

Splitting-Verfahren für dynamische Niedrigrang-Approximationen

Marlis Hochbruck und Markus Neher

Problemstellung

Motivation

Geg.: Wellengleichung für u = u(t, x, y):

$$u_{tt} = u_{xx} + u_{yy} \text{ in } [x_0, x_m] \times [y_0, y_n]$$

mit $x_m = x_0 + mh$, $y_n = y_0 + nh$ sowie AB und periodische RB.

Ortsdiskretisierung mit FD liefert Matrix-DGI für $A(t) = \left(a_{ij}(t)\right)$. Löse

$$a_{ij}^{"} = \frac{1}{h^2} \Big(a_{i,j-1} + a_{i-1,j} - 4a_{ij} + a_{i+1,j} + a_{i,j+1} \Big),$$

 $i = 1, \ldots, m, j = 1, \ldots, n,$

und erhalte $u(t, x_i, y_i) = a_{ij}(t) + O(h^2)$.

Motivation

Speziell: Probleme mit räumlich begrenzter Lösung für alle $t \in [t_0, T]$, z.B. wandernder Gauß-Puls:

Motivation

Allgemein: Matrix-Dgl

$$(A) \quad A'(t) = F(A(t)), \quad A(t_0) = A_0$$

mit räumlich begrenzter Lösung für alle $t \in [t_0, T]$.

Für jedes $t \in [t_0, T]$ sind nur wenige a_{ij} ungleich Null.

Idee: Approximiere A_0 durch Matrix Y_0 mit niederem Rang und löse anstelle von (A)

$$(Y) \quad Y'(t) = G(Y(t)), \quad Y(t_0) = Y_0,$$

sodass $A(t) \approx Y(t)$ für alle $t \in [t_0, T]$ gilt.

Literatur

- Dynamische Niedrigrang-Approximation: **DLR**
- Koch und Lubich, DLR, SIMAX. 2007. (*)
- Kühl, DLR zur Lösung von Wellengleichungen, DA, Uni Düss., 2007.
- Lubich und Oseledets, A projector-splitting integrator for DLR, BIT, 2013.
- Rieger, Splitting-Verfahren für DLR, Diplomarbeit, KIT, 2014.
- (*) $Y = USV^T$, DGI-System für U, S, V. Problem: S^{-1} bei Überapproximation?

DLR nach Koch und Lubich

Notation

- $A(t) \in \mathbb{R}^{m \times n}$, differenzierbar, $t \in [t_0, T]$.
- $\| \cdot \| = \| \cdot \|_{F}.$
- $\mathcal{M}_r = \{ X \in \mathbb{R}^{m \times n} : \operatorname{rang} X \leq r \}.$
- X(t) heißt Bestapproximation an A(t) in \mathcal{M}_r $\iff \|X(t) A(t)\| \stackrel{!}{=} \min \text{ für alle } t.$
 - Berechnung durch abgeschnittene SWZ.
 - I.A. nicht eindeutig (bei mehrfachen SWen).

DLR nach Koch und Lubich

- Geg.: $A(t) \in \mathbb{R}^{m \times n}$, A'(t) = F(A(t)).
- Approximiation:
 - $Y_0 \in \mathcal{M}_r, \ Y_0 \approx A(t_0).$
 - $\|Y'(t) A'(t)\| \stackrel{!}{=} \min \text{ für alle } t \text{ (wenn } A(t) \text{ bekannt)}.$
 - $\|Y'(t) F(Y(t))\| \stackrel{!}{=} \min \text{ für alle } t \text{ (wenn } A'(t) = F(A) \text{)}.$
- Vorteile:
 - lacktriangle Aufwandsersparnis, insbesondere wenn A'(t) dünner besetzt ist als A(t).
 - **DGI** sichert Glattheit von Y(t).
 - lacktriangle Anwendung auf DGI ohne Berechnung von A(t).

