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Some Convercence Results for the PEACEMAN-RACHFORD Method

in the Noncommutative Case

G. Alefeld

1. Introduction

We consider the system of simultaneous linear equations

Au = b .

Let the matrix A be expressed as the sum

A=H+V
of two matrices H and V . Then we consider the following iteration method for
solving the system given above:

(rkI + H)x 3 (rkI - V)xk + b

(r g + V)Xk+l = (r I - H)x 1 b

k+?

(rk >0, I =unit matrix) .

This method is called PEACEMAN-RACHFORD iterative method (PRM). If B & P
k = 0,1,2,..., then the method is called stationary otherwise nonstationary.

Most known results concerning the convergence of the stationary PRM consider the
case in which both H and V are Hermitian and nonnegative definite and where at
least one of the matrices H and V is positive definite ([13,14,16]).

In the nonstationary case very satisfactory practical experience has been made. But
proofs of convergence and optimizing the parameter sequence (rk) have been per-
formed only under even more restrictive conditions ([13,14,161). Particularly the
~matrices H and V have to commute, this means that HV = VH holds. Although
the nonstationary method shows very good convergence behavior also in most non-
commutative cases there are scarcely criteria known which assure at least conver-
gence in these cases. See however [2,6,7,11,15]. On the other side there are linear
systems arising from boundary value problems for which it is possible to choose a



parameter sequence (rk) such that PRM does not converge ([12]). Because of these
reasons it seems quite desirable to look for new convergence criteria for the non-
stationary method.

In this paper we first report on some results from ALEFELD [1] concerning the con-
vergence of PRM (Section 2). These results can immediately be applied to discrete
versions of elliptic boundary value problems (Section 3). Finally we prove a new
convergence result for an iterative method for m > 2 space variables which was
introduced in [5] (Section 4).

2. A Convergence Theorem for PRM

Let €™ be the set of all nxn matrices A = [aAj] with elements taken from
€ (= the set of complex numbers). Analogously R™"™ §s defined. For A::[aij]eaﬁn‘n
we set A := Haij” eR™"

A=H+V and let

i Let A= [aijjesﬁn’“ be decomposed into the sum

H=D, -8B and V=D,-8

Here DH and DV represent the diagonal parts of H and V whereas BH and
BV stand for the off-diagonal parts of H and V respectively. The set of
matrices Q(A) is now defined by

QlA)|= {C = Tes:3et™ | C=H+V, H=0.B., V=0 =B,
13 H H v v

D .0 5B & |8 |y B8 B, 184 =B 1%
H H ' H H™ v v Y v
We have Ae;?(ﬁ) :

The spectral radius of a matrix A is denoted by p(A) . Consider now any B =
1

1A

0, i ¥ . Then B can be expressed as the difference

B=xlI-C
where « = max{b..} and where C = {c‘.]ean’n , satisfying C > 0 , has its
1cicn V! 1J -

entries given by

Following OSTROWSKI [9] such a matrix B is called a nonsingu1éf M-matrix iff
< >p(C) . By Theorem 3.8 and by Theorem 3.10 in [13] a nonsingular M-matrix has
positive diagonal elements. The proof of the following theorem is given in detail



in [11].

1"

.Theorem 1. Let the matrix A [aij}xsmn’n be expressed as the sum A =H + V of

two matrices H = [hij] and V= [Vij]' Let H and V both have only real dia-

gonal elements. Let 1 be defined by

T = max {h..,v..}
1<i<n 1A

and assume that the matrices

A Dy= [BHi and 1l +D - |BVI

are both nonsingular M-matrices. Then the following are equivalent:

(a) Dy + Dy - (IBy] + |BH|) is a nonsingular M-matrix;

(b) For any matrix of the set ﬁ(A) and for any sequence (rk) satisfying

TEN S B, k =0,1,2,...,

(o > 1) PRM is convergent. =

As a special case of Theorem 1 we get

Corollary 1. Let A= [aiJ.]esRn’n be decomposed into the sum A =H + V of two

real matrices H = [hij] and V = [Vij]' Let

T = max {hii’vii}
1<i<n

and assume that

tI+H and I +V

are both nonsingular M-matrices. Then the following are equivalent:

(a) A s a nonsingular M-matrix;

(b) PRM is convergent for any matrix of the set Q(A) and for any sequence (rk)

satisfying
TS so<m, k = 0,152,000y
(027) . m

3. Applications to Disctretized Elliptic Equations

Let R be a bounded plane region with boundary 3R . Consider the linear second-
order partial differential equation



1]
[ep]

L{ul = Auxx + Cuyy + DuX + Euy + Fu

with coefficients A,C,D,E,F and G which are functions of x and y and with
A>m, Czm,m>o0 and F <o in R . The function u 1is also required to satis-
fy the condition

u(x,y) = g(x,y)

on the boundary 3R of R . Replacing the derivatives by difference quotients
leads to a second-order partial difference operator

Lylul = aou(x,y) ~ alu(x+h,y) - azu(x,y +n) - a3u(x—h,y) - a4u(x,y—h) = t(x.,y)

where

= h _ h

Q1~A+"2-D, CCZ—C'I'EE,
R _¢c_nh

33—10{ —2-{, aq-—C ?‘E,
= + 0y t o, ta, - h?F

0‘.0—0.1 2 3 4 3

t(x,y) = -h% .

