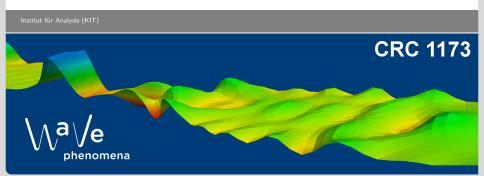


Ein gleichmäßig exponentiell stabiles ADI-Verfahren für die Maxwell-Gleichungen

SFB Workshop (Annweiler, 10.-12. Oktober 2018)

Konstantin Zerulla



Motivation: Was ist exponentielle Stabilität?

- Motivation: Was ist exponentielle Stabilität?
- Kurze Einführung in ADI-Verfahren

- Motivation: Was ist exponentielle Stabilität?
- Kurze Einführung in ADI-Verfahren
- Formulierung zweier modifizierter ADI-Verfahren

- Motivation: Was ist exponentielle Stabilität?
- Kurze Einführung in ADI-Verfahren
- Formulierung zweier modifizierter ADI-Verfahren
- Hauptresultate

- Motivation: Was ist exponentielle Stabilität?
- Kurze Einführung in ADI-Verfahren
- Formulierung zweier modifizierter ADI-Verfahren
- Hauptresultate
 - Gleichmäßige exponentielle Stabilität

- Motivation: Was ist exponentielle Stabilität?
- Kurze Einführung in ADI-Verfahren
- Formulierung zweier modifizierter ADI-Verfahren
- Hauptresultate
 - Gleichmäßige exponentielle Stabilität
 - Konvergenzresultat für die Zeitdiskretisierung

Beispiel: Betrachte auf $L^2(0,1)$ das 1-d Randwertproblem

$$\begin{aligned} \text{(W)} & \begin{cases} \partial_t^2 w(x,t) - \partial_x^2 w(x,t) + \mathbbm{1}_{(a,b)}(x) \partial_t w(x,t) = 0 & \text{auf } (0,1) \times (0,\infty), \\ w(0,t) = w(1,t) = 0 & \text{für } t > 0, \\ w(x,0) = w_0, & \partial_t w(x,0) = w_1 & \text{für } x \in (0,1), \\ \text{mit } 0 < a < b < 1, \ w_0 \in H^2(0,1) \cap H^1_0(0,1) \ \text{und } w_1 \in H^1_0(0,1). \end{cases}$$

Beispiel: Betrachte auf $L^2(0,1)$ das 1-d Randwertproblem

$$\begin{aligned} \text{(W)} & \begin{cases} \partial_t^2 w(x,t) - \partial_x^2 w(x,t) + \mathbbm{1}_{(a,b)}(x) \partial_t w(x,t) = 0 & \text{auf } (0,1) \times (0,\infty), \\ w(0,t) = w(1,t) = 0 & \text{für } t > 0, \\ w(x,0) = w_0, & \partial_t w(x,0) = w_1 & \text{für } x \in (0,1), \\ \text{mit } 0 < a < b < 1, \ w_0 \in H^2(0,1) \cap H^1_0(0,1) \ \text{und } w_1 \in H^1_0(0,1). \end{cases}$$

■ Das RWP ist **exponentiell stabil**, d.h. $\exists C, \alpha > 0$ mit (1) $\|\partial_t w(\cdot, t)\|_{L^2}^2 + \|w(\cdot, t)\|_{H^1}^2 \le C e^{-\alpha t} \left(\|w_1\|_{L^2}^2 + \|w_0\|_{H^1}^2\right)$ $\forall t \ge 0, \ w_0 \in H^2(0, 1) \cap H_0^1(0, 1), \ w_1 \in H_0^1(0, 1).$

Beispiel: Betrachte auf $L^2(0,1)$ das 1-d Randwertproblem

$$\begin{aligned} \text{(W)} & \begin{cases} \partial_t^2 w(x,t) - \partial_x^2 w(x,t) + \mathbbm{1}_{(a,b)}(x) \partial_t w(x,t) = 0 & \text{auf } (0,1) \times (0,\infty), \\ w(0,t) = w(1,t) = 0 & \text{für } t > 0, \\ w(x,0) = w_0, & \partial_t w(x,0) = w_1 & \text{für } x \in (0,1), \\ \text{mit } 0 < a < b < 1, \ w_0 \in H^2(0,1) \cap H^1_0(0,1) \ \text{und } w_1 \in H^1_0(0,1). \end{cases}$$

■ Das RWP ist **exponentiell stabil**, d.h. $\exists C, \alpha > 0$ mit (1) $\|\partial_t w(\cdot, t)\|_{L^2}^2 + \|w(\cdot, t)\|_{H^1}^2 \le C e^{-\alpha t} \left(\|w_1\|_{L^2}^2 + \|w_0\|_{H^1}^2\right)$ $\forall t \ge 0, \ w_0 \in H^2(0, 1) \cap H_0^1(0, 1), \ w_1 \in H_0^1(0, 1).$

- Diskretisiere (W) räumlich mit finiten Differenzen \rightsquigarrow Approximation w_h .
 - Problem: w_h erfüllt (1) nicht gleichmäßig.¹

¹Tébou, Zuazua 2003.

Beispiel: Betrachte auf $L^2(0,1)$ das 1-d Randwertproblem

$$\begin{aligned} \text{(W)} & \begin{cases} \partial_t^2 w(x,t) - \partial_x^2 w(x,t) + \mathbbm{1}_{(a,b)}(x) \partial_t w(x,t) = 0 & \text{auf } (0,1) \times (0,\infty), \\ w(0,t) = w(1,t) = 0 & \text{für } t > 0, \\ w(x,0) = w_0, & \partial_t w(x,0) = w_1 & \text{für } x \in (0,1), \\ \text{mit } 0 < a < b < 1, \ w_0 \in H^2(0,1) \cap H^1_0(0,1) \ \text{und } w_1 \in H^1_0(0,1). \end{cases}$$

■ Das RWP ist *exponentiell stabil*, d.h. $\exists C, \alpha > 0$ mit

(1)
$$\|\partial_t w(\cdot, t)\|_{L^2}^2 + \|w(\cdot, t)\|_{H^1}^2 \le C e^{-\alpha t} \left(\|w_1\|_{L^2}^2 + \|w_0\|_{H^1}^2 \right)$$

 $\forall t \ge 0, \ w_0 \in H^2(0, 1) \cap H_0^1(0, 1), \ w_1 \in H_0^1(0, 1).$

- Diskretisiere (W) räumlich mit finiten Differenzen \rightsquigarrow Approximation w_h .
 - Problem: w_h erfüllt (1) nicht gleichmäßig.¹
- Ähnliche Effekte treten für Zeitdiskretisierungen auf.²

¹Tébou, Zuazua 2003.

²Zhang, Zheng, Zuazua 2009.

lacksquare Betrachte lineare isotrope Maxwell-Gleichungen auf $Q=(0,1)^3$

$$\begin{array}{ll} \partial_t \mathbf{E} = \frac{1}{\varepsilon} \mathrm{curl} \mathbf{H} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} = -\frac{1}{\mu} \mathrm{curl} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \operatorname{div}(\mu \mathbf{H}) = 0 & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu = 0, \quad \mu \mathbf{H} \cdot \nu = 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) = \mathbf{E}_0, \quad \mathbf{H}(0) = \mathbf{H}_0 & \text{in } Q. \end{array}$$

■ $\mathbf{E}(x,t) \in \mathbb{R}^3$ bezeichnet das elektrische Feld, $\mathbf{H}(x,t) \in \mathbb{R}^3$ das magnetische Feld.

lacksquare Betrachte lineare isotrope Maxwell-Gleichungen auf $Q=(0,1)^3$

$$\begin{array}{ll} \partial_t \mathbf{E} = \frac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \frac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} = -\frac{1}{\mu} \mathrm{curl} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \operatorname{div}(\mu \mathbf{H}) = 0 & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu = 0, \quad \mu \mathbf{H} \cdot \nu = 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) = \mathbf{E}_0, \quad \mathbf{H}(0) = \mathbf{H}_0 & \text{in } Q. \end{array}$$

■ $\mathbf{E}(x,t) \in \mathbb{R}^3$ bezeichnet das elektrische Feld, $\mathbf{H}(x,t) \in \mathbb{R}^3$ das magnetische Feld.

lacktriangle Betrachte lineare isotrope Maxwell-Gleichungen auf $Q=(0,1)^3$

$$\begin{split} \partial_t \mathbf{E} &= \tfrac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \tfrac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} &= -\tfrac{1}{\mu} \mathrm{curl} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \operatorname{div}(\mu \mathbf{H}) &= 0 & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu &= 0, \quad \mu \mathbf{H} \cdot \nu &= 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) &= \mathbf{E}_0, \quad \mathbf{H}(0) &= \mathbf{H}_0 & \text{in } Q. \end{split}$$