DLR nach Koch und Lubich

- Zunächst: A(t) sei bekannt, suche Y(t) mit $||Y A|| \approx ||X A||$.
- Beachte: Gute glatte Approximation ist nicht immer möglich, siehe z.B. Rang-1-Approximation von

$$A(t) = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}, \quad t \in [-10, 10].$$

- Methode:
 - Zerlegung

$$Y(t) = U(t)S(t)V^{T}(t), \quad U \in \mathbb{R}^{m \times r}, \ V \in \mathbb{R}^{n \times r}, \quad U^{T}U = V^{T}V = I_{r}.$$

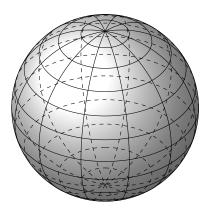
■ Eindeutige Zerlegung durch Bedingungen in Tangentialräumen.

Tangentialräume

Tangentialraum

- Differenzierbare Mannigfaltigkeit: $\mathcal{M} \subset \mathbb{R}^q$, $x \in \mathcal{M}$.
- Tangentialvektor: Ist $\gamma \colon (-\varepsilon, \varepsilon) \to \mathcal{M}$ eine differenzierbare Kurve mit $\gamma(0) = x$, dann ist $\frac{d\gamma}{dt}(0)$ ein Tangentialvektor an K und \mathcal{M} .
- Tangentialraum $\mathcal{T}_x \mathcal{M}$: Vektorraum aller Tangentialvektoren in x (lineare Approximation von \mathcal{M} in x).
- $\dim \mathcal{T}_x \mathcal{M} = \dim \mathcal{M}$.

Beispiel: S^2



Stiefel-Mannigfaltigkeit

- Stiefel-Mannigfaltigkeit: $V_{m,r} = \{ U \in \mathbb{R}^{m \times r} \mid U^T U = I_r \}.$
- Tangentialraum: Differentiation von $U(t)^T U(t) = I_r$ liefert

$$\mathcal{T}_{U}\mathcal{V}_{m,r} = \left\{ \delta U \in \mathbb{R}^{m \times r} \mid \delta U^{T} U + U^{T} \delta U = 0_{r} \right\}$$
$$= \left\{ \delta U \in \mathbb{R}^{m \times r} \mid U^{T} \delta U \in \mathsf{so}(r) \right\}.$$

Beispiel: $\mathcal{T}_{I}\mathcal{V}_{33}$

Für

$$U_1(t) = \begin{pmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad U_2(t) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{pmatrix},$$

 $U_3(t)$ analog, gilt $U_j(t) \in \mathcal{V}_{33}$ und $U_j(0) = I$. Es ist

$$\delta U_1(0) = \begin{pmatrix} -\sin t & -\cos t & 0 \\ \cos t & -\sin t & 0 \\ 0 & 0 & 0 \end{pmatrix}_{t=0} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

 $\delta U_1(0)$, $\delta U_2(0)$, $\delta U_3(0)$ bilden eine Basis von $\mathcal{T}_1 \mathcal{V}_{33} = so(r)$.

Eindeutige Zerlegung: $Y = USV^T$

- Geg.: $A(t) \in \mathbb{R}^{m \times n}$.
- Gesucht: Rang-r-Approximation $Y(t) \in \mathbb{R}^{m \times n}$,

$$Y(t) = U(t)S(t)V^{T}(t), \quad U \in \mathbb{R}^{m \times r}, \ V \in \mathbb{R}^{n \times r}, \quad U^{T}U = V^{T}V = I_{r}.$$

- $\delta Y = \delta U S V^T + U \delta S V^T + U S \delta V^T.$
- $\quad \bullet \ \, \delta Y \in \mathcal{T}_Y \mathcal{M}_r, \quad \delta U \in \mathcal{T}_U \mathcal{V}_{m,r}, \quad \delta S \in \mathbb{R}^{r \times r}, \quad \delta V \in \mathcal{T}_V \mathcal{V}_{n,r}.$
- Notwendig:

$$U^T \delta U \in so(r)$$
, $V^T \delta V \in so(r)$.

