 2.056 696 405 0488]
2 |[1.999 999 997 5872, 2.000 111 299 3369]
3 |[1.999 999 997 5872, 2.000 000 002 9595]
4 ([2.0, 20]

Table 3 contains the quotients d{’/d{ where d and d{ denote the width of the
iterates computed by (V) and (V).

Table 3

i 0 1 2 3

aPd9 | 1 237 49235 3.7,.6

The example has been computed using the CDC 6500 computer (mantissa length

48 bit) of the Zentraleinrichtung Rechenzentrum der Technischen Universitit
Berlin.

In [12] we have demonstrated that the results of all examples from [5] are
identical to the intervals which one gets using J, .

4. Generalization to V,, (R)

We now consider more generally a mapping

[V (R)= Vo (R)
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where { is a so-called polynomial operator defined by
f@=0+U s+W s’ + ...+ U ¥
(see for example [8, sections 17 and 18]).

Here the 2., i=1(1)n, denote i-linear operators from V,(R) to V,, (R) and
a, € V,, (R) represents a real vector. Without loss of generality we can assume
that the U, i=1 (1) n, are symmetric. See for example [8, p. 100 {f.]. Let  have a
zero x* € x and let the so-called difference operator d f@y) — defined by
f@®-f®)=07@x9)E—y)

(see for example [10]) — be included by an interval-matrix 9,

6i(x e, r,yex.

If all Ye Y are nonsingular then for arbitrary ¥ € x it holds that

rel3-97"1@) | DeD}-

A proof of this fact can be found in [1, p.270 ff.]. If the feasibility of Gaussian
elimination GA (9, f (x)) with ¥ as coefficient matrix and { (¥) as a right hand side
is guaranteed then

*e{z—GA(D, i@}z

(see for example [1, p. 218 ff. and 2]. The systematic repetition of this step gives
a generalization of method (V) considered in section 1 to n-dimensional systems
of equations:

;D e ¢
e o s s =l L0 e
It — {3:-{!) -l (QD(U’ T(,;(!}))} A x®

As in the case m =1 we can use the mean value theorem (for mappings V,, (R) = (R)
to enclose 6 f (¥, p). This gives for fixed y and arbitrary ¥ € x

079 eD: = +2Wx+...+nY; =i,
Here f' () denotes the interval arithmetic evaluation of the Frechet-derivative
of f. ’

In the same way as in the case m=1 the above inclusion of é f can be improved
by several in general different interval matrices. In order to demonstrate this we
first define the following interval matrices:

and

where
Gy = Z A I'}j_j« i=1(1)n,

j=i

:(Z i 1)H1]i 1) where (Gi—l)h‘z(z ‘ljjxj'f)
i=1 H =

j=i

]
[¥¥]
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and

Z p'~! where C,_ =Z = A

The corresponding theorem to the theorem from section 2 can now be proved in
a completely analogous way by using the symmetry of the operators U;, i=2 (1) n.
We omit the details.

5. Examples in V,, (R)

X3 +x5—=1
f(x)= (xl_xz )

This example has been discussed in [5]. Using

-1 0 O 1 00 1
f can be written as

f(@)=a +W, x4+, ?2-

From this it follows that

3,=¢,+¢, x
where

6022[1 +Q-(2a

(.Sszg.lz‘

A short computation gives

5. = nwtX, x+X,

X
g Y2 Xy X,

(Compare this with the method used to arrive at the same result in [5].)

where

On the other hand the interval arithmetic evaluation of {* gives us the interval

matrix
Lon (2% 2X,
f("']_(2}( —1)'

We have 3, =’ (x) since in the representation of f (x) three real numbers have
been replaced by intervals.
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2. Let A, A, ..., A, be real m by m matrices and define
“!3 @F=WF+ % T+ XY,

The problem of computing a zero of P is of some interest in connection with the
nonlinear eigenvalue problem

det (W, "+, "1+ + U, A+U)=0.
See for example [3, 4, 6, 7].

Let X, be an interval matrix which contains a zero X*of P. We define as difference
operator of f an m by m matrix 0 B for which

PEH-PD=0BEDE-Y). £VeX,
holds. Let 3 be an m by m interval matrix with the property
SPE el £Dek.
Ifno 3 € 3 is singular then
-3 P@®|3=3}) '
for arbitrary X € X,. The systematic repetition gives us again the iteration method
{ X0 e x0

XD =(¥9-GA (39, PEO) n X9, i=0,1,2,....

The inclusion of J°B can again be computed by evaluation of the Frechet-
derivative. We demonstrate this for the case n=2:

PBE)=U, > +U, X+ Y,

PEHU=Y, UE+EW+A, U
P (X)) Ue W, UE+EUW+, U
On the other hand we have
PEH-BD)=U, FE-D+E-D) D+, Z-9)
and therefore
5P (X D) U=, FU+UD}+2, U

and
‘S‘B(‘{,@)uemz {£u+l[i_7)}+911 U=:3, U

Comparing J; U and P’ (X) U we see that I, U< P’ (X) U holds since Y € X.
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