

Convergence of an ADI splitting for Maxwell's equations

Marlis Hochbruck joint work with Tobias Jahnke and Roland Schnaubelt

Karlsruhe Institute of Technology

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

1. Linear Maxwell's equations

2. Namiki; Zheng, Chen, Zhang method

- FDTD method
- NZCZ / ADI / Peaceman–Rachford splitting
- Efficient implementation
- Numerical example

3. Error analysis of NZCZ method

- Analytical framework, well-posedness
- Unconditional stability
- Accuracy

4. Summary and outlook

Outline

1. Linear Maxwell's equations

2. Namiki; Zheng, Chen, Zhang method

3. Error analysis of NZCZ method

4. Summary and outlook

Differential equations	Divergence conditions
$\partial_t \mathbf{E} = \frac{1}{\varepsilon} \operatorname{rot} \mathbf{H} (x \in \Omega, t > 0)$	$\operatorname{div}(\varepsilon \mathbf{E}) = 0 (\mathbf{x} \in \Omega, t > 0)$
$\partial_t \mathbf{H} = -\frac{1}{\mu} \operatorname{rot} \mathbf{E}$	${\rm div}(\mu{\bf H})={\bf 0}$
Initial conditions	Boundary conditions
E(0, x) = E0(x) (x ∈ Ω) H(0, x) = H0(x)	

 $\begin{array}{ll} {\sf E}(t,x)\in \mathbb{R}^3 \text{ electric field} & \varepsilon(x)\in \mathbb{R} \text{ electrical permittivity} \\ {\sf H}(t,x)\in \mathbb{R}^3 \text{ magnetic field} & \mu(x)\in \mathbb{R} \text{ magnetic permeability} \\ & \nu\in \mathbb{R}^3 \text{ outer unit normal vector} \end{array}$

Assumptions: ε , $\mu \in L^{\infty}(\Omega)$ and ε , $\mu \geq \delta > 0$.

Outline

1. Linear Maxwell's equations

2. Namiki; Zheng, Chen, Zhang method

- FDTD method
- NZCZ / ADI / Peaceman–Rachford splitting
- Efficient implementation
- Numerical example

3. Error analysis of NZCZ method

4. Summary and outlook

FDTD: finite-difference time-domain method

- Yee (1966), IEEE Trans. Antennas and Propagation Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
- ISI web of science: 6 474 citations on February 20, 2014

in this talk:

T. Namiki, IEEE Trans. Microwave Theory and Techniques, 47 (1999)

F. Zheng, Z. Chen, and J. Zhang, IEEE Trans. Microwave Theory and Techniques, 48 (2000)

short NZCZ method

FDTD: Yee cell

NZCZ method: splitting

$$\begin{pmatrix} \partial_t \mathbf{E} \\ \partial_t \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \frac{1}{\varepsilon} \operatorname{rot} \\ -\frac{1}{\mu} \operatorname{rot} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \qquad \text{ on a cuboid } \Omega$$

plus divergence conditions, boundary conditions, initial data

splitting of rot operator (ADI-type)

$$\operatorname{rot} = \begin{pmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{pmatrix} = C_1 - C_2$$

splitting of Maxwell operator

$$\begin{pmatrix} 0 & \frac{1}{\varepsilon} \operatorname{rot} \\ -\frac{1}{\mu} \operatorname{rot} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{\varepsilon} C_1 \\ \frac{1}{\mu} C_2 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{1}{\varepsilon} C_2 \\ -\frac{1}{\mu} C_1 & 0 \end{pmatrix} = A + B$$

NZCZ / ADI / Peaceman–Rachford method

Maxwell's equations on a cuboid $\boldsymbol{\Omega}$

$$\begin{pmatrix} \partial_t \mathbf{E} \\ \partial_t \mathbf{H} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \frac{1}{\varepsilon} \operatorname{rot} \\ -\frac{1}{\mu} \operatorname{rot} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = (\mathbf{A} + \mathbf{B}) \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