Eindeutig:

$$U^T \delta U \stackrel{!}{=} 0, \quad V^T \delta V \stackrel{!}{=} 0.$$

Approximationsproblem

Erinnerung:

$$Y_0 \in \mathcal{M}_r$$
, $Y_0 \approx A(t_0)$; $\|Y'(t) - A'(t)\| \stackrel{!}{=} \min$ für alle t .

• Gesucht: $Y'(t) \in \mathcal{T}_{Y(t)}\mathcal{M}_r$ mit $\|Y'(t) - A'(t)\| \stackrel{!}{=}$ min.

Äquivalent: Orthogonalprojektion

$$\langle Y' - A', \delta Y \rangle = 0$$
 für alle $\delta Y \in \mathcal{T}_Y \mathcal{M}_{f}$.

$$\Rightarrow Y'(t) = P(Y(t))A'(t)$$
 mit

$$P(Y)Z = ZP_{\mathcal{R}(Y^T)} - P_{\mathcal{R}(Y)}ZP_{\mathcal{R}(Y^T)} + P_{\mathcal{R}(Y)}Z$$

(Orthogonalprojektion auf $\mathcal{T}_Y \mathcal{M}_r$).

Approximationsproblem

Zu lösen: Y'(t) = P(Y(t))A'(t) mit

$$P(Y)Z = ZP_{\mathcal{R}(Y^T)} - P_{\mathcal{R}(Y)}ZP_{\mathcal{R}(Y^T)} + P_{\mathcal{R}(Y)}Z,$$
$$= ZVV^T - UU^TZVV^T + UU^TZ.$$

DLR-Splitting nach Lubich und Oseledets

Splitting-Verfahren

- Im Folgenden sei $\tau = t_1 t_0$, $\Delta A = A_1 A_0 = A(t_1) A(t_0)$.
- $Y = USV^{T},$ $Y' = P(Y)A' = A'VV^{T} - UU^{T}A'VV^{T} - UU^{T}A'.$
- Lie-Trotter-Splitting:
 - (i) Löse $Y'_{I} = A' V_{I} V_{I}^{T}$, $Y_{I}(t_{0}) = Y_{0}$,
 - (ii) Löse $Y'_{II} = -U_{II}U_{II}^TA'V_{II}V_{II}^T Y_{II}(t_0) = Y_I(t_1),$
 - (iii) Löse $Y'_{III} = U_{III}U_{III}^T A'$, $Y_{III}(t_0) = Y_{II}(t_1)$.

Diese AWPe sind exakt lösbar!

Exakte Lösung der AWPe

• (i)
$$Y'_{I} = A'V_{I}V_{I}^{T}$$
, $Y_{I}(t_{0}) = Y_{0} = U_{0}S_{0}V_{0}^{T}$:

$$(U_I S_I)' V^T + (U_I S_I) V'^T = A' V_I V_I^T$$

ist erfüllt für

$$(U_IS_I)'=A'V_I, \quad V_I'=0.$$

Lösung:
$$(U_lS_l)(t_1)=U_0S_0+\Delta AV_0, \quad V_l(t_1)=V_0.$$

Exakte Lösung der AWPe

• (ii)
$$Y'_{II} = -U_{II}U_{II}^T A' V_{II}V_{II}^T$$
, $Y_{II}(t_0) = Y_I(t_1)$:

$$U_{II}'S_{II}V_{II}^T + U_{II}S_{II}'V_{II}^T + U_{II}S_{II}V_{II}'^T = -U_{II}U_{II}^TA'V_{II}V_{II}^T$$

ist erfüllt für

$$S'_{II} = -U_{II}^T A' V_{II}, \quad U'_{II} = 0, \quad V'_{II} = 0.$$

Lösung:
$$S_{II}(t_1) = S_{II}(t_0) - U_I^T \Delta A V_0 = S_I(t_1) - U_I^T \Delta A V_0,$$
 $U_{II}(t_1) = U_I(t_1), \quad V_{II}(t_1) = V_I(t_1) = V_0.$

