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Improved Validated Bounds for Taylor Coefficients
and for Taylor Remainder Series†

M. Neher, Karlsruhe

Abstract

This paper presents methods for the validated computation of bounds for Taylor
coefficients and bounds for Taylor remainder series of analytic functions. These
bounds are derived from modifications of Cauchy’s estimate.

The proposed methods have been implemented in mathematical software called
ACETAF. Interval arithmetic is used to restore mathematical rigour to practical
calculations. The performance of ACETAF is demonstrated with numerical exam-
ples.
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1 Introduction

This paper is concerned with the practical calculation of bounds for Taylor
coefficients. For a given analytic function f , we construct bounds that form
a geometric series or some antiderivative of a geometric series. Summation
of this series yields a bound for the Taylor remainder series of f .

Such bounds are used for the error analysis in the well–known Taylor series
method for the solution of ODEs. For example, consider the scalar IVP

y(n) =
n−2∑
i=0

pi(x) y(i) + p−1(x), x ∈ (−r, r), r > 0,

y(i)(0) = yio, i = 0, . . . , n− 1,

(1)

where the functions pi are assumed to be analytic in (−r, r) having series
expansions

pi(x) =
∞∑

j=0

bij xj, x ∈ (−r, r), i = −1, . . . , n− 2. (2)

†Appeared in: J. Comput. Appl. Math. 152 (2003), 393-404
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The solution of (1) can be written as a power series

y(x) :=
∞∑

ν=0

aν xν , x ∈ (−r, r). (3)

In the Taylor series method, a finite number of coefficients aν of (1) are
obtained from recurrence relations, and the Taylor polynomial

ỹ(x) :=
k−1∑
ν=0

aν xν for some k ∈ N

serves as an approximate solution of (1). If suitable bounds for the Taylor
coefficients bij of the analytic functions pi(x) in (2) are available then the
approximation error |y − ỹ| can be estimated as follows:

Theorem [Neher 2001b]

(i) If there are constants mi ∈ N0 and Bi ≥ 0 such that

|bij| ≤ Bi

rj
, for j > mi, i = −1, . . . , n− 2 (4)

then there exist numbers κ ∈ N and A > 0 such that

|ak rk| ≤ A :=
κ

max
ν=0

|aν rν | for all k ∈ N0 . (5)

(ii) Under the above assumptions, for x ∈ (−r, r) and all k ∈ N,

| y(x)−
k−1∑
ν=0

aν xν | ≤ A

rk−1
· xk

r − x
.

An algorithm for the practical computation of κ and A from given data mi,
Bi in (4) is discussed in [Neher 2001b]. Nonlinear examples for this error
analysis for ODEs are presented in [Neher 1997].

Geometric series bounds for Taylor coefficients of analytic functions are
also used for the determination of multiple zeros or clusters of zeros. In
[Sakurai and Sugiura 2000] the availability of bounds according to (4) was
assumed, but no method for their computation was mentioned.

This paper addresses the computation of bounds for the Taylor coefficients
of a given analytic function f . Its theoretical foundation has already been
developed in [Neher 2001c]. Here, we present improved algorithms for the
practical calculation of the bounds. The validated estimation of the Taylor
remainder series is considered for the first time in this paper.
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2 Estimates for Taylor Coefficients

In the following, let f(z) =
∑∞

j=0 ajz
j be analytic in B and bounded on C,

where B is the complex disc {z : |z| < r} and C the circle {z : |z| = r}, for
some r > 0. A well known bound for the Taylor coefficients of f is Cauchy’s
estimate M(r) (cf. [Henrici 1974, p. 84]):

|aj| ≤ M(r)

rj
, M(r) := max

|z|=r
|f(z)| , j ∈ N0.

Unfortunately, Cauchy’s estimate is sometimes very pessimistic. To obtain
better bounds, two modifications of Cauchy’s estimate were proposed in [Ne-
her 2001c]. The first uses Taylor polynomial approximations to f , the second
uses derivatives:

Theorem 1 Let f be analytic in B and bounded on C. Furthermore, let
tl(z) denote the Taylor polynomial of order l to f . Then

|aj| ≤ N(r, l)

rj
for j > l, where N(r, l) := max

|z|=r
|f(z)− tl(z)| .