- $\mathbf{E}(x,t) \in \mathbb{R}^3$ bezeichnet das elektrische Feld, $\mathbf{H}(x,t) \in \mathbb{R}^3$ das magnetische Feld.
- Anfangswerte: $(\mathbf{E}_0, \mathbf{H}_0) \in H_0(\operatorname{curl}, Q) \times H(\operatorname{curl}, Q)$, wobei $H(\operatorname{curl}, Q) := \{\mathbf{H} \in L^2(Q)^3 \mid \operatorname{curl} \mathbf{H} \in L^2(Q)^3 \}$

lacksquare Betrachte lineare isotrope Maxwell-Gleichungen auf $Q=(0,1)^3$

$$\begin{split} \partial_t \mathbf{E} &= \tfrac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \tfrac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} &= -\tfrac{1}{\mu} \mathrm{curl} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \operatorname{div}(\mu \mathbf{H}) &= 0 & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu &= 0, \quad \mu \mathbf{H} \cdot \nu &= 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) &= \mathbf{E}_0, \quad \mathbf{H}(0) &= \mathbf{H}_0 & \text{in } Q. \end{split}$$

- $\mathbf{E}(x,t) \in \mathbb{R}^3$ bezeichnet das elektrische Feld, $\mathbf{H}(x,t) \in \mathbb{R}^3$ das magnetische Feld.
- Anfangswerte: $(\mathbf{E}_0, \mathbf{H}_0) \in H_0(\operatorname{curl}, Q) \times H(\operatorname{curl}, Q)$ mit $\operatorname{div}(\varepsilon \mathbf{E}_0) \in L^2(Q)$, $\operatorname{div}(\mu \mathbf{H}_0) = 0$ in Q, $\mu \mathbf{H}_0 \cdot \nu = 0$ auf ∂Q .

lacksquare Betrachte lineare isotrope Maxwell-Gleichungen auf $Q=(0,1)^3$

$$\begin{array}{ll} \partial_t \mathbf{E} = \frac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \frac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} = -\frac{1}{\mu} \mathrm{curl} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \operatorname{div}(\mu \mathbf{H}) = 0 & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu = 0, \quad \mu \mathbf{H} \cdot \nu = 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) = \mathbf{E}_0, \quad \mathbf{H}(0) = \mathbf{H}_0 & \text{in } Q. \end{array}$$

- $\mathbf{E}(x,t) \in \mathbb{R}^3$ bezeichnet das elektrische Feld, $\mathbf{H}(x,t) \in \mathbb{R}^3$ das magnetische Feld.
- Anfangswerte: $(\mathbf{E}_0, \mathbf{H}_0) \in H_0(\operatorname{curl}, Q) \times H(\operatorname{curl}, Q)$ mit $\operatorname{div}(\varepsilon \mathbf{E}_0) \in L^2(Q)$, $\operatorname{div}(\mu \mathbf{H}_0) = 0$ in Q, $\mu \mathbf{H}_0 \cdot \nu = 0$ auf ∂Q .
- Regularität: ε , $\sigma \in W^{1,\infty}(Q)$, $\mu \in W^{1,\infty}(Q) \cap W^{2,3}(Q)$ mit ε , μ , $\sigma \geq \delta > 0$.

Das Maxwell-System ist **exponentiell stabil**, d.h. die Energie

$$\mathscr{E}\left[\left(\begin{smallmatrix}\mathbf{E}\\\mathbf{H}\end{smallmatrix}\right)\right]:=\frac{1}{2}\int_{Q}\varepsilon(x)|\mathbf{E}(x)|^{2}+\mu(x)|\mathbf{H}(x)|^{2}\,\mathrm{d}x$$

erfüllt mit gleichmäßigen Konstanten C, $\beta > 0$

(2)
$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix}\right] \leq C e^{-\beta t} \mathscr{E}\left[\begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \end{pmatrix}\right], \qquad t \geq 0,$$

für alle Anfangsdaten (\mathbf{E}_0 , \mathbf{H}_0).

³Eller 2018 (Preprint). Siehe auch Nicaise, Pignotti 2005; Phung 2000.

Das Maxwell-System ist exponentiell stabil, d.h. die Energie

$$\mathscr{E}\left[\left(\begin{smallmatrix}\mathbf{E}\\\mathbf{H}\end{smallmatrix}\right)\right] := \frac{1}{2} \int_{Q} \varepsilon(x) |\mathbf{E}(x)|^{2} + \mu(x) |\mathbf{H}(x)|^{2} \,\mathrm{d}x$$

erfüllt mit gleichmäßigen Konstanten $C, \beta > 0$

(2)
$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix}\right] \leq C e^{-\beta t} \mathscr{E}\left[\begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \end{pmatrix}\right], \qquad t \geq 0,$$

für alle Anfangsdaten (\mathbf{E}_0 , \mathbf{H}_0).

• Wesentlich für (2) ist eine Beobachtungsungleichung im ungedämpften Fall $(\sigma = 0)$: $\exists C_0 > 0$ mit

$$\mathscr{E}\left[\left(\begin{smallmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \end{smallmatrix}\right)\right] \leq C_0 \int_0^2 \int_Q |\mathbf{E}(x,t)|^2 \, \mathrm{d}x \, \mathrm{d}t$$

für alle Anfangsdaten ($\mathbf{E}_0,\mathbf{H}_0$) des ungedämpften Systems ($\sigma=0$).

³Eller 2018 (Preprint). Siehe auch Nicaise, Pignotti 2005; Phung 2000.

Das Maxwell-System ist exponentiell stabil, d.h. die Energie

$$\mathscr{E}\left[\left(\begin{smallmatrix}\mathbf{E}\\\mathbf{H}\end{smallmatrix}\right)\right] := \frac{1}{2} \int_{Q} \varepsilon(x) |\mathbf{E}(x)|^{2} + \mu(x) |\mathbf{H}(x)|^{2} \,\mathrm{d}x$$

erfüllt mit gleichmäßigen Konstanten C, $\beta>0$

(2)
$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix}\right] \leq C e^{-\beta t} \mathscr{E}\left[\begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \end{pmatrix}\right], \qquad t \geq 0,$$

für alle Anfangsdaten $(\textbf{E}_0,\textbf{H}_0)$.

- Diskretisiere das Maxwell-System in der Zeit mit einem ADI-Verfahren (siehe unten) \sim zeitlich diskrete Approximationen (\mathbf{E}_h , \mathbf{H}_h).
 - Problem: $\operatorname{div}(\mu \mathbf{H}_h) \neq 0 \rightsquigarrow (2)$ scheint nicht gleichmäßig zu gelten.

³Eller 2018 (*Preprint*). Siehe auch Nicaise, Pignotti 2005; Phung 2000.

- Alternating direction implicit (ADI) Verfahren sind effiziente
 Zeitintegratoren für Maxwell-Gleichungen auf Quadern.
 - Idee: Spalte das System in entkoppelnde Teile \leadsto löse nur 1-d Probleme implizit.
 - Stabilität: Implizite Teile machen das Verfahren stabil.

- Alternating direction implicit (ADI) Verfahren sind effiziente Zeitintegratoren für Maxwell-Gleichungen auf Quadern.
 - Idee: Spalte das System in entkoppelnde Teile ~> löse nur 1-d Probleme implizit.
 - Stabilität: Implizite Teile machen das Verfahren stabil.

Es gibt viele Varianten von ADI-Verfahren, z.B. Energie-erhaltende.⁴

⁴Chen, Li, Liang 2010.

■ 1. Schritt: Teile $\operatorname{curl} = \begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{pmatrix}$ in $\operatorname{curl} = C_1 - C_2$ mit

$$C_1 := \begin{pmatrix} 0 & 0 & \partial_2 \\ \partial_3 & 0 & 0 \\ 0 & \partial_1 & 0 \end{pmatrix}, \qquad C_2 := \begin{pmatrix} 0 & \partial_3 & 0 \\ 0 & 0 & \partial_1 \\ \partial_2 & 0 & 0 \end{pmatrix} \qquad \rightsquigarrow C_1 C_2 = \begin{pmatrix} \partial_2^2 & 0 & 0 \\ 0 & \partial_3^2 & 0 \\ 0 & 0 & \partial_1^2 \end{pmatrix}.$$

■ 1. Schritt: Teile $\operatorname{curl} = \begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{pmatrix}$ in $\operatorname{curl} = C_1 - C_2$ mit

$$C_1 := \begin{pmatrix} 0 & 0 & \partial_2 \\ \partial_3 & 0 & 0 \\ 0 & \partial_1 & 0 \end{pmatrix}, \qquad C_2 := \begin{pmatrix} 0 & \partial_3 & 0 \\ 0 & 0 & \partial_1 \\ \partial_2 & 0 & 0 \end{pmatrix} \qquad \rightsquigarrow C_1 C_2 = \begin{pmatrix} \partial_2^2 & 0 & 0 \\ 0 & \partial_3^2 & 0 \\ 0 & 0 & \partial_1^2 \end{pmatrix}.$$

2. Schritt: Splitte den Maxwell-Operator

$$\begin{pmatrix} -\frac{\sigma}{\varepsilon}I & \frac{1}{\varepsilon}\mathrm{curl} \\ -\frac{1}{\mu}\mathrm{curl} & 0 \end{pmatrix} = \begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & \frac{1}{\varepsilon}C_1 \\ \frac{1}{\mu}C_2 & 0 \end{pmatrix} + \begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & -\frac{1}{\varepsilon}C_2 \\ -\frac{1}{\mu}C_1 & 0 \end{pmatrix}.$$

