Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann

631

Numerical Treatment of Differential Equations

Proceedings, Oberwolfach, 1976

Edited by R. Bulirsch, R. D. Grigorieff, and J. Schröder

Springer-Verlag Berlin Heidelberg New York

Some Convergence Results for the PEACEMAN-RACHFORD Method

in the Noncommutative Case

G. Alefeld

1. Introduction

We consider the system of simultaneous linear equations

$$Au = b$$
.

Let the matrix A be expressed as the sum

$$A = H + V$$

of two matrices H and V. Then we consider the following iteration method for solving the system given above:

$$\begin{cases} (r_{k}I + H)x_{k+\frac{1}{2}} = (r_{k}I - V)x_{k} + b \\ (r_{k}I + V)x_{k+1} = (r_{k}I - H)x_{k+\frac{1}{2}} + b \\ k = 0,1,2,\ldots, \\ (r_{k} > 0, I = unit matrix). \end{cases}$$

This method is called <u>PEACEMAN-RACHFORD</u> iterative method (PRM). If $r_k = r$, k = 0, 1, 2, ..., then the method is called stationary otherwise nonstationary.

Most known results concerning the convergence of the stationary PRM consider the case in which both H and V are Hermitian and nonnegative definite and where at least one of the matrices H and V is positive definite ([13,14,16]).

In the nonstationary case very satisfactory practical experience has been made. But proofs of convergence and optimizing the parameter sequence (r_k) have been performed only under even more restrictive conditions ([13,14,16]). Particularly the matrices H and V have to commute, this means that HV = VH holds. Although the nonstationary method shows very good convergence behavior also in most non-commutative cases there are scarcely criteria known which assure at least convergence in these cases. See however [2,6,7,11,15]. On the other side there are linear systems arising from boundary value problems for which it is possible to choose a

parameter sequence (r_k) such that PRM does not converge ([12]). Because of these reasons it seems quite desirable to look for new convergence criteria for the nonstationary method.

In this paper we first report on some results from ALEFELD [1] concerning the convergence of PRM (Section 2). These results can immediately be applied to discrete versions of elliptic boundary value problems (Section 3). Finally we prove a new convergence result for an iterative method for $m \ge 2$ space variables which was introduced in [5] (Section 4).

2. A Convergence Theorem for PRM

Let $\mathbb{C}^{n,n}$ be the set of all n×n matrices $A = [a_{ij}]$ with elements taken from \mathbb{C} (= the set of complex numbers). Analogously $\mathbb{R}^{n,n}$ is defined. For $A = [a_{ij}] \in \mathbb{C}^{n,n}$ we set $A := [|a_{ij}|] \in \mathbb{R}^{n,n}$. Let $A = [a_{ij}] \in \mathbb{C}^{n,n}$ be decomposed into the sum A = H + V and let

$$H = D_H - B_H$$
 and $V = D_V - B_V$.

Here ${\rm D}_{\rm H}$ and ${\rm D}_{\rm V}$ represent the diagonal parts of H and V whereas ${\rm B}_{\rm H}$ and B_V stand for the off-diagonal parts of H and V respectively. The set of matrices $\tilde{\Omega}(A)$ is now defined by

$$\widetilde{\Omega}(A) = \{ C = [c_{ij}] \in \mathbb{C}^{n,n} \mid C = \widetilde{H} + \widetilde{V}, \ \widetilde{H} = D_{\widetilde{H}} - B_{\widetilde{H}}, \ \widetilde{V} = D_{\widetilde{V}} - B_{\widetilde{V}}, \\D_{\widetilde{H}} = D_{H}, |B_{\widetilde{H}}| = |B_{H}|, \ D_{\widetilde{V}} = D_{V}, \ |B_{\widetilde{V}}| = |B_{V}| \}.$$

We have $A \in \Omega(A)$.

The spectral radius of a matrix A is denoted by $\rho(A)$. Consider now any B = $[b_{i,i}] \in \mathbb{R}^{n,n}$ with $b_{i,j} \leq 0$, $i \neq j$. Then B can be expressed as the difference

 $B = \kappa I - C$

where $\kappa=\max\{b_{i\,i}\}$ and where $C=[c_{i\,j}]\in R^n,n$, satisfying $C\geq 0$, has its $1\leq i\leq n$

entries given by

$$c_{ii} = \kappa - b_{ii} \ge 0, \quad 1 \le i \le n$$
$$c_{ij} = -b_{ij} \ge 0, \quad i \ne j, \quad 1 \le i, j \le n.$$

Following OSTROWSKI [9] such a matrix B is called a nonsingular M-matrix iff $\kappa > \rho(C)$. By Theorem 3.8 and by Theorem 3.10 in [13] a nonsingular M-matrix has positive diagonal elements. The proof of the following theorem is given in detail in [1].