Peaceman-Rachford method (alternating direction implicit method)

$$\begin{pmatrix} \mathbf{E}^{n+1} \\ \mathbf{H}^{n+1} \end{pmatrix} = (I - \frac{\tau}{2}B)^{-1}(I + \frac{\tau}{2}A)(I - \frac{\tau}{2}A)^{-1}(I + \frac{\tau}{2}B) \begin{pmatrix} \mathbf{E}^{n} \\ \mathbf{H}^{n} \end{pmatrix}$$

advantages

- unconditionally stable
- accuracy: order two error bound (for a fixed spatial grid)
- computationally efficient

$$\begin{pmatrix} \mathbf{E}^{n+1} \\ \mathbf{H}^{n+1} \end{pmatrix} = (I - \frac{\tau}{2}B)^{-1}(I + \frac{\tau}{2}A)(I - \frac{\tau}{2}A)^{-1}(I + \frac{\tau}{2}B)\begin{pmatrix} \mathbf{E}^{n} \\ \mathbf{H}^{n} \end{pmatrix}$$

two half-steps:

$$(I - \frac{\tau}{2}A) \begin{pmatrix} \mathbf{E}^{n+\frac{1}{2}} \\ \mathbf{H}^{n+\frac{1}{2}} \end{pmatrix} = (I + \frac{\tau}{2}B) \begin{pmatrix} \mathbf{E}^{n} \\ \mathbf{H}^{n} \end{pmatrix}$$
$$(I - \frac{\tau}{2}B) \begin{pmatrix} \mathbf{E}^{n+1} \\ \mathbf{H}^{n+1} \end{pmatrix} = (I + \frac{\tau}{2}A) \begin{pmatrix} \mathbf{E}^{n+\frac{1}{2}} \\ \mathbf{H}^{n+\frac{1}{2}} \end{pmatrix}$$

have to solve two linear systems per time step
 naïve way on a grid with m × m × m grid points requires

$$\mathcal{O}\left(\left(6\cdot m^3\right)^3\right)$$
 operations

Example: $216 \cdot 10^{18}$ operations for m = 100

Formulation of the Peaceman-Rachford method in two half-steps:

$$(I - \frac{\tau}{2}A) \begin{pmatrix} \mathbf{E}^{n+\frac{1}{2}} \\ \mathbf{H}^{n+\frac{1}{2}} \end{pmatrix} = (I + \frac{\tau}{2}B) \begin{pmatrix} \mathbf{E}^{n} \\ \mathbf{H}^{n} \end{pmatrix}$$
$$(I - \frac{\tau}{2}B) \begin{pmatrix} \mathbf{E}^{n+1} \\ \mathbf{H}^{n+1} \end{pmatrix} = (I + \frac{\tau}{2}A) \begin{pmatrix} \mathbf{E}^{n+\frac{1}{2}} \\ \mathbf{H}^{n+\frac{1}{2}} \end{pmatrix}$$

Idea of Namiki; Zheng, Chen, Zhang:

exploit special structure of operators A and B

presentation for $\varepsilon = \mu = 1$ for simplicity

First half-step:

$$\begin{pmatrix} I & -\frac{\tau}{2}C_1 \\ -\frac{\tau}{2}C_2 & I \end{pmatrix} \begin{pmatrix} \mathbf{E}^{n+\frac{1}{2}} \\ \mathbf{H}^{n+\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} I & -\frac{\tau}{2}C_2 \\ -\frac{\tau}{2}C_1 & I \end{pmatrix} \begin{pmatrix} \mathbf{E}^n \\ \mathbf{H}^n \end{pmatrix}$$

equivalent:

$$\mathbf{E}^{n+\frac{1}{2}} = \mathbf{E}^{n} - \frac{\tau}{2} C_{2} \mathbf{H}^{n} + \frac{\tau}{2} C_{1} \mathbf{H}^{n+\frac{1}{2}}$$
$$\mathbf{H}^{n+\frac{1}{2}} = \mathbf{H}^{n} - \frac{\tau}{2} C_{1} \mathbf{E}^{n} + \frac{\tau}{2} C_{2} \mathbf{E}^{n+\frac{1}{2}}$$

insert second line into first line (recalling rot = $C_1 - C_2$)

$$\mathbf{E}^{n+\frac{1}{2}} = \mathbf{E}^{n} - \frac{\tau}{2}C_{2}\mathbf{H}^{n} + \frac{\tau}{2}C_{1}\left(\mathbf{H}^{n} - \frac{\tau}{2}C_{1}\mathbf{E}^{n} + \frac{\tau}{2}C_{2}\mathbf{E}^{n+\frac{1}{2}}\right)$$
$$= \mathbf{E}^{n} + \frac{\tau}{2}\operatorname{rot}\mathbf{H}^{n} - \frac{\tau^{2}}{4}C_{1}^{2}\mathbf{E}^{n} + \frac{\tau^{2}}{4}C_{1}C_{2}\mathbf{E}^{n+\frac{1}{2}}$$