■ 1. Schritt: Teile curl = $\begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{pmatrix}$ in curl = $C_1 - C_2$ mit

$$C_1 := \begin{pmatrix} 0 & 0 & \partial_2 \\ \partial_3 & 0 & 0 \\ 0 & \partial_1 & 0 \end{pmatrix}, \qquad C_2 := \begin{pmatrix} 0 & \partial_3 & 0 \\ 0 & 0 & \partial_1 \\ \partial_2 & 0 & 0 \end{pmatrix} \qquad \rightsquigarrow C_1 C_2 = \begin{pmatrix} \partial_2^2 & 0 & 0 \\ 0 & \partial_3^2 & 0 \\ 0 & 0 & \partial_1^2 \end{pmatrix}.$$

2. Schritt: Splitte den Maxwell-Operator

$$\begin{pmatrix} -\frac{\sigma}{\varepsilon}I & \frac{1}{\varepsilon}\mathrm{curl} \\ -\frac{1}{\mu}\mathrm{curl} & 0 \end{pmatrix} = \begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & \frac{1}{\varepsilon}C_1 \\ \frac{1}{\mu}C_2 & 0 \end{pmatrix} + \begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & -\frac{1}{\varepsilon}C_2 \\ -\frac{1}{\mu}C_1 & 0 \end{pmatrix}.$$

 3. Schritt: Integriere beide Teile getrennt. Verwende dazu im Folgenden die Mittelpunktsregel.⁵

⁵Chen, Li, Liang 2010.

2. Schritt: Teile den Maxwell-Operator auf

$$\begin{pmatrix} -\frac{\sigma}{\varepsilon}I & \frac{1}{\varepsilon}\mathrm{curl} \\ -\frac{1}{\mu}\mathrm{curl} & 0 \end{pmatrix} = \underbrace{\begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & \frac{1}{\varepsilon}C_1 \\ \frac{1}{\mu}C_2 & 0 \end{pmatrix}}_{=:A} + \underbrace{\begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & -\frac{1}{\varepsilon}C_2 \\ -\frac{1}{\mu}C_1 & 0 \end{pmatrix}}_{=:B}.$$

3. Schritt: Integriere beide Teile getrennt. Verwende dazu im Folgenden die Mittelpunktsregel.⁵

⁵Chen. Li. Liang 2010.

⁶Eilinghoff, Jahnke, Schnaubelt 2018 (Preprint).

• 2. Schritt: Teile den Maxwell-Operator auf

$$\begin{pmatrix} -\frac{\sigma}{\varepsilon}I & \frac{1}{\varepsilon}\mathrm{curl} \\ -\frac{1}{\mu}\mathrm{curl} & 0 \end{pmatrix} = \underbrace{\begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & \frac{1}{\varepsilon}C_1 \\ \frac{1}{\mu}C_2 & 0 \end{pmatrix}}_{=:A} + \underbrace{\begin{pmatrix} -\frac{\sigma}{2\varepsilon}I & -\frac{1}{\varepsilon}C_2 \\ -\frac{1}{\mu}C_1 & 0 \end{pmatrix}}_{=:B}.$$

- 3. Schritt: Integriere beide Teile getrennt. Verwende dazu im Folgenden die Mittelpunktsregel.⁵
- **Beispiele:** Setze $\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \end{pmatrix} := \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \end{pmatrix}$ und $\tau > 0$. Approximiere $\begin{pmatrix} \mathbf{E}((n+1)\tau) \\ \mathbf{H}((n+1)\tau) \end{pmatrix}$ durch

⁵Chen, Li, Liang 2010.

⁶Eilinghoff, Jahnke, Schnaubelt 2018 (*Preprint*).

Struktur

Ziel: Modifiziertes ADI-Verfahren mit den folgenden Eigenschaften:

- Das Verfahren liefert gleichmäßig exponentiell stabile Approximationen.
- Der Aufwand ist ähnlich wie bei anderen ADI-Verfahren.
- Das modifizierte Verfahren konvergiert mit der gleichen Ordnung wie das ursprüngliche ADI-Verfahren.

Struktur

Ziel: Modifiziertes ADI-Verfahren mit den folgenden Eigenschaften:

- Das Verfahren liefert gleichmäßig exponentiell stabile Approximationen.
- Der Aufwand ist ähnlich wie bei anderen ADI-Verfahren.
- Das modifizierte Verfahren konvergiert mit der gleichen Ordnung wie das ursprüngliche ADI-Verfahren.

Basis-Verfahren: Ein Energie-erhaltendes ADI-Verfahren der Ordnung 1.

Struktur

Ziel: Modifiziertes ADI-Verfahren mit den folgenden Eigenschaften:

- Das Verfahren liefert gleichmäßig exponentiell stabile Approximationen.
- Der Aufwand ist ähnlich wie bei anderen ADI-Verfahren.
- Das modifizierte Verfahren konvergiert mit der gleichen Ordnung wie das ursprüngliche ADI-Verfahren.

Basis-Verfahren: Ein Energie-erhaltendes ADI-Verfahren der Ordnung 1.

Wichtigstes Hilfsmittel: Künstlich hinzugefügte viskose Dämpfung.⁶ ⁷ ⁸

⁶Tébou, Zuazua 2003, 2007. *(1d Wellengleichung)*

⁷Ramdani, Takahashi, Tucsnak 2007. (abstrakte Wellengleichung)

⁸Ervedoza, Zuazua 2009. (abstrakte Wellengleichung)

Nachteil vieler ADI-Verfahren ist die Verletzung des Gesetzes $\operatorname{div}(\mu \mathbf{H}) = 0$ (auf einer großen Zeitskala). \leadsto unphysikalisches Verhalten

- Nachteil vieler ADI-Verfahren ist die Verletzung des Gesetzes $\operatorname{div}(\mu \mathbf{H}) = 0$ (auf einer großen Zeitskala). \leadsto unphysikalisches Verhalten
- Abhilfe auf PDE-Level: mixed hyperbolic divergence cleaning⁹

$$\begin{split} \partial_t \mathbf{E} &= \tfrac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \tfrac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} &= -\tfrac{1}{\mu} \mathrm{curl} \mathbf{E} - \nabla (\tfrac{1}{\mu} \Phi) & \text{in } Q \times [0, \infty), \\ \partial_t \Phi &= -\tfrac{1}{\mu^2} \mathrm{div} (\mu \mathbf{H}) - \eta \Phi & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu &= 0, \quad \mu \mathbf{H} \cdot \nu = 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) &= \mathbf{E}_0, \quad \mathbf{H}(0) &= \mathbf{H}_0, \quad \Phi(0) &= \Phi_0 & \text{in } Q, \\ \text{wobei } \Phi(x,t) \in \mathbb{R}, \ \Phi_0 \in H^1(Q) \ \text{und } \eta \in W^{1,\infty}(Q) \ \text{mit } \eta \geq \delta > 0. \end{split}$$

⁹Dedner et. al. 2002. *(für MHD Systeme)*

- Nachteil vieler ADI-Verfahren ist die Verletzung des Gesetzes $\operatorname{div}(\mu \mathbf{H}) = 0$ (auf einer großen Zeitskala). \leadsto unphysikalisches Verhalten
- Abhilfe auf PDE-Level: mixed hyperbolic divergence cleaning⁹

$$\begin{split} \partial_t \mathbf{E} &= \tfrac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \tfrac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} &= -\tfrac{1}{\mu} \mathrm{curl} \mathbf{E} - \nabla (\tfrac{1}{\mu} \Phi) & \text{in } Q \times [0, \infty), \\ \partial_t \Phi &= -\tfrac{1}{\mu^2} \mathrm{div} (\mu \mathbf{H}) - \eta \Phi & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu &= 0, \quad \mu \mathbf{H} \cdot \nu &= 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E}(0) &= \mathbf{E}_0, \quad \mathbf{H}(0) &= \mathbf{H}_0, \quad \Phi(0) &= \Phi_0 & \text{in } Q, \\ \text{wobei } \Phi(x,t) \in \mathbb{R}, \ \Phi_0 \in H^1(Q) \ \text{und } \eta \in W^{1,\infty}(Q) \ \text{mit } \eta \geq \delta > 0. \end{split}$$

• Artefakt $\operatorname{div}(\mu \mathbf{H})$ wird gedämpft.

⁹Dedner et. al. 2002. *(für MHD Systeme)*

- Nachteil vieler ADI-Verfahren ist die Verletzung des Gesetzes $\operatorname{div}(\mu \mathbf{H}) = 0$ (auf einer großen Zeitskala). \leadsto unphysikalisches Verhalten
- Abhilfe auf PDE-Level: mixed hyperbolic divergence cleaning⁹

$$\begin{split} \partial_t \mathbf{E} &= \frac{1}{\varepsilon} \mathrm{curl} \mathbf{H} - \frac{\sigma}{\varepsilon} \mathbf{E} & \text{in } Q \times [0, \infty), \\ \partial_t \mathbf{H} &= -\frac{1}{\mu} \mathrm{curl} \mathbf{E} - \nabla (\frac{1}{\mu} \Phi) & \text{in } Q \times [0, \infty), \\ \partial_t \Phi &= -\frac{1}{\mu^2} \mathrm{div} (\mu \mathbf{H}) - \eta \Phi & \text{in } Q \times [0, \infty), \\ \mathbf{E} \times \nu &= 0, \quad \mu \mathbf{H} \cdot \nu &= 0 & \text{auf } \partial Q \times [0, \infty), \\ \mathbf{E} (0) &= \mathbf{E}_0, \quad \mathbf{H} (0) &= \mathbf{H}_0, \quad \Phi (0) &= \Phi_0 & \text{in } Q, \end{split}$$

wobei $\Phi(x,t) \in \mathbb{R}$, $\Phi_0 \in H^1(Q)$ und $\eta \in W^{1,\infty}(Q)$ mit $\eta \geq \delta > 0$.