Theorem 2 Let f be analytic in B and let the m–th derivative of f be
bounded on C. Then

|aj| ≤ U(r,m)rm

P (j −m,m)rj
for j ≥ m, (6)

where

U(r,m) := max
|z|=r

|f (m)(z)| , P (j, m) :=
(j + m)!

j!
.

It was mentioned in [Neher 2001c] that the last two methods could be
combined. Let t̂l be the Taylor polynomial of order l for f (m). Then instead
of (6), we have

|aj| ≤ V (r,m, l)rm

P (j −m,m)rj
for j > m + l,

where
V (r,m, l) := max

|z|=r
|f (m)(z)− t̂l(z)| .

However, this estimate has not been found useful in practical calculations. It
has been experienced in many numerical examples that U(r,m + l) yielded
better bounds than V (r,m, l), after less computation time.
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3 Estimates for Taylor Remainder Series

The above estimates for the Taylor coefficients are the basis of the estimation
of the remainder series Rp(z) :=

∑∞
j=p+1 ajz

j. Here, we are looking for a
bound on Rp(z) at some point z with |z| = ωr, ω ∈ (0, 1).

Using Cauchy’s estimate, we get

|Rp(z)| ≤
∞∑

j=p+1

M(r) ωj = M(r)
ωp+1

1− ω
for p ≥ 0. (7)

Following Theorem 1, we have

|Rp(z)| ≤ N(r, l)
ωp+1

1− ω
for p ≥ l, (8)

whereas Theorem 2 yields

|Rp(z)| ≤ U(r,m) rm

∞∑
j=p+1

ωj

P (j −m,m)
for p ≥ m− 1 ≥ 0.

For p = m − 1, the summation can be made explicit. The proof of the
following Theorem (which appears to be new) is given in the appendix.

Theorem 3 For m ∈ N and ω ∈ (0, 1)†,

∞∑

j=m

ωj

P (j −m,m)
= (ω−1)m−1

(
zm−1− ln(1− ω)

(m− 1)!

)
−

m−2∑

j=0

(−1)m−1−j

j!
zm−1−jω

j ,

(9)
where the numbers zj are defined by the recursion

z0 := 0, zj :=
1

j
(zj−1 +

1

j!
), j = 1, 2, . . . . (10)

Estimates for Taylor remainder series of arbitrary index follow from (9).
For p ≥ m− 1 we get

|Rp(z)| ≤ U(r,m)rm

{
(ω − 1)m−1

(
zm−1 − ln(1− ω)

(m− 1)!

)

−
m−2∑
j=0

(−1)m−1−j

j!
zm−1−jω

j −
p∑

j=m

ωj

P (j −m,m)

}
.

(11)

†The assertion holds for ω ∈ [−1, 1), but only ω > 0 is required in this paper.
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4 Implementation

When the above estimates are implemented in a computer program, the
major obstacle for exactness in computation is the finite arithmetic on digital
computers. Even if roundoff errors are small, they still falsify the result of a
practical calculation.

Floating point interval arithmetic [Kulisch and Miranker 1981] has been
found a convenient tool to restore mathematical rigour in numerical compu-
tations. In floating point interval arithmetic, all calculations are performed
on intervals with machine representable bounds instead of floating point num-
bers, and executed according to the rules of interval arithmetic [Moore 1966;
Alefeld and Herzberger 1983; Neumaier 1990; Jaulin et al. 2001]. The ex-
act result of any arithmetic operation is automatically enclosed in a floating
point interval, including roundoff errors.

Using floating point interval arithmetic, the validated computation of the
estimates on Taylor coefficients and Taylor remainder series has been im-
plemented in a computer program called ACETAF. With ACETAF, it is
possible to compute bounds for the Taylor coefficients of analytic composi-
tions of rational functions and of the usual complex standard functions (like
ez, sin z, Log z, . . .).

ACETAF contains a complex function library that is based on the algo-
rithms discussed in [Braune and Krämer 1987; Bühler 1993], which provide
the best possible interval bounds for the ranges of the respective functions.
Besides these range enclosures, the second important tool for the validated
computation of ranges of concatenated complex functions is the complex
mean value form which was developed in [Neher 2001a]:

Theorem 4 Let f be analytic in a domain D ⊆ C, let Z ⊆ D be a rectan-
gular complex interval and let z0 = x0 + ıy0 be a point in Z. Furthermore,
let F ′(Z) denote a rectangular complex interval that encloses the range of f ′

on Z. Then the following inclusion holds for the range f(Z):

f(Z) ⊆ f(z0) + F ′(Z)(Z − z0). (12)

While direct interval evaluation of a concatenated function usually converges
linearly, the mean value form converges quadratically in the sense that the
range overestimation is proportional to the square of the diameter of the
argument interval.