First half step:

$$\left(I - \frac{\tau^2}{4}C_1C_2\right)\mathbf{E}^{n+\frac{1}{2}} = \mathbf{E}^n + \frac{\tau}{2}\operatorname{rot}\mathbf{H}^n - \frac{\tau^2}{4}C_1^2\mathbf{E}^n,$$
$$\mathbf{H}^{n+\frac{1}{2}} = \mathbf{H}^n - \frac{\tau}{2}C_1\mathbf{E}^n + \frac{\tau}{2}C_2\mathbf{E}^{n+\frac{1}{2}}$$

with

$$C_1 C_2 = \begin{pmatrix} \partial_2 \partial_2 & 0 & 0 \\ 0 & \partial_3 \partial_3 & 0 \\ 0 & 0 & \partial_1 \partial_1 \end{pmatrix}$$

- Inear systems decoupled and 1d
- complexity: $\mathcal{O}(m^3)$ operations to solve linear system $\left(I - \frac{\tau^2}{4}\partial_k\partial_k\right)v = b, \qquad k \in \{1, 2, 3\}, \quad b \in \mathbb{R}^{m \times m \times m}$ given
- second half-step analogously

Numerical example

• Maxwell's equations on
$$\Omega = [0, 1]^3$$

+ b.c. + i.c. + divergence conditions
• special exact solution for $\varepsilon \equiv \mu \equiv 1$, $(\kappa, \lambda) \in \mathbb{Z}^2 \setminus \{0, 0\}$
 $u_{\kappa\lambda}^1(t, x) = \begin{pmatrix} \sin(\kappa \pi x_2) \sin(\lambda \pi x_3) \cos(\sqrt{\kappa^2 + \lambda^2} \pi t) \\ 0 \\ 0 \\ -\frac{\lambda}{\sqrt{\kappa^2 + \lambda^2}} \sin(\kappa \pi x_2) \cos(\lambda \pi x_3) \sin(\sqrt{\kappa^2 + \lambda^2} \pi t) \\ \frac{\kappa}{\sqrt{\kappa^2 + \lambda^2}} \cos(\kappa \pi x_2) \sin(\lambda \pi x_3) \sin(\sqrt{\kappa^2 + \lambda^2} \pi t) \end{pmatrix}$

 $u_{\kappa\lambda}^{2,3}$ analogously (zeros at other positions, x_i permuted) • superposition: $a_{\kappa\lambda}^{\ell} \in \mathbb{R}$, $a_{00}^{\ell} = 0$, $\ell = 1, 2, 3$

$$u(t,x) = \sum_{\kappa=0}^{\kappa_{\max}} \sum_{\lambda=0}^{\lambda_{\max}} \left(a_{\kappa\lambda}^{1} u_{\kappa\lambda}^{1}(t,x) + a_{\kappa\lambda}^{2} u_{\kappa\lambda}^{2}(t,x) + a_{\kappa\lambda}^{3} u_{\kappa\lambda}^{3}(t,x) \right)$$

Smooth data: $a_{11}^{j} \neq 0$, rest 0

Runtime: \approx 105 min for $h = \frac{1}{150}$ and $\tau = \frac{5}{1024}$

1024 time steps with 20 250 000 dof

Nonsmooth data: a_{11}^{j} , a_{54}^{1} , a_{35}^{2} , $a_{55}^{3} \neq 0$, rest 0

Goal of this talk:

explain this behavior

Outline

1. Linear Maxwell's equations

2. Namiki; Zheng, Chen, Zhang method

3. Error analysis of NZCZ method

- Analytical framework, well-posedness
- Unconditional stability
- Accuracy

4. Summary and outlook

Error analysis

 explain grid independent convergence: prove error bounds which do not deteriorate for h → 0 (in contrast to remainders of Taylor expansions)

proceed in the following steps

- analytical framework
 - correct function spaces
 - traces
 - well-posedness and regularity in Lipschitz domain
- unconditional stability
- error bounds for abstract Cauchy problem, i.e., for unbounded operators M, A, B