- Artefakt $\operatorname{div}(\mu \mathbf{H})$ wird gedämpft.
- lacktriangle Reduktion zu ursprünglichem System, wenn $\operatorname{div}(\mu \mathbf{H}) = \mathbf{0}$ und $\Phi_0 = \mathbf{0}$.

⁹Dedner et. al. 2002. *(für MHD Systeme)*

ADI-Verfahren für das ungedämpfte verallgemeinerte Maxwell-System

■ 1. Schritt: Schreibe $\operatorname{curl} = \begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{pmatrix} = C_1 - C_2.$

ADI-Verfahren für das ungedämpfte verallgemeinerte Maxwell-System

- 1. Schritt: Schreibe curl = $\begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ \partial_3 & \partial_1 & \partial_2 \end{pmatrix} = C_1 C_2$.
- 2. Schritt: Splitte den verallgemeinerten Maxwell-Operator

$$\begin{pmatrix} 0 & \frac{1}{\varepsilon} \operatorname{curl} & 0 \\ -\frac{1}{\mu} \operatorname{curl} & 0 & -\nabla(\frac{1}{\mu} \cdot) \\ 0 & -\frac{1}{\mu^2} \operatorname{div}(\mu \cdot) & 0 \end{pmatrix} = A + B + D_1 + D_2 + D_3$$

$$= \begin{pmatrix} 0 & \frac{1}{\varepsilon} C_1 & 0 \\ \frac{1}{\mu} C_2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{1}{\varepsilon} C_2 & 0 \\ -\frac{1}{\mu} C_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sum_{i=1}^{3} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\partial_i(\frac{1}{\mu} \cdot) e_i \\ 0 - \frac{1}{\mu^2} \partial_i(\mu \cdot_i) & 0 \end{pmatrix}$$

■ Verteile die Randbedingungen für E, H auf die Definitionsbereiche der Splitting-Operatoren. 10

¹⁰Hochbruck, Jahnke, Schnaubelt 2015.

ADI-Verfahren für das ungedämpfte verallgemeinerte Maxwell-System

- 1. Schritt: Schreibe curl = $\begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ \partial_3 & \partial_1 & \partial_2 \end{pmatrix} = C_1 C_2$.
- 2. Schritt: Splitte den verallgemeinerten Maxwell-Operator

$$\begin{pmatrix} 0 & \frac{1}{\varepsilon} \operatorname{curl} & 0 \\ -\frac{1}{\mu} \operatorname{curl} & 0 & -\nabla(\frac{1}{\mu}\cdot) \\ 0 & -\frac{1}{\mu^2} \operatorname{div}(\mu\cdot) & 0 \end{pmatrix} = A + B + D_1 + D_2 + D_3$$

$$= \begin{pmatrix} 0 & \frac{1}{\varepsilon} C_1 & 0 \\ \frac{1}{\mu} C_2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{1}{\varepsilon} C_2 & 0 \\ -\frac{1}{\mu} C_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sum_{i=1}^{3} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\partial_i(\frac{1}{\mu}\cdot) e_i \\ 0 - \frac{1}{\mu^2} \partial_i(\mu\cdot_i) & 0 \end{pmatrix}$$

3. Schritt: Seien $J \in \{A, B, D_1, D_2, D_3\}, \tau > 0$. Wende die implizite Mittelpunktsregel an

$$T_{\tau}(J) := (I + \frac{\tau}{2}J)(I - \frac{\tau}{2}J)^{-1}.$$

10

Konservatives ADI-Verfahren für das verallgemeinerte Maxwell-System

lacktriangle Im ungedämpften Fall $(\sigma,\eta=0)$ approximiert das ADI-Verfahren

$$(\mathsf{CS}) \quad \begin{pmatrix} \mathsf{E}_{\mathsf{c}}^{n+1} \\ \mathsf{H}_{\mathsf{c}}^{n+1} \\ \Phi_{\mathsf{c}}^{n+1} \end{pmatrix} = \prod_{i=1}^{3} T_{\tau}(D_{i}) T_{\tau}(B) T_{\tau}(A) \begin{pmatrix} \mathsf{E}_{\mathsf{c}}^{n} \\ \mathsf{H}_{\mathsf{c}}^{n} \\ \Phi_{\mathsf{c}}^{n} \end{pmatrix}, \quad \begin{pmatrix} \mathsf{E}_{\mathsf{c}}^{0} \\ \mathsf{H}_{\mathsf{c}}^{0} \\ \Phi_{\mathsf{c}}^{0} \end{pmatrix} = \begin{pmatrix} \mathsf{E}_{\mathsf{0}} \\ \mathsf{H}_{\mathsf{0}} \\ \Phi_{\mathsf{0}} \end{pmatrix}, \quad n \in \mathbb{N}_{\mathsf{0}},$$

die Lösung $\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \\ \Phi \end{pmatrix}$ des verallgemeinerten Systems (mit $\sigma, \eta = 0$) in $t = (n+1)\tau$.

Konservatives ADI-Verfahren für das verallgemeinerte Maxwell-System

• Im ungedämpften Fall $(\sigma, \eta = 0)$ approximiert das ADI-Verfahren

$$(\mathsf{CS}) \quad \begin{pmatrix} \mathsf{E}_c^{n+1} \\ \mathsf{H}_c^{n+1} \\ \Phi_c^{n+1} \end{pmatrix} = \prod_{i=1}^3 T_\tau(D_i) T_\tau(B) T_\tau(A) \begin{pmatrix} \mathsf{E}_c^n \\ \mathsf{H}_c^n \\ \Phi_c^n \end{pmatrix}, \quad \begin{pmatrix} \mathsf{E}_c^0 \\ \mathsf{H}_c^0 \\ \Phi_c^0 \end{pmatrix} = \begin{pmatrix} \mathsf{E}_0 \\ \mathsf{H}_0 \\ \Phi_0 \end{pmatrix}, \quad n \in \mathbb{N}_0,$$

die Lösung $\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$ des verallgemeinerten Systems (mit $\sigma, \eta = 0$) in $t = (n+1)\tau$.

Definiere die Energie

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}\\\mathbf{H}\\\Phi\end{pmatrix}\right] := \frac{1}{2} \int_{Q} \varepsilon |\mathbf{E}|^2 + \mu |\mathbf{H}|^2 + \mu \Phi^2 \, \mathrm{d}x, \qquad \begin{pmatrix}\mathbf{E}\\\mathbf{H}\\\Phi\end{pmatrix} \in L^2(Q)^7.$$

Konservatives ADI-Verfahren für das verallgemeinerte Maxwell-System

• Im ungedämpften Fall $(\sigma, \eta = 0)$ approximiert das ADI-Verfahren

$$(CS) \quad \begin{pmatrix} \mathbf{E}_{c}^{n+1} \\ \mathbf{H}_{c}^{n+1} \\ \Phi_{c}^{n+1} \end{pmatrix} = \prod_{i=1}^{3} T_{\tau}(D_{i}) T_{\tau}(B) T_{\tau}(A) \begin{pmatrix} \mathbf{E}_{c}^{n} \\ \mathbf{H}_{c}^{n} \\ \Phi_{c}^{n} \end{pmatrix}, \quad \begin{pmatrix} \mathbf{E}_{c}^{0} \\ \mathbf{H}_{c}^{0} \\ \Phi_{c}^{0} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{0} \\ \mathbf{H}_{0} \\ \Phi_{0} \end{pmatrix}, \quad n \in \mathbb{N}_{0},$$

die Lösung $\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$ des verallgemeinerten Systems (mit $\sigma, \eta = 0$) in $t = (n+1)\tau$.

