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Model problem

Consider the cubic Klein-Gordon (KG) equation:

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |z(t, x)|2z(t, x),

with initial conditions

z(0, x) = z0(x), ∂tz(0, x) = c2z ′0(x),

for x ∈ T = [0, 2π] and t ∈ [0,T ].

Numerical Challenge:
Highly oscillatory (non-relativistic) limit regime, i.e. c � 1

Goal: Search numerical approximations zn ≈ z(tn) with tn = nτ .
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Gautschi-type methods

1.) Gautschi-type method:

Gautschi-type method for oscillatory second-order differential
equations by Hochbruck/Lubich (1998)

Here: Gautschi-type method by Bao/Dong/Zhao (2013):
Exponential wave integrator pseudospectral (EWI-PS) method

Idea:
Use Duhamel’s formula and approximate integral with quadrature formula
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Gautschi-type methods

KG equation with 〈∇〉c :=
√
−∆ + c2:

∂ttz(t) = −c2〈∇〉2cz(t) + c2
∣∣z(t)

∣∣2z(t).

Attention: z(tn + s) = z(tn) +O(sz ′) with z ′(t) = O(c2)!
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√
−∆ + c2:

∂ttz(t) = −c2〈∇〉2cz(t) + c2
∣∣z(t)

∣∣2z(t).

Duhamel’s formula:
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+ c2
∫ τ

0
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c〈∇〉c
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ds
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Gautschi-type methods

EWI-PS method by Bao applied to KG equation at tn = 1:
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Figure: blue line: EWI-PS for reference solution (τref ≈ 10−6),
red line: EWI-PS for numerical approximation (τ ≈ 10−2).

Problem: Time step restriction for large c!
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Limit approximation
2.) Limit system (see Faou/Schratz 2014)

Idea:
Instead of solving full system, take limit approximation and solve only
non-oscillatory limit system

Rewrite KG equation as a first-order system z = 1
2 (u + u) with

i∂tu = −c〈∇〉cu + c〈∇〉−1
c

1
8

(u + u)3,

Multiscale expansion: Introduce u(t, x) = U(t, c2t, x) and expand

U =
∑
n∈N0

c−2nUn(t, c2t, x) = U0(t, c2t, x) +O(c−2),

c〈∇〉c = c2 − 1
2 ∆ +O(c−2), c〈∇〉−1

c = 1 +O(c−2).
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Limit approximation

This yields the cubic nonlinear Schrödinger (NLS) limit system:

(?) i∂tu∞ =
1
2

∆u∞ +
3
8
|u∞|2u∞, u∞ = z0 − iz ′0

such that (for suff. smooth solutions)

z =
1
2

(
u∞eic2t + c.c.

)
+O(c−2).

Advantage:
Only solve non-oscillatory cubic NLS (?) numerically, e.g. with
Strang splitting (see Faou/Schratz 2014)
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Limit approximation

Limit approximation vs. reference solution at tn = 1:
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Fig.: blue line: EWI-PS for reference solution (τref ≈ 10−6),
red line: Limit approx. computed by Strang splitting (τ ≈ 10−2).

Problem: Good approximation only for c � 1!
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Uniformly accurate scheme

3.) Uniformly accurate scheme by B./Faou/Schratz (2016)

Aim: Scheme that works well for small AND large c.

Idea:

Derive Duhamel’s formula in ”twisted variables“

Integrate the highly-oscillatory phases exactly
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Uniformly accurate scheme
What are these ”twisted variables“?

KG eq. rewritten as first-order system in time with z = 1
2 (u + u)

i∂tu = −c〈∇〉cu + c〈∇〉−1
c

1
8

(u + u)3

Look at ”twisted variable“ u∗(t) = e−ic2tu(t) which satisfies

i∂tu∗ = −(c〈∇〉c − c2︸ ︷︷ ︸
=:Ac

)u∗ +
1
8

c〈∇〉−1
c e−ic2t

(
eic2tu∗ + e−ic2tu∗

)3
.

Ac and c〈∇〉−1
c are uniformly bounded in c:

‖Acu‖2
r ≤

1
2
‖u‖2

r+2, ‖c〈∇〉−1
c u‖r ≤ ‖u‖r .

Advantage:
All operators uniformly bounded in c  ∂tu∗ bounded in c!
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Uniformly accurate scheme
A first-order uniformly accurate scheme

Duhamel’s formula yields
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Uniformly accurate scheme
A first-order uniformly accurate scheme

Duhamel’s formula yields
u∗(tn + τ) = eiτAc u∗(tn)

−
i

8
c〈∇〉−1

c eiτAc

∫ τ

0
e−isAc︸ ︷︷ ︸

= 1+s·”nice“

e−ic2(tn+s)
(

eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸
= u∗(tn)+s·”nice“

+c.c.
)3

ds.
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8
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0
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(

eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸
= u∗(tn)+s·”nice“

+c.c.
)3

ds.