Here we have used the usual three-point central difference quotients. For simplicity
we assume that it is not necessary to approximate the boundary 3R . The equation
Lh[u1= t(x,y) 1is equivalent to a system of linear algebraic equations Au =b . It
is well know that for

; . 2A g 20
h <h_ = min{min ., min =}
© ReaR 101 * pear [El

the matrix A 1is a nonsingular M-matrix. Expressing Lh[u] as

Lyful = H [u] +V, [u]

where
= 1.2 1 1

Hplul = (2A - Sh"Flu(x,y) - (A + ShD)u(x + h,y) - (A - hD)u(x - h,y),
s 1,2 1 1

Vh[u] = (2C - ?h Flu(x,y) - (C + ihE)u(x,y +h) - (C -~ §hE)u(x,y - h)

the matrix A can be written in the form A =H + V where H and V are both
nonsingular M-matrices. But then the same is true for H + Tl and V + tI ([9]).
Therefore by applying Corollary 1 the following holds.

Theorem Z. Let Lh[u} = -hZG where h < hc s



Let

7 = max{max (2A - %hZF}, max (2C - %hz

R+3R R+3R

F)}

Then PRM 1is convergent for any sequence (rk) satisfying 1 < M sg<s@gy

k=012, (G27) .

4. Remarks on Methods for m > 2 Space Variables

We consider the problem of solving the system of linear equations

(A + Az + ..o+ Ax=b m>2.

In [5] among others the following iterative method was proposed:

i-1
0P % Mt o) s :
g | 1

1 12

| e j=iv1 ™

i=1(1)m, k= 0315250005 (3 0)

It was proved in [5] that provided the matrices A., e
) of

0<acg Aj(i) = b, <ign,1<j<m, then for r> (m-

1
and positive definite and provided the eigenvalues kj(i

r (LI-Aj)xj(k”M L (= 1-A,)x.¢

k) 3
%5 by (:2)

m, are alle Hermitian

Ai satisfy

2)b/2 it follows

lim x(k) =z, i=1(1)m, where z 1is the solution of the given system. It was

ko

pointed out in [5] that it is important that this result holds without assuming

commutativity of the matrices Ai . The same is true for the result given in the

next theorem.

Theorem 3. Let Ai = [a (})] » 1<1i<m, be all nonsingular M-matrices. Then if

st

A is a nonsingular M-matrix method (x) is convergent for

r>t1 := (m-1) max {a (i)} :
B 1<s<n S8
1<i<m

Proof. Consider the menxmen matrix Ar given by

r r
= -(ﬁ:-l- 1 - Al I"I + AZ . s e _(_m’}. I - Af“)
A 3
r
| 4 ¥
_(m_l - 95 Al) “(m_l I = Az) v e rl + Am

and the splitting




Ar = Mr - Nr
where ﬁr is given by
rl + Al ] 1
r
% B ‘(m—_l- I - Al) rl + Az
r‘ i - —
roo.- o - -
| =y 1= ) (= I -A)) “ e rl+ A
Defining the vectors xeR™" and ceR™" by
Xl b
X2 b
X = ,x].ERn, i=11m, c=| | , ber",
X Xm il . b-

it is easy to see that (:) can be written in the form
k#l) _ o=1- 7k} . L=k i
X = Mr er + Mr ¢ 5 k=012

First we show that Er is a nonsingular M-matrix. To do this it is sufficient to
verify that the off:diagona] elements of Ar are nonpositive and that there exists
a positive vector z=R™" with AFE >0 . (See [13], p.85 and exercise 2 on p. 87).
Since by hypothesis the Ai are nonsingular M-matrices then the off-diagonal ele-
ments of A, are nonpositive if r > (m - l)asgl) ;. d2ssn 1cich,
Again, since A itself is by hypothesis a nonsingular M-matrix there exists a
positive vector zeR" with Az>o0 . If we take

= —

me=n

f 5

then a simple ca]cuIaEion shows EFE > 0 . Hence A, is a nonsingular M-matrix.
Especially, we have A;l > 0 ([13], p.85 ). Since any matrix obtained from a non-
singular M-Matrix by setting certain off-diagonal entries to zero,is also a non-
singular M-matrix we have that &r is a nonsingular M-matrix from which it follows
again that M;l > 0 . Furthermore N. 2 0 . Hence the splitting Ar::Mr"Nr is a
regular splitting ([13], Definition 3.5) and therefore by Theorem 3.13 in [13] the



method () is convergent. This completes the proof of this theorem. =

We close this paper with two remarks:

1. It is easy to give similiar convergence results for the other methods
proposed in [5].

2. Theorem 3 can directly be applied to discrete versions of boundary value

problems for m > 2 space variables.
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