Derivatives, which are required in ACETAF for the mean value form and
for the computation of N(r, l) and U(r,m), are calculated with automatic
differentiation [Rall 1981; Griewank 2000]. In our implementation, the auto-
matic computation of F ′(Z) requires the computation of F (Z) first, which is
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performed by direct interval evaluation of the inclusion function F . In this
case, the intersection of F (Z) with the mean value form is an effective means
to improve the range enclosure at negligible costs.

Well known branch and bound methods for rigorous global optimization
[Ratschek and Rokne 1988; Hansen 1992; Kearfott 1996] are employed in the
practical calculation of M(r), N(r, l), or U(r,m). We now comment on the
respective methods for the validated computation of these estimates.

4.1 Validated computation of M(r)

The computation of M(r) via a global optimization problem for |f | on C
has already been described in [Neher 2001c]. The discussion is summarized
here for clarity.

To calculate a validated upper bound for M(r), the circle C is covered with
complex intervals Zk, k = 1, . . . , kmax, which are gathered in a list L. From
each Zk, a particular number ck is chosen. Using complex interval functions,
the function value enclosures

[f
k
, fk] ⊇ |f(ck)| for all k

and range enclosures

[F k, F k] ⊇ |f(Zk)| for all k

are computed. We then have

M := max
k

f
k
≤ M(r) ≤ max

k
F k =: M. (13)

If the diameter of the interval [M,M ] is large then the bounds are refined
iteratively. Intervals Zk for which F k < M holds cannot contain an extremal
point. These intervals are removed from the list L. Subdividing the remain-
ing intervals and evaluating the function values again, new bounds f

k
, F k

are obtained, from which improved bounds M and M follow. This process
is being continued until M(r) is determined with sufficient accuracy. The
success of this method lies in the fact that if |f | does not have too many
global maxima then usually many intervals Zk can be removed from the list
L after each subdivision step, and accurate bounds for M(r) are obtained
with only a few function values.

Here, it is often sufficient to use natural interval extensions of f . The mean
value form can improve the accuracy of the computed bound for M(r) if the
evaluation of f involves many operations, but it will take more computation
time because it requires values of derivatives.
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4.2 Validated computation of N(r, l)

The same optimization algorithm was used in [Neher 2001c] to compute
N(r, l). However, it appeared that this method was not optimal, and that
two important modifications were necessary to make it more accurate and
effective in practice.

Computing N(r, l) instead of M(r) only makes sense if tl is a good approx-
imation to f . In this case, however, severe cancellation occurs in the com-
putation of f(Zk)− tl(Zk). In interval arithmetic, this cancellation causes a
large overestimation of the number N(r, l), because we have

w(f(Zk)− tl(Zk)) = w(f(Zk)) + w(tl(Zk))

and w(f(Zk)) À 0 in practical problems.
The prevent such an overestimation, the complex mean value form

(f − tl)(Zk) ⊆ f(ck)− tl(ck) + (f ′(Zk)− t′l(Zk))(Zk − ck).

should be used. Here, the cancellation occurs in the subtraction of two float-
ing point numbers instead of intervals, where it is less harmful. Compared to
earlier calculations, with the introduction of the mean value form the bounds
on N(r, l) were improved by several orders of magnitude.

A second modification is necessary to make the optimization procedure
effective. The l–th order best approximation polynomial in the maximum
norm attains its maximum distance from f at least l + 2 times on C [Walsh
1935, p. 21]. The Taylor polynomial, a near–best approximation [Geddes and
Mason 1975], exhibits a similar behaviour. In many numerical examples it
was observed that the distance from f of a higher order Taylor polynomial
attains many near–global local maxima on C and that in the early stages
of the optimization procedure, when the diameters of the intervals Zk were
still large, |f − tl| was uniformly small on C compared to the widths of the
interval arithmetic evaluation of |f − tl| . Unless the diameters of the Zk

became sufficiently small, no intervals were removed from the list L, so that
all function evaluations in the initial subdivision steps were obsolete.