Exakte Lösung der AWPe

• (iii)
$$Y'_{III} = U_{III}U_{III}^T A'$$
, $Y_{III}(t_0) = Y_{II}(t_1)$:

$$U_{III}^{\prime}S_{III}V_{III}^{T}+U_{III}(S_{III}V_{III}^{T})^{\prime}=U_{III}U_{III}^{T}A^{\prime}$$

ist erfüllt für

$$(V_{III}S_{III}^T)' = A'^T U_{III}, \quad U'_{III} = 0.$$

Lösung:
$$(V_{III}S_{III}^T)(t_1) = (V_{III}S_{III}^T)(t_0) + \Delta A^T U_{III},$$
 $U_{III}(t_1) = U_{II}(t_1) = U_{II}(t_1).$

Lie-Trotter-Splitting für A(t)

Geg.: $A(t) \in \mathbb{R}^{m \times n}$, Rang-r-Approx $A(t_0) \approx Y_0 = U_0 S_0 V_0^T$.

Gesucht: Rang-*r*-Approximation $Y_1 \approx A(t_1)$.

Integrator 1. Ordnung, exakt für bekanntes A(t):

$$K_{I} := U_{0}S_{0} + (A_{1} - A_{0})V_{0}$$

Reduzierte QR-Zerlegung : $U_1S_l = K_l$, $S_l \in \mathbb{R}^{r \times r}$

$$S_{II} := S_I - U_1^T (A_1 - A_0) V_0$$

$$K_{III} := V_0 S_{II}^T + (A_1 - A_0)^T U_1$$

Reduzierte QR-Zerlegung : $V_1 S_1^T = K_{III}$, $S_1 \in \mathbb{R}^{r \times r}$

Approximation : $Y_1 := U_1 S_1 V_1^T$

Folgerung 1: Strang-Splitting für A(t)

$$A_0 = A(t_0), A_{1/2} = A(t_0 + \frac{\tau}{2}), A_1 = A(t_0 + \tau).$$

$$K_I := U_0 S_0 + (A_{1/2} - A_0) V_0$$

Reduzierte QR-Zerlegung : $U_{1/2}S_I = K_I$, $S_I \in \mathbb{R}^{r \times r}$

$$S_{II} := S_I - U_{1/2}^T (A_{1/2} - A_0) V_0$$

$$K_{III} := V_0 S_{II}^T + (A_1 - A_0)^T U_{1/2}$$

Reduzierte QR-Zerlegung : $V_1 S_{1/2}^T = K_{III}$, $S_{1/2} \in \mathbb{R}^{r \times r}$

$$S_V := S_{1/2} - U_{1/2}^T (A_1 - A_{1/2}) V_1$$

$$K_{VI} := U_{1/2}S_V + (A_1 - A_{1/2})V_1$$

Reduzierte QR-Zerlegung : $U_1S_1 = K_{VI}$, $S_1 \in \mathbb{R}^{r \times r}$

Approximation :
$$Y_1 := U_1 S_1 V_1^T$$

Übertragung auf Matrix-DGI A' = F(A)

Folgerung 2: Lie-Trotter-Splitting für Matrix-DGI

Geg.: A'(t) = F(A), Rang-r-Approximation $A(t_0) \approx Y_0 = U_0 S_0 V_0^T$.

Gesucht: Rang-*r*-Approximation $Y_1 \approx A(t_1)$.

Approximation: $\Delta A = A(t_1) - A(t_0) \approx \tau A'(t_0) = \tau F(A_0) \approx \tau F(Y_0)$.