Definiere die Energie

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}\\\mathbf{H}\\\Phi\end{pmatrix}\right] := \frac{1}{2} \int_{Q} \varepsilon |\mathbf{E}|^{2} + \mu |\mathbf{H}|^{2} + \mu \Phi^{2} dx, \qquad \begin{pmatrix}\mathbf{E}\\\mathbf{H}\\\Phi\end{pmatrix} \in L^{2}(Q)^{7}.$$

lacksquare Das Verfahren (CS) erhält ${\mathscr E}.$

ADI-Verfahren für das gedämpfte verallgemeinerte Maxwell-System

- 1. Schritt: Schreibe $\operatorname{curl} = \begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{pmatrix} = C_1 C_2.$
- 2. Schritt: Splitte den verallgemeinerten Maxwell-Operator

$$\begin{pmatrix} -\frac{\sigma}{\varepsilon}I & \frac{1}{\varepsilon}\operatorname{curl} & 0\\ -\frac{1}{\mu}\operatorname{curl} & 0 & -\nabla(\frac{1}{\mu}\cdot)\\ 0 & -\frac{1}{\mu^{2}}\operatorname{div}(\mu\cdot) & -\eta I \end{pmatrix} = A + B + D_{1} + D_{2} + D_{3} + S$$

$$= \begin{pmatrix} 0 & \frac{1}{\varepsilon}C_1 & 0 \\ \frac{1}{\mu}C_2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{1}{\varepsilon}C_2 & 0 \\ -\frac{1}{\mu}C_1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \sum_{i=1}^{3} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\partial_i(\frac{1}{\mu}\cdot)e_i \\ 0 - \frac{1}{\mu^2}\partial_i(\mu\cdot_i) & 0 \end{pmatrix} + \begin{pmatrix} -\frac{\sigma}{\varepsilon}I & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 - \eta I \end{pmatrix}$$

■ 3. Schritt: Seien $J \in \{A, B, D_1, D_2, D_3\}$, $\tau > 0$. Wende die implizite Mittelpunktsregel an

$$T_{\tau}(J) = (I + \frac{\tau}{2}J)(I - \frac{\tau}{2}J)^{-1}.$$

ADI-Verfahren für das gedämpfte verallgemeinerte Maxwell-System

• 4. Schritt: Füge viskose Dämpfung ein

$$V_{\tau}(J) := \left(I - \frac{\tau^3}{4}J^2(I - \frac{\tau^2}{4}J^2)^{-1}\right)^{-1} = \left(I - \frac{\tau^2}{4}J^2\right)\left(I - \frac{\tau^2 + \tau^3}{4}J^2\right)^{-1}$$

für $J \in \{A, B, D_1, D_2, D_3\}$ und $\tau > 0$.

ADI-Verfahren für das gedämpfte verallgemeinerte Maxwell-System

4. Schritt: Füge viskose Dämpfung ein

$$V_{\tau}(J) := \left(I - \frac{\tau^3}{4}J^2(I - \frac{\tau^2}{4}J^2)^{-1}\right)^{-1} = \left(I - \frac{\tau^2}{4}J^2\right)\left(I - \frac{\tau^2 + \tau^3}{4}J^2\right)^{-1}$$

für $J \in \{A, B, D_1, D_2, D_3\}$ und $\tau > 0$.

• Setze $\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix} := \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \\ \Phi_0 \end{pmatrix}$. Das ADI-Verfahren

$$\begin{pmatrix} \mathbf{E}^{n+1}_{\mathbf{H}^{n+1}} \end{pmatrix} = (I - \tau S)^{-1} \prod_{i=1}^{3} (T_{\tau}(D_i) V_{\tau}(D_i)) T_{\tau}(B) V_{\tau}(B) T_{\tau}(A) V_{\tau}(A) \begin{pmatrix} \mathbf{E}^n_{\tau} \\ \mathbf{H}^n_{\tau} \end{pmatrix}$$

approximiert $\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$ aus dem verallgemeinerten System in $t = (n+1)\tau$.

Gleichmäßige exponentielle Stabilität

• Setze $\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \end{pmatrix} = \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \\ \Phi_0 \end{pmatrix}$. Betrachte erneut das ADI-Verfahren

$$\begin{pmatrix} \mathsf{E}^{n+1}_{\mathsf{H}^{n+1}_{\mathsf{Q}^{n+1}}} \end{pmatrix} = (I - \tau S)^{-1} \prod_{i=1}^{3} \left(T_{\tau}(D_i) V_{\tau}(D_i) \right) T_{\tau}(B) V_{\tau}(B) T_{\tau}(A) V_{\tau}(A) \begin{pmatrix} \mathsf{E}^n_{\mathsf{H}^n} \\ \mathsf{\Phi}^n \end{pmatrix}.$$

14

Gleichmäßige exponentielle Stabilität

• Setze $\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \end{pmatrix} = \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \\ \Phi_0 \end{pmatrix}$. Betrachte erneut das ADI-Verfahren

$$\begin{pmatrix} \mathbf{E}_{n+1}^{n+1} \\ \mathbf{H}_{n+1}^{n+1} \end{pmatrix} = (\mathbf{I} - \tau S)^{-1} \prod_{i=1}^{3} (T_{\tau}(D_i) V_{\tau}(D_i)) T_{\tau}(B) V_{\tau}(B) T_{\tau}(A) V_{\tau}(A) \begin{pmatrix} \mathbf{E}_{n}^{n} \\ \mathbf{H}_{n}^{n} \end{pmatrix}.$$

Wir erinnern an die Energie

$$\mathscr{E}\left[\left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) \right] := \frac{1}{2} \int_{Q} \varepsilon |\mathbf{E}|^2 + \mu |\mathbf{H}|^2 + \mu \Phi^2 \, \mathrm{d} x, \qquad \left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) \in L^2(Q)^7.$$

Gleichmäßige exponentielle Stabilität

Setze $\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \mathbf{\Phi}^0 \end{pmatrix} = \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \\ \mathbf{\Phi}_0 \end{pmatrix}$. Betrachte erneut das ADI-Verfahren

$$\begin{pmatrix} \mathbf{E}_{n+1}^{n+1} \\ \mathbf{H}_{n+1}^{n+1} \end{pmatrix} = (\mathbf{I} - \tau S)^{-1} \prod_{i=1}^{3} (T_{\tau}(D_i) V_{\tau}(D_i)) T_{\tau}(B) V_{\tau}(B) T_{\tau}(A) V_{\tau}(A) \begin{pmatrix} \mathbf{E}_{n}^{n} \\ \mathbf{H}_{n}^{n} \end{pmatrix}.$$

Wir erinnern an die Energie

$$\mathscr{E}\left[\left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) \right] := \frac{1}{2} \int_{Q} \varepsilon |\mathbf{E}|^2 + \mu |\mathbf{H}|^2 + \mu \Phi^2 \, \mathrm{d} x, \qquad \left(\begin{smallmatrix} \mathbf{E} \\ \mathbf{H} \end{smallmatrix} \right) \in L^2(Q)^7.$$

Satz

Seien $\varepsilon, \sigma, \eta \geq \delta > 0$ in $W^{1,\infty}(Q)$, $\mu \geq \delta$ in $W^{1,\infty}(Q) \cap W^{2,3}(Q)$. Dann $\exists M, \omega, \tau_0 > 0$ mit

$$\mathscr{E}\left[\left(\begin{smallmatrix}\mathbf{E}^n\\\mathbf{H}^n\\\Phi^n\end{smallmatrix}\right)\right] \leq M\mathrm{e}^{-\omega\tau n}\mathscr{E}\left[\left(\begin{smallmatrix}\mathbf{E}^0\\\mathbf{H}^0\\\Phi^0\end{smallmatrix}\right)\right], \qquad n \in \mathbb{N}_0,$$

$$\forall \begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \mathbf{\Phi}^0 \end{pmatrix} \in L^2(Q)^7, \ \tau \in (0, \tau_0).$$

Bezeichne die Zwischenschritte der Verfahren mit $\begin{pmatrix} \mathbf{E}_{\mathbf{c}}^{n,j} \\ \mathbf{H}_{\mathbf{c}}^{n,j} \\ \mathbf{\Phi}^{n,j} \end{pmatrix}$, bzw. $\begin{pmatrix} \mathbf{E}^{n,j} \\ \mathbf{H}^{n,j} \\ \mathbf{\Phi}^{n,j} \end{pmatrix}$.

$$\begin{array}{l} \mathbf{E}_{c}^{n,j} \\ \mathbf{H}_{c}^{n,j} \\ \boldsymbol{\Phi}_{c}^{n,j} \end{array} \right), \ \mathsf{bzw.} \ \left(\begin{array}{l} \mathbf{E}^{n,j} \\ \mathbf{H}^{n,j} \\ \boldsymbol{\Phi}^{n,j} \end{array} \right).$$

- $\qquad \text{Bezeichne die Zwischenschritte der Verfahren mit} \begin{pmatrix} \mathbf{E}_c^{n,j} \\ \mathbf{H}_c^{n,j} \\ \Phi_c^{n,j} \end{pmatrix}, \ \text{bzw.} \begin{pmatrix} \mathbf{E}^{n,j} \\ \mathbf{H}^{n,j} \\ \Phi^{n,j} \end{pmatrix}.$
- 1. Schritt: Energiegleichung für das gedämpfte Verfahren

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{n+1}\\\mathbf{H}^{n+1}\\\Phi^{n+1}\end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{n}\\\mathbf{H}^{n}\\\Phi^{n}\end{pmatrix}\right] = -2\tau\mathscr{E}\left[\begin{pmatrix}\sqrt{\sigma}\mathbf{E}^{n+1}\\0\\\sqrt{\eta}\Phi^{n+1}\end{pmatrix}\right] - R(\tau, \mathbf{E}^{n,j}, \mathbf{H}^{n,j}, \Phi^{n,j}) < 0$$

für $n \in \mathbb{N}_0$ mit Restterm $0 \le R(\tau, \mathbf{E}^{nj}, \mathbf{H}^{nj}, \Phi^{nj}) = \mathcal{O}(\tau^2)$.