Theorem 1. Let the matrix $A = [a_{ij}] \in \mathbb{C}^{n,n}$ be expressed as the sum A = H + V of two matrices $H = [h_{ij}]$ and $V = [v_{ij}]$. Let H and V both have only real diagonal elements. Let τ be defined by

$$\tau = \max_{\substack{1 \leq i \leq n}} \{h_{ii}, v_{ii}\}$$

and assume that the matrices

 $\tau I + D_H - |B_H|$ and $\tau I + D_V - |B_V|$

are both nonsingular M-matrices. Then the following are equivalent:

(a) $D_V + D_H - (|B_V| + |B_H|)$ is a nonsingular M-matrix;

(b) For any matrix of the set $\tilde{\Omega}(A)$ and for any sequence (r_k) satisfying

 $\tau \leq r_k \leq \sigma < \infty$, k = 0, 1, 2, ...,

 $(\sigma \ge \tau)$ PRM is convergent.

As a special case of Theorem 1 we get

<u>Corollary 1</u>. Let $A = [a_{ij}] \in \mathbb{R}^{n,n}$ be decomposed into the sum A = H + V of two real matrices $H = [h_{ij}]$ and $V = [v_{ij}]$. Let

$$\tau = \max \{h_{ii}, v_{ii}\}$$

and assume that

 $\tau I + H$ and $\tau I + V$

are both nonsingular M-matrices. Then the following are equivalent:

- (a) A is a nonsingular M-matrix;
- (b) <u>PRM</u> is convergent for any matrix of the set $\Omega(A)$ and for any sequence (r_k) satisfying

$$\tau \leq r_k \leq \sigma < \infty$$
, $k = 0, 1, 2, \dots$,

$$(\sigma \ge \tau)$$
.

3. Applications to Disctretized Elliptic Equations

Let R be a bounded plane region with boundary $\,\,\partial R$. Consider the linear second-order partial differential equation

$$L[u] \equiv Au_{xx} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

with coefficients A,C,D,E,F and G which are functions of x and y and with $A \ge m$, $C \ge m$, m > o and $F \le o$ in R. The function u is also required to satisfy the condition

$$u(x,y) = g(x,y)$$

on the boundary ∂R of R. Replacing the derivatives by difference quotients leads to a second-order partial difference operator

 $L_h[u] \equiv \alpha_0 u(x,y) - \alpha_1 u(x+h,y) - \alpha_2 u(x,y+h) - \alpha_3 u(x-h,y) - \alpha_4 u(x,y-h) = t(x,y)$ where

$$\begin{aligned} \alpha_1 &= A + \frac{h}{2} D , & \alpha_2 &= C + \frac{h}{2} E , \\ \alpha_3 &= A - \frac{h}{2} D , & \alpha_4 &= C - \frac{h}{2} E , \\ \alpha_0 &= \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - h^2 F , \\ t(x,y) &= -h^2 G . \end{aligned}$$

Here we have used the usual three-point central difference quotients. For simplicity we assume that it is not necessary to approximate the boundary ∂R . The equation $L_h[u] = t(x,y)$ is equivalent to a system of linear algebraic equations Au = b. It is well know that for

$$h < h_o = \min\{\min \frac{2A}{|D|}, \min \frac{2C}{|E|}\}$$

the matrix A is a nonsingular M-matrix. Expressing $L_{h}[u]$ as

$$L_{h}[u] = H_{h}[u] + V_{h}[u]$$

where

$$H_{h}[u] = (2A - \frac{1}{2}h^{2}F)u(x,y) - (A + \frac{1}{2}hD)u(x + h,y) - (A - \frac{1}{2}hD)u(x - h,y),$$
$$V_{h}[u] = (2C - \frac{1}{2}h^{2}F)u(x,y) - (C + \frac{1}{2}hE)u(x,y + h) - (C - \frac{1}{2}hE)u(x,y - h)$$

the matrix A can be written in the form A = H + V where H and V are both nonsingular M-matrices. But then the same is true for $H + \tau I$ and $V + \tau I$ ([9]). Therefore by applying Corollary 1 the following holds.