To save computation time, the following method has been found useful in
practice: instead of choosing a constant order l of the Taylor polynomial,
we fix the maximum number kmax of intervals that are used in the GOP
algorithm. The optimal order lopt is then computed as the number for which
a partition of C with kmax segments of equal size yields the smallest bound
for N(r, l). A strategy for the determination of lopt has been described in
[Eble and Neher 2001].
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4.3 Validated computation of U(r,m)

Like |f | , |f (m)| usually has only a few global maxima, and the adaptive
optimization algorithm works well. If m is large then the intersection of
f (m)(Z) with the mean value form

f (m)(c) + f (m+1)(Z)(Z − c)

is about twice as expensive as the evaluation of f (m)(Z), but the improvement
of the range enclosure is often worth the additional effort.

The bounds on the Taylor coefficients that result from U(r,m) are some-
times several orders of magnitude better than the bounds that result from
M(r) or N(r, l). On the other hand, computing some higher order derivative
of a complicated function with automatic differentiation can be quite expen-
sive. For large values of r and m, the computation times for the calculation
of U(r,m) can get very large.

4.4 Validated computation of Rp

The interval evaluation of the estimates (7) or (8) is straightforward. How-
ever, this does not hold for the interval evaluation of (11), which suffers from
severe cancellation for p À m− 1. To see this, let bj := ωj/P (j −m,m) and

let Sp :=
∞∑

j=p+1

bj. Then in (11), Sp is computed as

Sp = Sm−1 −
p∑

j=m

bj. (14)

Because {bj}∞j=m is a rapidly converging series, we have Sp ≈ bp+1 and Sp À
Sp+1, so that cancellation in (14) is inevitable.

On the other hand, the numbers bj are upper bounds to the Taylor coeffi-
cients. Even the exact value of Rp already overestimates the remainder series.
Hence, a slight additional overestimation isn’t critical. Because P (j−m, m)
is a monotonously increasing function of j, a validated upper bound to Sp is

1

P (p + 1−m,m)

∞∑
j=p+1

ωj =
1

P (p + 1−m,m)

ωp+1

1− ω
,

which yields

|Rp(z)| ≤ U(r,m) rm

P (p + 1−m, m)

ωp+1

1− ω
. (15)

(15) is evaluated without cancellation, and it has been found of reasonable
accuracy in many numerical examples.
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4.5 Distribution of ACETAF

ACETAF has been written in C++. The program is available in two versions,
depending on the interval library that is used: C–XSC [Klatte et al. 1993] or
filib++ [Lerch et al. 2001a; Lerch et al. 2001b]. The C–XSC library is more
comprehensive than filib++, but the latter is much faster. Users who want
to use ACETAF as a stand-alone program should use the filib++ version.
Those who wish to integrate ACETAF in their existing C–XSC programs
will require the C–XSC version. The software is available at the following
sites:

C–XSC and filib++: http://www.xsc.de

ACETAF: http://www.uni-karlsruhe.de/˜Markus.Neher/acetaf.html

5 Numerical Examples

The following numerical examples were computed with ACETAF 2.71. For
each example, we show a table of upper bounds for M(r), N(r, l), U(r,m)
and Rp, for several radii. The tables include bounds for some of the Tay-
lor coefficients of the respective functions and the computation times (in
seconds) for the filib++ interval library on a PC with a 1200 MHz Athlon
processor. With the C–XSC interval library, identical results are obtained,
but the computation times are about ten times as large.

For two examples, we compare our results with bounds that were published
in [Neher 2001c], to demonstrate the improvement due to the mean value form
in the computation of N(r, l).

Example 1: Bounds for the Taylor Coefficients of ez.

Table 1 shows the performance of the various methods for the exponential
function. M , N and U are all computed very fast, but this is in part due
to the simplicity of the higher order derivatives. As can be observed, N is
smaller than M by several powers of ten, and U yields much better bounds
for the Taylor coefficients and the remainder series of f .