- $\qquad \text{Bezeichne die Zwischenschritte der Verfahren mit} \begin{pmatrix} \mathbf{E}_c^{n,j} \\ \mathbf{H}_c^{n,j} \\ \Phi_c^{n,j} \end{pmatrix}, \ \text{bzw.} \begin{pmatrix} \mathbf{E}^{n,j} \\ \mathbf{H}^{n,j} \\ \Phi^{n,j} \end{pmatrix}.$
- 1. Schritt: Energiegleichung für das gedämpfte Verfahren

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{n+1}_{\mathbf{H}^{n+1}}\\\mathbf{H}^{n+1}_{\Phi^{n+1}}\end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{n}_{\mathbf{H}^{n}}\\\mathbf{H}^{n}_{\Phi^{n}}\end{pmatrix}\right] = -2\tau\mathscr{E}\left[\begin{pmatrix}\sqrt{\sigma}\mathbf{E}^{n+1}\\0\\\sqrt{\eta}\Phi^{n+1}\end{pmatrix}\right] - R(\tau, \mathbf{E}^{n,j}, \mathbf{H}^{n,j}, \Phi^{n,j}) < 0$$

für $n \in \mathbb{N}_0$ mit Restterm $0 \le R(\tau, \mathbf{E}^{nj}, \mathbf{H}^{nj}, \Phi^{nj}) = \mathcal{O}(\tau^2)$.

• \sqrt{R} verhält sich wie eine Seminorm bzgl. $\mathbf{E}^{n,j},\mathbf{H}^{n,j},\Phi^{n,j}.$

- $\begin{tabular}{ll} \textbf{Bezeichne die Zwischenschritte der Verfahren mit} & \textbf{E}_c^{n,j} \\ \textbf{H}_c^{n,j} \\ \Phi_c^{n,j} \\ \end{tabular} \mbox{, bzw.} & \textbf{E}_c^{n,j} \\ \$
- 1. Schritt: Energiegleichung für das gedämpfte Verfahren

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{n+1}\\\mathbf{H}^{n+1}\\\Phi^{n+1}\end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{n}\\\mathbf{H}^{n}\\\Phi^{n}\end{pmatrix}\right] = -2\tau\mathscr{E}\left[\begin{pmatrix}\sqrt{\sigma}\mathbf{E}^{n+1}\\0\\\sqrt{\eta}\Phi^{n+1}\end{pmatrix}\right] - R(\tau, \mathbf{E}^{n,j}, \mathbf{H}^{n,j}, \Phi^{n,j}) < 0$$

für $n \in \mathbb{N}_0$ mit Restterm $0 \le R(\tau, \mathbf{E}^{n,j}, \mathbf{H}^{n,j}, \Phi^{n,j}) = \mathcal{O}(\tau^2)$.

- \sqrt{R} verhält sich wie eine Seminorm bzgl. $\mathbf{E}^{n,j},\mathbf{H}^{n,j},\Phi^{n,j}$.
- **2. Schritt:** Zeige zeitl. diskrete Version der Beobachtungsungleichung

$$\int_{Q} (\varepsilon |\mathbf{E}_{0}|^{2} + \mu |\mathbf{H}_{0}|^{2}) \, \mathrm{d}x \le C \int_{0}^{2} \int_{Q} |\mathbf{E}|^{2} \, \mathrm{d}x \, \mathrm{d}t,$$

gleichmäßig in der Diskretisierung.

• 2. Schritt: Zeitlich diskrete Version der Beobachtungsungleichung

- 2. Schritt: Zeitlich diskrete Version der Beobachtungsungleichung
 - Setze $N := \max\{k \in \mathbb{N} \mid k\tau \le 2\}$ für $\tau > 0$.

- 2. Schritt: Zeitlich diskrete Version der Beobachtungsungleichung
 - Setze $N := \max\{k \in \mathbb{N} \mid k\tau < 2\}$ für $\tau > 0$.
 - Für Regularität: Definiere (mit $\Gamma_i = \{x \in \partial Q \mid x_i = \pm 1\}$)

$$Y:=\{(\mathbf{E},\mathbf{H},\Phi)\in H^1(Q)^7\mid \mathbf{E}_j=0 ext{ auf }\partial Q\setminus \Gamma_j, \ \mathbf{H}_j=0 ext{ auf }\Gamma_j$$
 für $j\in\{1,2,3\}\}.^{11}$

¹¹Eilinghoff, Schnaubelt 2018.

- 2. Schritt: Zeitlich diskrete Version der Beobachtungsungleichung
 - Setze $N := \max\{k \in \mathbb{N} \mid k\tau < 2\}$ für $\tau > 0$.
 - Für Regularität: Definiere (mit $\Gamma_i = \{x \in \partial Q \mid x_i = \pm 1\}$)

$$Y := \{ (\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E}_j = 0 \text{ auf } \partial Q \setminus \Gamma_j, \ \mathbf{H}_j = 0 \text{ auf } \Gamma_j \\ \text{für } j \in \{1, 2, 3\}\}.^{11}$$

Proposition

Es gibt Konstanten C_0 , $\tau_0 > 0$ mit

$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}_0^0 \\ \mathbf{H}_0^0 \end{pmatrix}\right] \leq C_0 \tau \sum_{k=1}^N \int_Q \varepsilon |\mathbf{E}_c^k|^2 + \mu |\Phi_c^k|^2 \mathrm{d}x + C_0 \sum_{k=1}^N \check{R}(\tau, \mathbf{E}_c^{k,j}, \mathbf{H}_c^{k,j}, \Phi_c^{k,j})$$

$$\forall \left(\begin{smallmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{smallmatrix} \right) \in Y, \ \tau \in (0,\tau_0) \ \text{ und } 0 \leq \check{R}(\tau,\mathbf{E}^{n,j}_c,\mathbf{H}^{n,j}_c,\Phi^{n,j}_c) \leq R(\tau,\mathbf{E}^{n,j}_c,\mathbf{H}^{n,j}_c,\Phi^{n,j}_c).$$

16

¹¹Eilinghoff, Schnaubelt 2018.

- 2. Schritt: Zeitlich diskrete Version der Beobachtungsungleichung
 - Setze $N := \max\{k \in \mathbb{N} \mid k\tau < 2\}$ für $\tau > 0$.
 - Für Regularität: Definiere (mit $\Gamma_i = \{x \in \partial Q \mid x_i = \pm 1\}$)

$$Y := \{ (\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E}_j = 0 \text{ auf } \partial Q \setminus \Gamma_j, \ \mathbf{H}_j = 0 \text{ auf } \Gamma_j$$
 für $j \in \{1, 2, 3\}\}.$ ¹¹

Proposition

Es gibt Konstanten C_0 , $\tau_0 > 0$ mit

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right] \leq C_{0}\tau \sum_{k=1}^{N} \int_{Q} \varepsilon |\mathbf{E}_{c}^{k}|^{2} + \mu |\Phi_{c}^{k}|^{2} \mathrm{d}x + C_{0} \sum_{k=1}^{N} \check{R}(\tau, \mathbf{E}_{c}^{k,j}, \mathbf{H}_{c}^{k,j}, \Phi_{c}^{k,j})$$

$$\forall \left(\begin{smallmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{smallmatrix} \right) \in Y, \ \tau \in \left(0, \tau_0\right) \ \text{und} \ 0 \leq \check{R}\left(\tau, \mathbf{E}_c^{n,j}, \mathbf{H}_c^{n,j}, \Phi_c^{n,j}\right) \leq R\left(\tau, \mathbf{E}_c^{n,j}, \mathbf{H}_c^{n,j}, \Phi_c^{n,j}\right).$$

• $\sqrt{\check{R}}$ verhält sich wie eine Seminorm bzgl. $\mathbf{E}_{c}^{n,j}$, $\mathbf{H}_{c}^{n,j}$, $\Phi_{c}^{n,j}$.

16

¹¹Eilinghoff, Schnaubelt 2018.

