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SomeConvergence Results for the PEACEMAN-RACHFORDMethod

in the Noncommutative Case

G. Alefeld

1. Introduction

We consider the system of simultaneous linear equations

Au = b .

Let the matrix A be expressed as the sum

A = H + V

of two matrices H and V. Then we consider the following iteration method for

solving the system given above:

(rkI + H)x 1 = (rkI - V)Xk + b
k+-2

(rkI + V)xk+1 = (rkI - H)x 1 + b ,
~-

2

k = 0,1,2,... ,

(rk > 0 , I = unit matrix) .

This method is called PEACE~AN-RACHFORDiterative method (PRM). If rk = r ,
k = 0,1,2,..., then the method is called stationary otherwise nonstationary.

Most known results concerning the convergence of the stationary PRMconsider the

case in which both Hand V are Hermitian and nonnegative definite and where at

least one of the matrices Hand V is positive definite ([13,14,16]).

In the nonstationary case very satisfactory practical experience has been made. But

proofs of convergence and optimizing the parameter sequence (rk) have been per-
formed only under even more restrictive conditions ([13,14,16]). Particularly the

matrices Hand V have to commute, this means that HV= VH holds. Although

the nonstationary method shows very good convergence behavior also in most non-

commutative cases there are scarcely criteria knownwhich assure at least conver-

gence in these cases. See however [2,6,7,11,15]. On the other side there are linear

systems arising from boundary value problems for which it is possible to choose a
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parameter sequence (rk) such that PRMdoes not converge ([12]). Because of these
reasons it seems quite desirable to look for new convergence criteria for the non-

stationary method.

In this paper we first report on someresults from ALEFELD[1] concerning the con-

vergence of PRM(Section 2). These results can immediately be applied to discrete

versions of elliptic boundary value problems (Section 3). Finally we prove a new

convergence result for an iterative method for m ~ 2 space variables which was

introduced in [5] (Section 4).

2. A Convergence Theorem for PRM

Let [n,n be the set of all nxn matrices A = [a..] with elements taken from

[ (= the set of complex numbers). Analogously RnJJ is defined. For A=[aij]E[n,n
we set A ;= [la. .1] ERn,n. Let A = [a..] E(tn,n be decomposed into the sum1J 1J
A = H + V and let

H = DH - BH
and

V = DV - BV .

Here DH and Dv represent the diagonal parts of Hand V whereas BH and

BV stand for the off-diagonal parts of Hand V respectively. The set of
matrices Q(A) is now defined by

~ n n ~

rt(A)I= {C = [c..]e(t' I C = H + V, H = 0- -B-, V= 0- - B-,
1J H H V V

D~= D ,I B-I = IBI, D- = D , IB-I = IBI}.H H H H V V V V

Wehave AErt(A) .

The spectral radius of a matrix A is denoted by p(A) . Consider now any B =

[b. .] ERn,n with b.. < 0, i + j . Then B canbe expressed as the difference1J 1J =

B=K1-C

n n
where K = max{b..}' and where C = [co .]ER '

l~i~n 11 1J

entries given by

satisfying C ~ 0 , has its

c..=K-b..>o11 11 = ' 1 ~ i ~ n

c.. = -b.. > 0 ,
1J 1J = i + j , 1 ~ i,j ~ n .

Following OSTROWSKI[9] such a matrix B is called a nonsingular M-matrix iff

K >p(C) . By Theorem 3.8 and by Theorem 3.10 in [13] a nonsingular M-matrix has

positive diagonal elements. The proof of the following theorem is given in detail
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in [lJ.

Theorem 1. Let the matrix A = [a..] Ea:n,n be expressed as the sum A = H + V oflJ
two matrices H = [h..] and V = [v..]. Let Hand V both have only real dia-lJ - lJ - .

gona 1 elements. L_e_~ T be defi ned by

T = max {h..,v..}
1 . 11 11

:sy~n

and assume that the matrices

TI + DH - ISHI and
TI + DV - ISv'

are both nonsingular M-matrices. Then the following are equivalent:

(a) DV + DH - (ISvl + ISHI) is a nonsingular M-matrix;

(b) For any matrix of the set Q(A) and for any sequence (rk) satisfying

T ~ rk ~ 0 < 00 , k = 0,1,2,...,

(0 S T) PRMis convergent. .

