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ON THE CONVERGENCE SPEED OF SOME ALGORITHMS FOR
THE SIMULTANEOUS APPROXIMATION OF POLYNOMIAL

ROOTS*

G. ALEFELD AND J. HERZBERGERt

Abstract. This note givesan analysis of the order ofconvergence of some modified Newton methods.
The modifications we are concerned with are well-known methods-a total-step method and a single-
step method-for refining all roots of an nth-degree polynomial simultaneously. It is shown that for
the single-step method the R-order of convergence, used by Ortega and Rheinboldt in [6], is at least
2 + an > 3, where an > 1 is the unique positive root of the polynomial Pn(a)= an - a - 2.

1. Preliminaries. Suppose fex) is a polynomial of nth degree given by

f( )
n n- 1

X = anx + an - 1X +. .. + a1 X + aü,

We ass urne that the coefficients aü, a1, . . . , an are cornplex numbers and that all
the roots r1 , r2' . . . , rnare distinct. Let

x(Ü) x(Ü) ... x(Ü)1 , 2' , n

be approximations for the roots of f(x). To determine the roots of f(x) we consider
the following rnethods.

1. Total-step method (TSM).

X\k+ 1) = X\k) -I I

f(x~k»)/ f'(X~k»)

1 - f(X~k»)/f'(X~k»)I (k) ~ X(k)'j= 1 Xi j
j*i

i=1,2,...,n, k = 0,1,2, . . . .

2. Single-step method (SSM).

x\k+ 1) = X\k) -I I
f(X~k»)/f'(X~k») ----

[
i-l 1 n 1

]

'

- f(X~k»)/f'(X~k») .L X\k) - x(k+ 1) + . ~ X\k) - X(k)J= 1 I J J=I+ 1 I J

i = 1,2, . . . , n, k = 0,1,2, . . . .

(See [1], [2], [3].) For sufficiently good starting values x~ü),x~ü>,. . . , x~ü),it can
be proved that both methods are converging.

Defining
n

(X\k) - r .)(r. - X(.k»)(k)-" I I J J

Yi - .L- (X\k) - r .)(X\k) - X(.k»)
'

J=1 I J I J
j*i

i=1,2,...,n, k=0,1,2,...,
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for (TSM) and
i - 1

(X~k) - r .)(r. - X\H 1»)
n

(x~k) - r .)(r. - X\k»)(k)-" I I)) '" I) )

}'i -.L.. (X~k) - r .)(X~k) - X\k + 1») + . ~ (X~k) - r .)(X~k) - X\k»))=1 1 ) 1 ) )=1+1 1 ) 1 )

for (SSM), both methods can be written in the form

(k)
X~H 1) = r. + }'i (X~k) - r.)

1 I 1 + }'~k) 1 I ,
i=I,2,...,n, k=O,I,2,....

If we take

Mk) = X~k) - ri, k = 0, 1, 2, . . . ,I . - 1 2 ..., n,1 - , ,

this may be written as

(1) lk) (k)MH1) =
1

~ "(,,h, , k = 0,1,2, "'.
I fl.

1 2 ..., n,1= , ,

The following results are given in [3]:
We suppose

Ih~k)1< imin Iri - r) = : dJ4,
l~j~n

j*i

i=I,2,...,n,

and we furt her assume, for i = 1, 2, . . . , n,

Iri - xjk)1> dJ2, j = 1,2, '" , n, j =1=i.

Then we get

Irl"l < :~Ihi"1jt, Ihj"l
j*i

for (TSM) and

(2)
16

[
i-1 n

]1}'~k)1< 3d? Ih~k)1 j~l /hjH 1)1+ j=t-1 Ihjk)1

for (SSM).

In addition, ifthe inequalities Ih~k)1< h < dJ4 hold, then

Ih~H 1)1< h\)i(1 - O(h2bi)),

where

bi = 16(n - 1)/(3d~)

for (TSM) and

16

[
i-1

]bi = d~ h2 .L bj + n - i3 I )= 1
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for (SSM).
Hence, both methods are at least cubically convergent.

2. A lower bound for the R-order of SSM. The purpose of this paper is to

prove that (SSM)converges faster than (TSM). To be precise, we give a lower bound
greater than 3 for the order of convergence of the sequence

h(k) = max Ih~k)l.
1 ~i~n

We use the following definition of the order of convergence (see [6J): Let I be an
iterative process with limit point x*. Then the quantity

{

OO if Rp(I, x*) = 0 for all pE [1, (0),
0 (I x*) =

R , inf {p E [1, (0) IRp(I , x*) = I} otherwise,

is called the R-order of I at x*.

Rp(I, x*) is called the R-factor of I at x* and is defined by

R/I,x*) = sup {Rp{X(k)}I{X(k)}EC(I,x*)}, 1 <p < 00,

where

r lim sup IX(k) - X*111k if p = 1,
R{X(k)}=~ k-+oop llim sup IX(k)- X*lllpk if p > 1,

k-+w

and C(I, x*) is the set of all sequences generated by land converging to x*.
THEOREM. Let (Jn > 1 be the uniquepositive root of

Pn(J) = (Jn - (J - 2 = O.

Then for the R-order of (SSM) we have

OR((SSM),O)> 2 + (Jn'

Proo! Using (2), it follows from (1) that

Ih~H 1)1< 1~ _1 (k) Ih~k)12[i,1 IhjH 1)1+ i Ihjk)l]3di 1 IYi I '=1 j=i+l

< C!hik){t',lhjk+ 1)1 + J ,lhjk)l]

as soon as
16 1

3d? 1 - ly~k)1< c,
i=I,2,...,n.