Use
e−isAc = 1 +O(sAc) = 1 +O(s∆),

u∗(tn + s) = u∗(tn) +O
(

s · ∂tu∗(tn + ξ)
)
.
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Duhamel’s formula yields
u∗(tn + τ) = eiτAc u∗(tn)

−
i

8
c〈∇〉−1

c eiτAc

∫ τ

0
e−isAc︸ ︷︷ ︸

= 1+s·”nice“

e−ic2(tn+s)
(

eic2(tn+s) u∗(tn + s)︸ ︷︷ ︸
= u∗(tn)+s·”nice“

+c.c.
)3

ds.

We obtain:

u∗(tn + τ) = eiτAc u∗(tn)−
i

8
c〈∇〉−1

c eiτAc

∫ τ

0
e−ic2(tn+s)

(
eic2(tn+s)u∗(tn) + c.c.

)3
ds

+O(τ 2).
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∫ τ

0
e−ic2(tn+s)

(
eic2(tn+s)u∗(tn) + c.c.

)3
ds

+O(τ 2).

Now we integrate the highly-oscillatory phases e±ikc2s exactly
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Uniformly accurate scheme

Yields first-order uniformly accurate scheme:

un+1
∗ = eiτAc e−iτ 3

8 |u
n
∗|2un
∗

− iτ
3
8

(
c〈∇〉−1

c − 1
)

eiτAc |un
∗|2un

∗

− τ i
8

c〈∇〉−1eiτAc

{
e−2ic2tn ϕ1(−2ic2τ)3|un

∗|2un
∗

+ e2ic2tn ϕ1(2ic2τ)(un
∗)

3

+ e−4ic2tnϕ1(−4ic2τ)(un
∗)

3
}

with u0
∗ = z(0)− ic−1〈∇〉−1

c z ′(0) and ϕ1(x) := ex−1
x .
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Uniformly accurate scheme
Asymptotic convergence to classical splitting schemes

Applied Lie splitting scheme to the Schrödinger limit (see F./S. 2014)

un+1
∞ = e−τ

i
2 ∆e−iτ 3

8 |u
n
∞|2un

∞
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With ‖Ac + 1
2 ∆‖r = O(c−2)
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Uniformly accurate scheme
Asymptotic convergence to classical splitting schemes

Applied Lie splitting scheme to the Schrödinger limit (see F./S. 2014)

un+1
∞ = e−τ

i
2 ∆e−iτ 3

8 |u
n
∞|2un

∞

First-order uniformly accurate scheme

un+1
∗ = un+1

∞ +O(c−2)
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Uniformly accurate scheme

Theorem (Convergence bound for the first-order scheme)

Fix r > d/2 and assume that

‖z(0)‖r+2 + ‖c−1〈∇〉−1
c z ′(0)‖r+2 ≤ M

uniformly in c. For un
∗ defined in the first-order scheme we set

zn :=
1
2

(
eic2tn un

∗ + e−ic2tn un
∗

)
.

Then, there exists a Tr > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ Tr

we have for all c > 0 that

‖z(tn)− zn‖r ≤ τK ∗r ,M,tn ,

where the constant K ∗r ,M,tn can be chosen independently of c.
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Uniformly accurate scheme
Remark

Under weaker regularity assumptions on the exact solution we obtain
uniformly fractional convergence

(
O(τγ) for 0 < γ ≤ 1

)
.

Derivation of the scheme also works for z ∈ C, i.e. z = 1
2 (u + v) and

for other non-linearities (here only cubic)

Generalization to higher order schemes:
Insert Duhamel’s formula for u∗(tn + s) into u∗(tn + τ) and go on
analogously to derivation of the first-order scheme

Second-order scheme converges in the limit c →∞ to the classical
Strang splitting method for the corresponding nonlinear Schrödinger
equation

un+1
∗ = Strang for limit NLS +O(c−2).
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Uniformly accurate scheme

Other uniformly accurate schemes:

Bao/Cai/Zhao (2014) Chartier et al (2015)

Multiscale decomposition

Only linear convergence rate
O(τ) for all c ∈ [1,∞)

Derivation is complicated

Chapman-Enskog expansion

Convergence proof needs
higher regularity assumptions:
First order→ H r+4

Second order→ H r+8
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Uniformly accurate scheme

10−110−4

10−1

10−4

10−5

10−6

10−7

10−8

10−10

τ

E
rr

or

1st order scheme

c = 0.5
c = 2
c = 4
c = 8
c = 16
c = 32
c = 2048
c = 8192
O(τ)

10−110−4

10−1

10−4

10−5

10−6

10−7

10−8

10−10

τ

2nd order scheme

O(τ)

O(τ 2)

10−110−4

10−1

10−4

10−5

10−6

10−7

10−8

10−10

τ

Bao method

O(τ)

O(τ 2)

Simulation on x ∈ [−16, 16], t ∈ [0, 1], τref ≈ 10−6 and M = 256.
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Outlook

Derive a first-order uniformly accurate scheme for the
Klein-Gordon-Zakharov (KGZ) system in the different limit regimes

Construct higher-order methods

Error analysis for the uniformly accurate schemes for the KGZ system
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