As a special case of Theorem 1 we get

Corollary 1. Let A = [a..]ERn,n be decomposed into the sum A = H + V- lJ

real matrices H = [h..] and V = [v. .]. Let
lJ - lJ-

of two

T = max {h.., v . . }
1 . 11 11
~l~n

and assume that

TI + H and TI + V

are both nonsingular M-matrices. Then the following are equivalent:

(a)

(b)

A is a nonsingular M-matrix;

PRM is convergent for any matrix of the set Q(A)
satisfying

and for any sequence (rk)

T ~ rk ~ 0 < 00, k = 0,1,2,...,

(0 S T) . .

3. Applications to Disctretized Elliptic Equations

Let R be a bounded plane region with boundary

order partial differential equation

aR . Consider the linear second-
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L[u] = Auxx
+ Cu + Ou + Eu + Fu = G

yy x y

with coefficients A,C,O,E,F and Gwhich are functions of x and y and with

A s m, C s m, m > 0 and F ~ 0 in R. The function u is also required to satis-

fy the condition

u(x ,y) = 9 (x ,y)

on the boundary 3R of R. Replacing the derivatives by difference quotients

leads to a second-order partial difference operator

Lh[u] = aou(x,y) - alu(x+h,y) - a2u(x,y +h) - a3u(x-h,y) - a4u(x,y-h) = t(x,y)

where

a =A+!!O12'
h

a2 = C + I E ,

- h. h
a3 - A - "2 D , a4 = C - "2 E ,

2
ao = al T a2 + a3 + a4 - h F ,

t(x,y) = -h2G .

Here we have used the usual three-point central difference quotients. For simplicity

we assume that it is not necessary to approximate the boundary 3R. The equation

Lh[u] = t(x,y) is equivalent to a system of linear algebraic equations Au = b . It
is well know that for

.
{

. 2A
h < h = mln mln ~0 R+3R

min 2C}
R+3R lEl

the matrix A is a nonsingular M-matrix. Expressing Lh[U] as

Lh[U] = Hh[U] + Vh[U]

where

Hh[U] = (2A - ~2F)U(X,y)
1

(A + "2hO)u(x + h,y)
1

(A - ~O)u(x - h,y),

121 1
Vh[u] = (2C - ~ F)u(x,y) - (C + ~E)u(x,y + h) - (C - ~E)u(x,y - h)

the matrix A can be written in the form A = H + V where Hand V are both

nonsingular M-matrices. But then the same is true for H + TI and V + TI ([9]).

Therefore by applying Corollary 1 the following holds.

Theorem 2. 2
Let Lh[u] = -h G where h < ho .
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Let

1 2 1 2
T = max{max (2A - ~ F), max (2C - ~ F)}R+aR R+aR

Then PRM is convergent for any sequence

k = 0,1,2,..., (0 ; T). .
(rk) satisfying T ~ rk ~ 0 < ro ,

4. Remarks on Methods for m ~ 2 Space Variables

We consider the problem of solving the system: of linear equations

(Al + A2 + ... + ~)x = b m ~ 2 .

In [5] among others the following iterative method was proposed:

i-I m

(rI + A.)x.(k+1) = L (~ 1 1- A.)x.(k+1) + L (~ 1 I -A.)x.(k)+b,1 1 . 1 m- J J . . 1 m- J J
J= J=l+

( :: )

i = l(l)m , k = 0,1,2,..., (r > 0) .

It was proved in [5] that provided the matrices Ai' 1; i ; m. are alle Herreitian

and positive definite and provided the eigenvalues Aj(i) of Ai satisfy

0 < a ~ Aj(i) ~ b. 1; i ; n . I ; j ; m, then for r > (m - 2)b/2 it follows

lim x(k) = z, i = l(l)m, where z is the solution of the given system. It was
k~
pointed out in [5] that it is important that this result holds withoutassuming

commutativity of the matrices Ai . The same is true for the result given in the
next theorem.

Theorem 3. Let Ai = [asii)] . 1 ~ i ~ m , be all nonsingular M-matrices. Then if
A is a nonsingular M-matrix method (x) is convergent for

r ~ l := (m-1) max {a (i)}
- l<s<n ss

l~i~m

Proof. Consider the m.nxm.n matrix A given byr

rI + Al

-(m~l I - Al

-(m~l I - A2)

rI + A2

-(m~l I - A )m

-(m~l I - 1),,)
A =

r

r
-(- I - A )rn-I I

r
-(- I - A )rn-I 2 rI + Arn

and the splitting
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- - -
A = M - Nr r r

where Mr is given by

rI + Al 0

M =r
-(m~l I - Al) rI + A2

(
r .