Integrator 1. Ordnung:

$$K_I := U_0 S_0 + \tau F(Y_0) V_0$$

Reduzierte QR-Zerlegung : $U_1S_I = K_I$, $S_I \in \mathbb{R}^{r \times r}$

$$S_{II} := S_I - \tau U_1^T F(Y_0) V_0$$

$$K_{III} := V_0 S_{II}^T + \tau \big(F(Y_0) \big)^T U_1$$

Reduzierte QR-Zerlegung : $V_1 S_1^T = K_{III}$, $S_1 \in \mathbb{R}^{r \times r}$

Approximation : $Y_1 := U_1 S_1 V_1^T$

Folgerung 3: Strang-Splitting für Matrix-DGI

Implizites Verfahren 2. Ordnung:

$$\begin{split} &A_{1/2} - A_0 \approx \frac{\tau}{2} F(Y_0), \\ &A_1 - A_{1/2} \approx \frac{\tau}{2} F(Y_1), \\ &A_1 - A_0 \approx \frac{\tau}{2} \Big(F(Y_0) + F(Y_1) \Big). \end{split}$$

Approximation durch expliziten Algorithmus

Berechne $\widetilde{Y}_1 \approx A(t_1)$ mit Splitting-Verfahren 1. Ordnung für Matrix-DGI.

Ein explizites Verfahren 2. Ordnung erhält man aus

$$\begin{split} &A_{1/2}-A_0\approx\frac{3\tau}{8}F(Y_0)+\frac{\tau}{8}F(\widetilde{Y}_1),\\ &A_1-A_{1/2}\approx\frac{\tau}{8}F(Y_0)+\frac{3\tau}{8}F(\widetilde{Y}_1),\\ &A_1-A_0\approx\frac{\tau}{2}\Big(F(Y_0)+F(\widetilde{Y}_1)\Big). \end{split}$$

Übertragung auf Dgln 2. Ordnung

Splitting-Verfahren für DGI 2. Ordnung

- $Y = USV^{T},$ $Y'' = P(Y)A'' = A''VV^{T} UU^{T}A''VV^{T} UU^{T}A''.$
- Ansatz 1: Behandlung als System 1. Ordnung.
- Ansatz 2: Lie-Trotter-Splitting für DGI. 2. Ordnung:
 - (i) Löse $Y_I'' = A'' V_I V_I^T$, $Y_I(t_0) = Y_0$, $Y_I'(t_0) = Y_0'$,
 - (ii) Löse $Y_{II}'' = -U_{II}U_{II}^TA''V_{II}V_{II}^T$ $Y_{II}(t_0) = Y_I(t_1)$, $Y_{II}'(t_0) = Y_I'(t_1)$,
 - (iii) Löse $Y''_{III} = U_{III}U^T_{III}A''$, $Y_{III}(t_0) = Y_{II}(t_1)$, $Y'_{III}(t_0) = Y'_{II}(t_1)$.

Beispiele (aus DA Rieger)

Beispiel 1: Molenkamp-Crowley-Test

$$u_t(t, x, y) + 2\pi y u_x(t, x, y) - 2\pi x u_y(t, x, y) = 0.$$

Homogene Dirichlet-RB:

$$u(t, x, y) = 0 \text{ für } (x, y) \in \partial \Omega.$$

Gauß-Puls als AB:

$$u(0, x, y) = \exp\left(-10(x - 0.5)^2 - 10(y - 0.5)^2\right).$$

Exakte Lösung:

$$u(t, x, y) = \exp\Big(-10\big(x - 0.5\cos(2\pi t)\big)^2 - 10\big(y - 0.5\sin(2\pi t)\big)^2\Big).$$

Beispiel 2: Wellengleichung

$$u_{tt} = u_{xx} + u_{yy}$$
 in $[-\pi, \pi] \times [-\pi, \pi]$

Spezielle Lösung:
$$u(t, x, y) = \sin(\sqrt{2}t - x - y)$$