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Verwende Schritt 1 und zeige: $\exists C = C(\varepsilon, \mu, \eta, \sigma) > 0$ mit

$$C_{0}\tau = \int_{Q} \varepsilon |\mathbf{E}^{k} - \mathbf{E}_{c}^{k}|^{2} + \mu |\Phi^{k} - \Phi_{c}^{k}|^{2} dx + C_{0} = \check{R}(\tau, \mathbf{E}^{k,j} - \mathbf{E}_{c}^{k,j}, \mathbf{H}^{k,j} - \mathbf{H}_{c}^{k,j}, \Phi^{k,j} - \Phi_{c}^{k,j})$$

$$\leq C = \left(\mathscr{E}\left[\left(\begin{array}{c} \mathbf{E}^{k-1} \\ \mathbf{H}^{k-1} \\ \mathbf{\Phi}^{k-1} \end{array}\right)\right] - \mathscr{E}\left[\left(\begin{array}{c} \mathbf{E}^{k} \\ \mathbf{H}^{k} \\ \mathbf{\Phi}^{k} \end{array}\right)\right]\right)$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Verwende Schritt 1 und zeige: $\exists C = C(\varepsilon, \mu, \eta, \sigma) > 0$ mit

$$\begin{split} &C_0\tau\sum_{k=1}^N\int_Q\varepsilon|\mathbf{E}^k-\mathbf{E}_c^k|^2+\mu|\Phi^k-\Phi_c^k|^2\,\mathrm{d}x+C_0\sum_{k=1}^N\check{R}(\tau,\mathbf{E}^{k,j}-\mathbf{E}_c^{k,j},\mathbf{H}^{k,j}-\mathbf{H}_c^{k,j},\Phi^{k,j}-\Phi_c^{k,j})\\ &\leq C\sum_{k=1}^N\left(\mathscr{E}\left[\left(\mathbf{E}_{\mathbf{H}^{k-1}}^{k-1}\right)\right]-\mathscr{E}\left[\left(\mathbf{E}_{\mathbf{H}^k}^{k}\right)\right]\right) \end{split}$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Verwende Schritt 1 und zeige: $\exists C = C(\varepsilon, \mu, \eta, \sigma) > 0$ mit

$$C_{0}\tau \sum_{k=1}^{N} \int_{Q} \varepsilon |\mathbf{E}^{k} - \mathbf{E}_{c}^{k}|^{2} + \mu |\Phi^{k} - \Phi_{c}^{k}|^{2} dx + C_{0} \sum_{k=1}^{N} \check{K}(\tau, \mathbf{E}^{k,j} - \mathbf{E}_{c}^{k,j}, \mathbf{H}^{k,j} - \mathbf{H}_{c}^{k,j}, \Phi^{k,j} - \Phi_{c}^{k,j})$$

$$\leq C \sum_{k=1}^{N} \left(\mathscr{E} \left[\begin{pmatrix} \mathbf{E}_{c}^{k-1} \\ \mathbf{H}_{c}^{k-1} \end{pmatrix} \right] - \mathscr{E} \left[\begin{pmatrix} \mathbf{E}_{c}^{k} \\ \mathbf{H}_{c}^{k} \end{pmatrix} \right] \right) = C \left(\mathscr{E} \left[\begin{pmatrix} \mathbf{E}_{c}^{0} \\ \mathbf{H}_{c}^{0} \end{pmatrix} \right] - \mathscr{E} \left[\begin{pmatrix} \mathbf{E}_{c}^{N} \\ \mathbf{H}_{c}^{N} \end{pmatrix} \right] \right).$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Verwende Schritt 1 und zeige: $\exists C = C(\varepsilon, \mu, \eta, \sigma) > 0$ mit

$$C_{0}\tau\sum_{k=1}^{N}\int_{Q}\varepsilon|\mathbf{E}^{k}-\mathbf{E}_{c}^{k}|^{2}+\mu|\Phi^{k}-\Phi_{c}^{k}|^{2}\,\mathrm{d}x+C_{0}\sum_{k=1}^{N}\check{R}(\tau,\mathbf{E}^{k,j}-\mathbf{E}_{c}^{k,j},\mathbf{H}^{k,j}-\mathbf{H}_{c}^{k,j},\Phi^{k,j}-\Phi_{c}^{k,j})$$

$$=C_{0}\sum_{k=1}^{N}\left(\mathbb{E}\left[\left(\mathbf{E}_{c,k-1}^{k-1}\right)\right]-\mathbb{E}\left[\left(\mathbf{E}_{c,k}^{k}\right)\right]\right)-C_{0}\left(\mathbb{E}\left[\left(\mathbf{E}_{c,k}^{0}\right)\right]-\mathbb{E}\left[\left(\mathbf{E}_{c,k}^{N}\right)\right]\right)$$

$$\leq C \sum_{k=1}^{N} \left(\mathscr{E} \left[\begin{pmatrix} \mathbf{E}^{k-1} \\ \mathbf{H}^{k-1} \\ \Phi^{k-1} \end{pmatrix} \right] - \mathscr{E} \left[\begin{pmatrix} \mathbf{E}^{k} \\ \mathbf{H}^{k} \\ \Phi^{k} \end{pmatrix} \right] \right) = C \left(\mathscr{E} \left[\begin{pmatrix} \mathbf{E}^{0} \\ \mathbf{H}^{0} \\ \Phi^{0} \end{pmatrix} \right] - \mathscr{E} \left[\begin{pmatrix} \mathbf{E}^{N} \\ \mathbf{H}^{N} \\ \Phi^{N} \end{pmatrix} \right] \right).$$

Benutze die Beobachtungsungleichung und die Energiegleichung

$$\begin{split} & \mathscr{E}\left[\begin{pmatrix} \mathbf{E}_{0}^{0} \\ \mathbf{\Phi}^{0} \end{pmatrix}\right] \leq C_{0}\tau \sum_{k=1}^{N} \int_{Q} \varepsilon |\mathbf{E}_{c}^{k}|^{2} + \mu |\Phi_{c}^{k}|^{2} \mathrm{d}x + C_{0} \sum_{k=1}^{N} \check{R}(\tau, \mathbf{E}_{c}^{k,j}, \mathbf{H}_{c}^{k,j}, \Phi_{c}^{k,j}), \\ & \mathscr{E}\left[\begin{pmatrix} \mathbf{E}_{1}^{n+1} \\ \mathbf{H}_{1}^{n+1} \end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix} \mathbf{E}_{1}^{n} \\ \mathbf{H}_{\Phi}^{n} \end{pmatrix}\right] = -2\tau \mathscr{E}\left[\begin{pmatrix} \sqrt{\sigma} \mathbf{E}^{n+1} \\ \mathbf{0} \\ \sqrt{\eta} \Phi^{n+1} \end{pmatrix}\right] - R(\tau, \mathbf{E}^{n,j}, \mathbf{H}^{n,j}, \Phi^{n,j}) < 0 \end{split}$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Verwende Schritt 1 und zeige: $\exists C = C(\varepsilon, \mu, \eta, \sigma) > 0$ mit

$$C_{0}\tau\sum_{k=1}^{N}\int_{Q}\varepsilon|\mathbf{E}^{k}-\mathbf{E}_{c}^{k}|^{2}+\mu|\Phi^{k}-\Phi_{c}^{k}|^{2}\,\mathrm{d}x+C_{0}\sum_{k=1}^{N}\check{R}(\tau,\mathbf{E}^{k,j}-\mathbf{E}_{c}^{k,j},\mathbf{H}^{k,j}-\mathbf{H}_{c}^{k,j},\Phi^{k,j}-\Phi_{c}^{k,j})$$

$$\leq C\sum_{k=1}^{N}\left(\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{k-1}\\\mathbf{H}^{k-1}\\\boldsymbol{\Phi}^{k-1}\end{pmatrix}\right]-\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{k}\\\mathbf{H}^{k}\\\boldsymbol{\Phi}^{k}\end{pmatrix}\right]\right)=C\left(\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\boldsymbol{\Phi}^{0}\end{pmatrix}\right]-\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{N}\\\mathbf{H}^{N}\\\boldsymbol{\Phi}^{N}\end{pmatrix}\right]\right).$$

Benutze die Beobachtungsungleichung und die Energiegleichung

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}_{\mathbf{H}^{0}}\\\mathbf{H}^{0}\end{pmatrix}\right] \leq C_{0}\tau \sum_{k=1}^{N} \int_{Q} \varepsilon |\mathbf{E}^{k}|^{2} + \mu |\Phi^{k}|^{2} dx + C_{0} \sum_{k=1}^{N} R(\tau, \mathbf{E}^{k,j}, \mathbf{H}^{k,j}, \Phi^{k,j}) + C\left(\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}_{\mathbf{H}^{0}}\\\mathbf{H}^{0}_{\mathbf{H}^{0}}\end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{N}_{\mathbf{H}^{N}}\\\mathbf{H}^{N}_{\mathbf{H}^{N}}\end{pmatrix}\right]\right)$$

- 3. Schritt: Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Verwende Schritt 1 und zeige: $\exists C = C(\varepsilon, \mu, \eta, \sigma) > 0$ mit

$$C_{0}\tau\sum_{k=1}^{N}\int_{Q}\varepsilon|\mathbf{E}^{k}-\mathbf{E}_{c}^{k}|^{2}+\mu|\Phi^{k}-\Phi_{c}^{k}|^{2}\,\mathrm{d}x+C_{0}\sum_{k=1}^{N}\check{R}(\tau,\mathbf{E}^{k,j}-\mathbf{E}_{c}^{k,j},\mathbf{H}^{k,j}-\mathbf{H}_{c}^{k,j},\Phi^{k,j}-\Phi_{c}^{k,j})$$

$$\leq C\sum_{k=1}^{N}\left(\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{k-1}\\\mathbf{H}^{k-1}\\\boldsymbol{\Phi}^{k-1}\end{pmatrix}\right]-\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{k}\\\mathbf{H}^{k}\\\boldsymbol{\Phi}^{k}\end{pmatrix}\right]\right)\\ =C\left(\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\boldsymbol{\Phi}^{0}\end{pmatrix}\right]-\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{N}\\\mathbf{H}^{N}\\\boldsymbol{\Phi}^{N}\end{pmatrix}\right]\right).$$