- rn-I 1 - Al) -(m~l I - A2) rI + Am

. . - mon - mon
Defl m ng the vectors XE Rand cER by

Xl

x2

b

b

x = X. ERn1 i = l(l)m , c = bE Rn ,

xm b

i t i s easy to see tha t (::) can be wri tten in the form

-(k+1) - -1- -(k) - -l-x = M N x + M cr r r k = 0,1,2,...

First we show that Ar is a nonsingular M:matrix. To do this it is sufficient to

verify that the off~diagonal eleme~ts of Ar are nonpositive and that there exists

a positive vector zeRm-n with ArZ>O. (See [13], p.85 and exercise 20n p. 87).
Since by hypothesis the A. are nonsingular M-matrices then the off-diagonal ele-

- 1 (")
ments of Ar are nonpositive if r ~ (m - l)assl , 1 ~ s ~ n, 1; i ; m .
Again, since A itself is by hypothesis a nonsingular M-matrix there exists a

posi ti ve vector z E Rn with Az > 0 . If we take

z

z

z = E Rm-n

z
-

then a simple calculation shows Arz > 0 . Hence A is a nonsingular M-matrix.

Especially, we have A~l ~ 0 ([13], p.85 ). Since a~y matrix obtained fram a non-

singular M-Matrix by setting certain off-diagonal entries to zero,is also a non-

singular M-m~~~ixwe have that Mr i~ a nonsingular M-matrix from ~hic~ it_follows
again that ~1r ~ 0 . Furthermore Nr ~ 0 . Hence the splitting Ar =Hr - Nr is a
regular splitting ([13], Definition 3.5) and therefore by Theorem 3.13 in [13] the
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method (::) is convergent. This completes the proof of this theorem. .

We close this paper with two remarks:

1. It is easy to gi~e similiar convergence results for the other methods
proposed in [5].

2. Theorem 3 can directly be applied to discrete versions of boundary value

problems for m s 2 space variables.



8

Referenees

1. Alefeld, G.: Zur Konvergenz des Peaceman-Rachford-Verfahrens. To appear
in Numer. Math.

ßirkoff, G., Varga, R.S.: Implicit Alternating Direction Methods.
Trans. Amer. Math. Soe. 92, 190-273 (1959)

ßirkoff, G., Varga, R.S., Young, D.M.: Alternating Direction Implicit Methods.
In: Advances in Computers 3, NewYork: Academic Press 1962

Casper, J.: Applications of Alternating Direction Methods to Mildly Nonlinear
Problems. Ph. D. Diss., Univ of Maryland, College Park, Maryland (1969)

Douglas, J., Kellog, R.ß., Varga, R.S.: Alternating direction Iteration
Methods for n Space Variables. Math. Comp. 17, 279-282 (1963)

Guilinger, W.H., Jr.: The Peaceman-Rachford Method for Small Mesh Incre-
ments. J. Math. Anal. 11, 261-277 (1965)

Habetler, G.J.: Concerning the Implicit Alternating Direction Method. Report
KAPL-2040, Knolls Atomic Power Laboratory, Schenectady, NewYork (1959)

More, J.M.: Global Convergence of Newton-Gauss-Seidel Methods. SIAMJ.
Numer. Anal.S, 325-336 (1971)

Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in
Several Variables. NewYork: Academic Press 1970

2.

3.

4.

5.

6.

7.

8.

9.

10. Ostrowski, A.M.: über die Determinanten mit überwiegender Hauptdiagonale.
Comment. Math. Helv. 10, 69-96 (1937)

Pearcy, C.: On Convergence of Alternating Direction Procedures. Numer. Math.
4, 172-176 (1962)

Price, H., Varga, R.S.: Recent Numerieal Experiments Comparing Successive
Overrelaxation Iterative Methods with Implicit Alternating Direction Methods.
Report Nr. 91, Gulf Research and Development Co., Pittsburgh, Pennsylvania
(1962)

11.

12.

13. Varga, R.S.: Matrix Iterative Analysis. Series in Automatie Computation,
Englewood Cliffs., N.J.: Prentice Hall, (1962)

Wachspress, E.: Iterative Solution of Elliptic Systems. Englewood-Cliffs,
N.J.: Prentiee Hall 1966

Widlund, O.ß.: On the Rate of Convergenee of an Alternating Oirection
Implicit Method in a Noncommutative Case. Math. Comp. 20, 500-515 (1966)

Young, D.M.: Iterative Solution of Large Linear Systems. NewYork: Academic
Press 1971

14.

15.

16.