In Table 2, we show the improvement due to the mean value form for
the computation of N(r, l). The maximal number kmax of subintervals
that were used in the computation is also given. The orders of the Taylor
polynomials were chosen automatically by the respective program versions.
The underlying heuristics [Eble and Neher 2001] have been found reliable
and almost optimal (with respect to the accuracy of N(r, l)) in many
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numerical examples. The linear convergence of the direct inclusion functions
in ACETAF 1.0 and the quadratic convergence of the mean value form in
ACETAF 2.71 are both well observed.

r l/m M/N/U a100 a1000 R49(0.95r) R99(0.95r) Time

1 — M =2.8E+00 2.8E+00 2.8E+00 4.4E+00 3.4E−01 < 1

1 l=10 N =1.3E−06 1.3E−06 1.3E−06 2.0E−06 1.6E−07 < 1

1 m=50 U =2.8E+00 9.2E−94 9.8E−150 2.7E−66 5.2E−95 < 1

10 — M =2.7E+04 2.7E−96 2.7E−996 4.1E+04 3.2E+03 < 1

10 l=28 N =7.5E−01 7.5E−101 7.5E−1001 8.9E−02 5.3E−04 1.4

10 m=50 U =2.7E+04 8.6E−140 9.2E−1096 2.5E−12 4.9E−41 < 1

20 — M =5.9E+08 4.7E−122 5.5E−1293 9.0E+08 7.0E+07 < 1

20 l=42 N =6.5E+04 5.1E−126 6.0E−1297 9.9E+04 7.7E+03 1.9

20 m=50 U =5.9E+08 1.7E−150 2.2E−1377 6.3E+07 1.3E−21 < 1

Table 1: Bounds for f(z) = ez.

r kmax ACETAF 1.0 ACETAF 2.71
l N l N

1 8192 8 1.7E−03 8 1.3E−06

1 32768 8 4.3E−04 11 8.2E−08

10 8192 24 1.6E+02 28 7.5E−01

10 32768 25 4.1E+01 30 4.8E−02

20 8192 38 7.3E+06 42 6.5E+04

20 32768 40 1.9E+06 46 4.0E+03

Table 2: Bounds for N(r, l) for f(z) = ez.

Example 2: Bounds for the Taylor Coefficients of
tanh(ln(z + 11)/3).

The function of this example has a singularity at z = −11, and the absolute
values of the derivatives of f grow strongly near that point. If r is large then
M(r) and N(r, l) give better bounds for the Taylor coefficients aj of f with
small indexes j than does U(r,m). Only for large indexes j, U(r,m) has the
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advantage due to the better asymptotic behaviour for j →∞.
For r = 10, the order l of the Taylor polynomial must be high for a good

approximation. A tight interval arithmetic evaluation of f − tl becomes diffi-
cult, but nevertheless there is a decisive improvement of M(10) by N(10, 54).

r l/m M/N/U a100 a1000 R49(0.95r) R99(0.95r) Time

1 — M =6.8E−01 6.8E−01 6.8E−01 1.1E+00 8.1E−02 < 1

1 l=8 N =1.3E−09 1.3E−09 1.3E−09 2.0E−09 1.6E−10 2.2

1 m=50 U =1.6E+12 5.1E−82 5.4E−138 1.5E−54 2.9E−83 3.0

5 — M =7.3E−01 9.3E−71 7.9E−700 1.2E+00 8.7E−02 < 1

5 l=20 N =1.1E−07 1.3E−77 1.1E−706 1.6E−07 1.3E−08 2.7

5 m=50 U =1.4E+23 5.2E−106 4.7E−791 1.2E−08 2.3E−37 26

10 — M =7.8E−01 7.8E−101 7.8E−1001 1.2E+00 9.2E−02 < 1

10 l=54 N =2.0E−04 2.0E−104 2.0E−1004 — 2.3E−05 3.9

10 m=50 U =3.0E+62 9.6E−82 1.1E−1037 2.8E+46 5.5E+17 53

Table 3: Bounds for f(z) = tanh(ln(z + 11)/3).

Example 3: Bounds for the Taylor Coefficients of
(cos z)/(z2 + 101).

r l/m M/N/U a100 a1000 R49(0.95r) R99(0.95r) Time

1 — M =1.6E−02 1.6E−02 1.6E−02 2.5E−02 1.9E−03 < 1

1 l=10 N =7.2E−09 7.2E−09 7.2E−09 1.1E−08 8.5E−10 1.8

1 m=50 U =3.4E+18 1.1E−75 1.2E−131 3.2E−48 6.2E−77 1.8

5 — M =1.2E+00 1.5E−70 1.2E−699 1.8E+00 1.4E−01 < 1

5 l=26 N =1.3E−05 1.7E−75 1.4E−704 2.0E−05 1.5E−06 2.4

5 m=50 U =7.6E+31 2.8E−97 2.5E−782 6.3E+00 1.3E−28 50

10 — M =1.3E+04 1.3E−96 1.3E−996 4.2E+04 3.2E+03 < 1

10 l=51 N =9.5E+03 9.5E−97 9.5E−997 — 1.2E+03 3.2

10 m=50 U =2.3E+134 7.5E−10 8.0E−966 2.2E+118 4.3E+89 49

Table 4: Bounds for f(z) = (cos z)/(z2 + 101).
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f has a singularity at z =
√