Benutze die Beobachtungsungleichung und die Energiegleichung

$$\mathcal{E}\left[\begin{pmatrix} \mathbf{E}^{0}_{0} \\ \mathbf{H}^{0} \end{pmatrix}\right] \leq C_{0}\tau \sum_{k=1}^{N} \int_{Q} \varepsilon |\mathbf{E}^{k}|^{2} + \mu |\Phi^{k}|^{2} dx + C_{0} \sum_{k=1}^{N} R(\tau, \mathbf{E}^{k,j}, \mathbf{H}^{k,j}, \Phi^{k,j}) + C\left(\mathcal{E}\left[\begin{pmatrix} \mathbf{E}^{0}_{0} \\ \mathbf{H}^{0} \\ \Phi^{0} \end{pmatrix}\right] - \mathcal{E}\left[\begin{pmatrix} \mathbf{E}^{N} \\ \mathbf{H}^{N} \\ \Phi^{N} \end{pmatrix}\right]\right)$$

$$\leq C\left(\mathcal{E}\left[\begin{pmatrix} \mathbf{E}^{0} \\ \mathbf{H}^{0} \\ \Phi^{0} \end{pmatrix}\right] - \mathcal{E}\left[\begin{pmatrix} \mathbf{E}^{N} \\ \mathbf{H}^{N} \\ \Phi^{N} \end{pmatrix}\right]\right).$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Schritte 1&2 liefern

$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] \leq C \left(\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix} \mathbf{E}^N \\ \mathbf{H}^N \\ \Phi^N \end{pmatrix}\right]\right).$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Schritte 1&2 liefern

$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] \leq C \left(\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix} \mathbf{E}^N \\ \mathbf{H}^N \\ \Phi^N \end{pmatrix}\right]\right).$$

4. Schritt: Erhalte die Abschätzung

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{N}\\\mathbf{H}^{N}\\\Phi^{N}\end{pmatrix}\right]\leq\left(1-\frac{1}{C}\right)\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right]$$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Schritte 1&2 liefern

$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] \leq C \left(\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix} \mathbf{E}^N \\ \mathbf{H}^N \\ \Phi^N \end{pmatrix}\right]\right).$$

4. Schritt: Erhalte die Abschätzung

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{N}\\\mathbf{H}^{N}\\\Phi^{N}\end{pmatrix}\right] \leq \left(1 - \frac{1}{C}\right) \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right] = \mathrm{e}^{-2\omega} \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right]$$

für ein festes $\omega > 0$

- **3. Schritt:** Vergleich der gedämpften & ungedämpften ADI-Verfahren
 - Schritte 1&2 liefern

$$\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] \leq C \left(\mathscr{E}\left[\begin{pmatrix} \mathbf{E}^0 \\ \mathbf{H}^0 \\ \Phi^0 \end{pmatrix}\right] - \mathscr{E}\left[\begin{pmatrix} \mathbf{E}^N \\ \mathbf{H}^N \\ \Phi^N \end{pmatrix}\right]\right).$$

4. Schritt: Erhalte die Abschätzung

$$\mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{N}\\\mathbf{H}^{N}\\\Phi^{N}\end{pmatrix}\right] \leq \left(1 - \frac{1}{C}\right) \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right] = e^{-2\omega} \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right] = e^{-\omega N \tau} \mathscr{E}\left[\begin{pmatrix}\mathbf{E}^{0}\\\mathbf{H}^{0}\\\Phi^{0}\end{pmatrix}\right]$$

für ein festes $\omega > 0$ und iteriere.

Konvergenzresultat in H^{-1}

• Verwende die Räume (mit $\Gamma_j = \{x \in \partial Q \mid x_j = \pm 1\}$)

$$Y = \{(\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E}_j = 0 \text{ auf } \partial Q \setminus \Gamma_j, \ \mathbf{H}_j = 0 \text{ auf } \Gamma_j \}$$

$$\text{für } j \in \{1, 2, 3\}\}, ^{12}$$

$$X_1 := \{ (\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E} \times \nu = 0 \text{ auf } \partial Q, \operatorname{div}(\mu \mathbf{H}) = 0, \\ \mathbf{H} \cdot \nu = 0 \text{ auf } \partial Q, \Phi = 0 \}.$$

¹²Eilinghoff, Schnaubelt 2018.

Konvergenzresultat in H^{-1}

• Verwende die Räume (mit $\Gamma_j = \{x \in \partial Q \mid x_j = \pm 1\}$)

$$Y = \{(\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E}_j = 0 \text{ auf } \partial Q \setminus \Gamma_j, \ \mathbf{H}_j = 0 \text{ auf } \Gamma_j$$

$$\text{für } j \in \{1, 2, 3\}\}, ^{12}$$

$$X_1 := \{(\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E} \times \nu = 0 \text{ auf } \partial Q, \ \text{div}(\nu \mathbf{H}) = 0.$$

$$X_1 := \{ (\mathbf{E}, \mathbf{H}, \Phi) \in H^1(Q)^7 \mid \mathbf{E} \times \nu = 0 \text{ auf } \partial Q, \operatorname{div}(\mu \mathbf{H}) = 0, \\ \mathbf{H} \cdot \nu = 0 \text{ auf } \partial Q, \Phi = 0 \}.$$

Satz

Seien $\varepsilon, \sigma, \eta \geq \delta > 0$ in $W^{1,\infty}(Q)$, $\mu \geq \delta$ in $W^{1,\infty}(Q) \cap W^{2,3}(Q)$ und T > 0. Dann $\exists C, \check{\tau}_0 > 0$ mit

$$\left| \left(\begin{pmatrix} \mathbf{E}^{n} \\ \mathbf{H}^{n} \\ \Phi^{n} \end{pmatrix} - \begin{pmatrix} \mathbf{E}(n\tau) \\ \mathbf{H}(n\tau) \\ \Phi(n\tau) \end{pmatrix}, y \right|_{L^{2}} \right| \leq C\tau (1+T) T e^{CT} \left\| \begin{pmatrix} \mathbf{E}_{0} \\ \mathbf{H}_{0} \\ \Phi_{0} \end{pmatrix} \right\|_{H^{1}} \|y\|_{H^{1}}$$

 $\forall y \in Y, \begin{pmatrix} \mathbf{E}_0 \\ \mathbf{H}_0 \\ \Phi_0 \end{pmatrix} \in X_1, \ n \in \mathbb{N}_0 \text{ mit } n\tau \leq T \text{ und } \tau \in (0, \check{\tau}_0).$

¹²Eilinghoff, Schnaubelt 2018.

Zusammenfassung

- Lineare isotrope Maxwell-Gleichungen unter Einfluss des Ohmschen Gesetzes sind gleichmäßig exponentiell stabil.
- $$\begin{split} \partial_t \mathsf{E} &= \tfrac{1}{\varepsilon} \mathrm{curl} \mathsf{H} \tfrac{\sigma}{\varepsilon} \mathsf{E}, \\ \partial_t \mathsf{H} &= -\tfrac{1}{\mu} \mathrm{curl} \mathsf{E}, \\ \mathrm{div}(\mu \mathsf{H}) &= 0. \end{split}$$

- Modifikation eines konservativen ADI-Verfahrens durch künstliche Dämpfung
 → zeitlich diskrete Approximationen mit gleichmäßig exponentiellem Abfall.
- Das modifizierte Verfahren konvergiert mit Ordnung 1 in H^{-1} .

Referenzen

- Chen, W., Li, X. and Liang, D.: Energy-conserved splitting finite-difference time-domain methods for Maxwell's equations in three dimensions. SIAM J. Numer. Anal. 48 (4) (2010), 1530–1554.
- Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T. and Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2) (2002), 645–673.
- Eilinghoff, J., Jahnke, T. and Schnaubelt, R.: Error analysis of an energy preserving ADI splitting scheme for the Maxwell equation. Preprint 2018/12 of CRC 1173. See www.waves.kit.edu/downloads/CRC1173_Preprint_2018-12.pdf
- Eilinghoff, J. and Schnaubelt, R.: Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete Contin. Dyn. Syst - A 38 (11) (2018), 5685–5709.
- Eller, M.: Stability of the anisotropic Maxwell equations with a conductivity term.
 Preprint 2018.
- Ervedoza, S. and Zuazua, E.: Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009), 20–48.
- Hochbruck, M., Jahnke, T. and Schnaubelt, R.: Convergence of an ADI splitting for Maxwell's equations. Numer. Math. 129 (2015), 535–561.

Referenzen

- Nicaise, S. and Pignotti, C.: Internal stabilization of Maxwell's equations in heterogeneous media. Abstr. Appl. Anal. 7 (2005), 791-811.
- Phung, K.: Contrôle et stabilisation d'ondes électromagnétiques. ESAIM COCV 5 (2000), 87-137.
- Ramdani, K., Takahashi, T. and Tucsnak, M.: Uniformly exponentially stable approximations for a class of second order evolution equations. ESAIM COCV 13 (3) (2007), 503-527.
- Tébou, L. and Zuazua, E.: Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95 (2003), 563-598.
- Tébou, L. and Zuazua, E.: Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26 (2007), 337-365.
- Zhang, X., Zheng, C. and Zuazua, E.: Time discrete wave equations: boundary observability and control. Discr. Cont. Dyn. Sys. 23 (1/2) (2009), 571-604.