<u>Theorem 2.</u> Let $L_h[u] = -h^2 G$ where $h < h_0$.

$$= \max\{\max_{R+\partial R} (2A - \frac{1}{2}h^{2}F), \max_{R+\partial R} (2C - \frac{1}{2}h^{2}F)\}$$

Then PRM is convergent for any sequence (r_k) satisfying $\tau \leq r_k \leq \sigma < \infty$, $k = 0, 1, 2, \ldots, (\sigma \geq \tau)$.

4. Remarks on Methods for $m \ge 2$ Space Variables

Let

We consider the problem of solving the system of linear equations

$$(A_1 + A_2 + \dots + A_m)x = b$$
, $m \ge 2$.

In [5] among others the following iterative method was proposed:

$$(rI + A_{j})x_{j}^{(k+1)} = \sum_{j=1}^{i-1} (\frac{r}{m-1} I - A_{j})x_{j}^{(k+1)} + \sum_{j=i+1}^{m} (\frac{r}{m-1} I - A_{j})x_{j}^{(k)} + b, \quad (x)$$

$$i = 1(1)m$$
, $k = 0, 1, 2, ..., (r > 0)$.

It was proved in [5] that provided the matrices A_i , $1 \leq i \leq m$, are alle Hermitian and positive definite and provided the eigenvalues $\lambda_j(i)$ of A_i satisfy $o < a \leq \lambda_j(i) \leq b$, $1 \leq i \leq n$, $1 \leq j \leq m$, then for r > (m - 2)b/2 it follows $\lim_{k \to \infty} x^{(k)} = z$, i = 1(1)m, where z is the solution of the given system. It was pointed out in [5] that it is important that this result holds without assuming commutativity of the matrices A_i . The same is true for the result given in the next theorem.

<u>Theorem 3.</u> Let $A_i = [a_{st}^{(i)}]$, $1 \le i \le m$, <u>be all nonsingular M-matrices</u>. Then if A is a nonsingular M-matrix method (::) is convergent for

$$\label{eq:radius} \begin{split} r & \geq \tau := (m-1) \max_{\substack{1 \leq s \leq n \\ 1 \leq i \leq m}} \{a_{ss}\} \end{split} .$$

<u>Proof.</u> Consider the $m \cdot n \times m \cdot n$ matrix A_r given by

$$\widetilde{A}_{r} = \begin{pmatrix} rI + A_{1} & -(\frac{r}{m-1}I - A_{2}) & \dots & -(\frac{r}{m-1}I - A_{m}) \\ -(\frac{r}{m-1}I - A_{1} & rI + A_{2} & \dots & -(\frac{r}{m-1}I - A_{m}) \\ \dots & \dots & \dots & \dots \\ -(\frac{r}{m-1}I - A_{1}) & -(\frac{r}{m-1}I - A_{2}) & \dots & rI + A_{m} \end{pmatrix}$$

and the splitting

5

$$\tilde{A}_r = \tilde{M}_r - \tilde{N}_r$$

where M_r is given by

$$\widetilde{M}_{r} = \begin{pmatrix} rI + A_{1} & 0 \\ -(\frac{r}{m-1}I - A_{1}) & rI + A_{2} \\ ... & ... \\ -(\frac{r}{m-1}I - A_{1}) & -(\frac{r}{m-1}I - A_{2}) & ... & rI + A_{m} \end{bmatrix}$$

Defining the vectors $\overline{x} \in \mathbb{R}^{m \cdot n}$ and $\overline{c} \in \mathbb{R}^{m \cdot n}$ by

$$\overline{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \vdots \\ \mathbf{x}_m \end{bmatrix}, \mathbf{x}_i \in \mathbb{R}^n, \quad i = 1(1)m, \quad \overline{\mathbf{c}} = \begin{bmatrix} \mathbf{b} \\ \mathbf{b} \\ \vdots \\ \vdots \\ \mathbf{b} \end{bmatrix}, \quad \mathbf{b} \in \mathbb{R}^n,$$

it is easy to see that (::) can be written in the form

$$\overline{x}^{(k+1)} = \widetilde{M}_{r}^{-1} \widetilde{N}_{r} \overline{x}^{(k)} + \widetilde{M}_{r}^{-1} \overline{c}$$
, $k = 0, 1, 2, ...$