We now set

y ;;;; J(n - l)c, Ihn = (l/Y)1J~k),

G = cjy2 = 1/(n - 1),

i=1,2,''',n,
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and get

~ik+1) < '(~ik»)2[t: ~)k+1) + jt ~)kl
i=1,2,...,n, k=0,1,2,....

Because of limk-+co Ih~k)1 = 0, i = 1,2, . . . , n, we may assume

11~O)< 11< 1, i=1,2,...,n.

Then we get

(k+ 1) < nt/I/.;+ 1)11i = 11 ,

i=1,2,...,n, k=0,1,2,....

Defining the matrix A by

2 1

2 1
0

A= 0

'2 1

2 1 ". 0 2

the vectors m(k) = (m~k»)can successively be calculated by

(3) m(k+ 1) = Am(k) , k=0,1,2,...,

with initial values m~O)= 1, i = 1,2, . . . , n, The proof is by induction and will be
omitted. The matrix A is nonnegative and its directed graph (see [7, p. 20]) is
strongly connected, i.e., A is irreducible. By the Perron-Frobenius theorem (see
[7, p. 30]) this implies that A has a positive eigenvalue Al equal to its spectral radius.
But, by a simple application of Theorem 2.9 of [7, p. 49], we find that A is also
primitive. Thus, for the remaining eigenvalues A2' A3' . . . , Anof A, we get

(4) Al = p(A) > IA2/> IA31> ... > IAnl.

Let

Ak = (d~»)I} ,

denote the kth power of A. Since A is a primitive matrix, we get

(5) Ak > 0 for k > ko

(see [7, p. 41]). For an arbitrary matrix with property (4) it can be shown that

k = 1,2,...,

I
' d~+ 1)
1m !}

k--+co a~~) = Al'
I}

(The proof may be found in [4, p. 179].) If 8 > 0 is given, then

d~+ l)/d~) > p(A) - 8 for k > k(8) > kI} I} - - - 0'
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or

d~+ 1) > a[p(A) - G],I} - i,j = 1,2, . . . , n,

where

a = min a~~)> O.
1 :ii,j:in }

Therefore,

d~+ 2) > a~~+1)[p(A) - G] > a[p(A) - G]2,I} - I} -

and, in general,

(6)
(Hr) > a[p(A) - GY, r = 1,2, . . . .

ai }
" - . . - 1 2 ..., n,1,J - , ,

Now, combining (3) and (6) into the single inequality

m(k+r) = Ak+rm(O) =
(
.f a~y+r»

)}= 1

> (n .a[p(A) - GY)e,

where e = (ei)' ei = 1, i = 1,2, . . . , n,weobtain
\k+r) < m/(k+r) < na[p(A)-ErYfl = Yf = Yf ,

i = 1, 2, . . . , n, r = 1,2, . . ., k > k(G)> ko,

or

1
Ih~Hr)1< -Yfna[p(A)-EJr.

y

For

h(k) = max Ih~k)1
1 :ii:in

we also have

1
h(k+r) < -Yfan[p(A)-Er.

y

Thus, it follows that

Rp(A)-E{h(k)} = lim sup [h(Hr)J1/[p(A)-E]r
r-et:)

< !im sup[!YfanlP(A)-EJr

]

1/[p(A)-Er

r- ro y

= Yfan< 1,

and therefore

OR((SSM),O)> p(A) - G.
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This inequality holds for aIl s > 0 and we immediately have

(7) °R«SSM), 0) > p(A).

We now consider the characteristic polynomial Pn(A)of A:

Pn(A) = (A - 2)n- (A - 2) - 2.

U we set (J = A - 2, then simply substituting this in the polynomial above yields

Pn((J) - (Jn - (J - 2.

Since Pn(1)= -2 and Pn(2)> 0 for n > 2, there is a root (Jnwith 1 < (Jn< 2, and,
by Oescartes' rule of signs, there can be no other positive root of Pn«(J).Thus, for
the spectral radius p(A) of A we have

p(A) = 2 + (Jn'

and the combination with (7) gives

OR«SSM),O) > 2 + (Jn,

which completes the proof.

3. Remark. Two other methods for calculating the roots of a polynomial
simultaneously are the following.

1'. Total step-method (TSM)'.

x~k+1) = X(k) - f(X~k»)I Il~ (X~k) - X (k»)
'

J= 1 I .
j*i J

i = 1,2, . . . , n, k = 0,1,2, .. . .

2'. Single-step method (SSM)'.

(H 1) - (k) f(x~k»)
Xi - Xi - Ili.-1 (X~k) - X(k + 1») Il~. (X~k) - X<.k»)

'
}=1 I } }=1+1 I }

i=1,2,...,n, k=0,1,2,....

Here we assume an = 1.
It is weIl known that the order of convergence of (TSM)' is at least 2 (see [5J).

For (SSM)' we can, as in the proof of the above theorem, deduce the relation

Ih~k+"1 < CIW{t:Ih}k+ "I + jt 1 Ih}k)IJ.

Thus, it follows that the R-order of convergence is at least 1 + Tn> 2, where Tn
denotes the unique positive root of

Pn(T) = Tn - T - 1.

The proof of this statement is similar to the proof given above. In this case, we only
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have to replace all elements in the main diagonal of A and the element in the first
column and last row by 1.
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