101i, and the circle with radius 10 comes
very close to this point. The computation of M and U still works, but
U(10,m) rapidly increases with m. Also, the computation times for U(r,m)
become large when m becomes large, because the evaluation of higher order
derivatives is expensive.

In Table 5, we compare direct inclusion functions and the mean value form
for the computation of N(r, l). For small radii, there is a strong improvement
of the bounds by the mean value form. For r=10, neither method is compet-
itive because the optimal orders that are required for a good approximation
of f are so large that overestimations in the interval arithmetic function eval-
uations prevent cost–effective improvements of Cauchy’s estimate M(10).

r kmax ACETAF 1.0 ACETAF 2.71
l N l N

1 8192 8 6.4E−06 10 7.2E−09

1 32768 8 1.6E−06 13 4.4E−10

5 8192 20 4.0E−03 26 1.3E−05

5 32768 22 1.0E−03 30 8.0E−07

10 8192 50 1.2E+04 51 9.5E+03

10 32768 50 1.2E+04 66 8.3E+03

Table 5: Bounds for N(r, l) for f(z) = (cos z)/(z2 + 101).

Conclusion

We have presented several methods for the practical calculation of validated
bounds for Taylor coefficients of analytic functions. The applicability of these
methods has been demonstrated with numerical examples.

Future work will concentrate on integrating the estimates into software for
the validated solution of ODEs.
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Appendix

Proof of Theorem 3

For m ∈ N0, let gm(ω) :=
∞∑

j=m

ωj

P (j −m,m)
. Then we have

g′m(ω) =
∞∑

j=m

j ωj−1

P (j −m,m)
=

∞∑

j=m

ωj−1

P (j −m,m− 1)

=
∞∑

j=m

ωj−1

P (j − 1− (m− 1),m− 1)
=

∞∑

j=m−1

ωj

P (j − (m− 1),m− 1)

= gm−1(ω)

and

g0(ω) =
∞∑

j=0

ωj =
1

1− ω
.

Hence, gm(ω) is obtained by repeated integration of
1

1− ω
. Because gm(0) =

0 holds for all m ≥ 1, we have

gm+1(ω) =

∫ ω

0

gm(t)dt for m = 0, 1, . . . , . (16)

The assertion of Theorem 3 now follows by induction. It is obviously true
for m = 1. Now suppose that (9) holds for some m ∈ N. Using (16), we have

gm+1(ω) =
∫ ω

0
gm(t) dt

(9)
=

∫ ω

0



(t− 1)m−1

(
zm−1 − ln(1− t)

(m− 1)!

)
−

m−2∑

j=0

(−1)m−1−j

j!
zm−1−jt

j



 dt.

Integration by parts yields

gm+1(ω) =
∫ ω

0
gm(t) dt =

(t− 1)m

m

(
zm−1 − ln(1− t)

(m− 1)!

)∣∣∣∣∣
ω

0

+
∫ ω

0

(t− 1)m−1

m!
dt−

m−2∑

j=0

(−1)m−1−j

(j + 1)!
zm−1−jω

j+1
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= (ω − 1)m

(
zm−1

m
− ln(1− ω)

m!

)
− (−1)m zm−1

m

+
(ω − 1)m

m! m
− (−1)m

m! m
−

m−1∑

j=1

(−1)m−j

j!
zm−jω

j

= (ω − 1)m

(
zm−1

m
+

1
m! m

− ln(1− ω)
m!

)

− (−1)m zm−1

m
− (−1)m

m! m
−

m−1∑

j=1

(−1)m−j

j!
zm−jω

j

(10)
= (ω − 1)m

(
zm − ln(1− ω)

m!

)
− (−1)mzm −

m−1∑

j=1

(−1)m−j

j!
zm−jω

j

= (ω − 1)m

(
zm − ln(1− ω)

m!

)
−

m−1∑

j=0

(−1)m−j

j!
zm−jω

j .
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