First we show that A_r is a nonsingular M-matrix. To do this it is sufficient to verify that the off-diagonal elements of A_r are nonpositive and that there exists a positive vector $\overline{z} \in \mathbb{R}^{m \cdot n}$ with $A_r \overline{z} > \overline{o}$. (See [13], p.85 and exercise 2 on p. 87). Since by hypothesis the A_i are nonsingular M-matrices then the off-diagonal elements of A_r are nonpositive if $r \ge (m - 1)a_{ss}^{(i)}$, $1 \le s \le n$, $1 \le i \le m$. Again, since A itself is by hypothesis a nonsingular M-matrix there exists a positive vector $z \in \mathbb{R}^n$ with Az > o. If we take

$$z = \begin{bmatrix} z \\ z \\ \cdot \\ \cdot \\ z \end{bmatrix} \in \mathbb{R}^{m \cdot n}$$

then a simple calculation shows $\tilde{A}_r z > \bar{o}$. Hence \tilde{A}_r is a nonsingular M-matrix. Especially, we have $\tilde{A}_r^{-1} \ge 0$ ([13], p.85). Since any matrix obtained from a non-singular M-Matrix by setting certain off-diagonal entries to zero, is also a non-singular M-matrix we have that \tilde{M}_r is a nonsingular M-matrix from which it follows again that $\tilde{M}_r^{-1} \ge 0$. Furthermore $\tilde{N}_r \ge 0$. Hence the splitting $\tilde{A}_r = \tilde{M}_r - \tilde{N}_r$ is a regular splitting ([13], Definition 3.5) and therefore by Theorem 3.13 in [13] the

6

We close this paper with two remarks:

- It is easy to give similiar convergence results for the other methods proposed in [5].
- 2. Theorem 3 can directly be applied to discrete versions of boundary value problems for $m \ge 2$ space variables.

-

References

- 1. Alefeld, G.: Zur Konvergenz des Peaceman-Rachford-Verfahrens. To appear in Numer. Math.
- Birkoff, G., Varga, R.S.: Implicit Alternating Direction Methods. Trans. Amer. Math. Soc. 92, 190-273 (1959)
- 3. Birkoff, G., Varga, R.S., Young, D.M.: Alternating Direction Implicit Methods. In: Advances in Computers 3, New York: Academic Press 1962
- 4. Casper, J.: Applications of Alternating Direction Methods to Mildly Nonlinear Problems. Ph. D. Diss., Univ of Maryland, College Park, Maryland (1969)
- Douglas, J., Kellog, R.B., Varga, R.S.: Alternating direction Iteration Methods for n Space Variables. Math. Comp. 17, 279-282 (1963)
- Guilinger, W.H., Jr.: The Peaceman-Rachford Method for Small Mesh Increments. J. Math. Anal. 11, 261-277 (1965)
- 7. Habetler, G.J.: Concerning the Implicit Alternating Direction Method. Report KAPL-2040, Knolls Atomic Power Laboratory, Schenectady, New York (1959)
- More, J.M.: Global Convergence of Newton-Gauss-Seidel Methods. SIAM J. Numer. Anal.8, 325-336 (1971)
- 9. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970
- Ostrowski, A.M.: Über die Determinanten mit überwiegender Hauptdiagonale. Comment. Math. Helv. 10, 69-96 (1937)
- Pearcy, C.: On Convergence of Alternating Direction Procedures. Numer. Math. 4, 172-176 (1962)
- Price, H., Varga, R.S.: Recent Numerical Experiments Comparing Successive Overrelaxation Iterative Methods with Implicit Alternating Direction Methods. Report Nr. 91, Gulf Research and Development Co., Pittsburgh, Pennsylvania (1962)
- Varga, R.S.: Matrix Iterative Analysis. Series in Automatic Computation, Englewood Cliffs., N.J.: Prentice Hall, (1962)
- Wachspress, E.: Iterative Solution of Elliptic Systems. Englewood Cliffs, N.J.: Prentice Hall 1966
- 15. Widlund, O.B.: On the Rate of Convergence of an Alternating Direction Implicit Method in a Noncommutative Case. Math. Comp. 20, 500-515 (1966)
- 16. Young, D.M.: Iterative Solution of Large Linear Systems. New York: Academic Press 1971