Function spaces

Assumption: $\Omega \subset \mathbb{R}^3$ open, bounded, with Lipschitz boundary domains of rot and div:

$$H(\operatorname{rot}) = \{ u \in L^{2}(\Omega)^{3} \mid \operatorname{rot} u \in L^{2}(\Omega)^{3} \}$$
$$H(\operatorname{div}) = \{ u \in L^{2}(\Omega)^{3} \mid \operatorname{div} u \in L^{2}(\Omega) \}$$

Lemma (rot, H(rot)) and (div, H(div)) are closed in $L^2(\Omega)^3$

- consequence: H(rot) and H(div) are Hilbert spaces with corresponding graph norms
- warning: u ∈ H(rot) means that, e.g., ∂₂u₃ − ∂₃u₂ ∈ L²(Ω) but ∂₂u₃, ∂₃u₂ need not be L²-functions

Known results on traces

C[∞](Ω)³ is dense in H(rot) and H(div)
 C[∞]_c(Ω)³ is dense in H₀(rot) := {u ∈ H(rot) | u × ν = 0 on Γ}

Lemma

- Tangential trace $u \mapsto u \times v$ on $C^{\infty}(\overline{\Omega})^3$ has a bounded extension $H(\operatorname{rot}) \to H^{-1/2}(\Gamma)^3$, $u \mapsto u \times v$.
- Normal trace $u \mapsto u \cdot v$ on $C^{\infty}(\overline{\Omega})^3$ has a bounded extension

$$H(\operatorname{div}) \to H^{-1/2}(\Gamma), \qquad u \mapsto u \cdot v$$

Integration by parts formula: for all $u \in H(rot)$ and $\varphi \in H^1(\Omega)^3$

$$\int_{\Omega} u \cdot \operatorname{rot} \varphi \, \mathrm{d} x = \int_{\Omega} \varphi \cdot \operatorname{rot} u \, \mathrm{d} x + \langle u \times \nu, \varphi \rangle_{H^{-1/2}(\Gamma)^3, H^{1/2}(\Gamma)^3}.$$

Known results on traces

C[∞](Ω)³ is dense in H(rot) and H(div)
 C[∞]_c(Ω)³ is dense in H₀(rot) := {u ∈ H(rot) | u × ν = 0 on Γ}

Lemma

- Tangential trace $u \mapsto u \times v$ on $C^{\infty}(\overline{\Omega})^3$ has a bounded extension $H(\operatorname{rot}) \to H^{-1/2}(\Gamma)^3$, $u \mapsto u \times v$.
- Normal trace $u \mapsto u \cdot v$ on $C^{\infty}(\overline{\Omega})^3$ has a bounded extension

$$H(\operatorname{div}) \to H^{-1/2}(\Gamma), \qquad u \mapsto u \cdot \nu$$

Integration by parts formula: for all $u \in H_0(rot)$ and $\varphi \in H(rot)$

$$\int_{\Omega} u \cdot \operatorname{rot} \varphi \, \mathrm{d} x = \int_{\Omega} \varphi \cdot \operatorname{rot} u \, \mathrm{d} x.$$

Well-posedness on a Lipschitz domain $\boldsymbol{\Omega}$

Consider $X = L^2(\Omega)^6$ with its closed subspace

$$X_{0} = \Big\{ (\mathsf{E},\mathsf{H}) \in X : \mathsf{div}(\varepsilon\mathsf{E}) = \mathsf{div}(\mu\mathsf{H}) = \mathsf{0}, \ (\mu\mathsf{H}) \cdot \nu = \mathsf{0} \text{ on } \Gamma \Big\}$$

equipped with weighted scalar product

$$\left((\mathbf{E},\mathbf{H})|(u,v)\right)_{X} = (\mathbf{E}|u)_{\varepsilon} + (\mathbf{H}|v)_{\mu} = \int_{\Omega} \mathbf{E} \cdot u \varepsilon \, \mathrm{d}x + \int_{\Omega} \mathbf{H} \cdot v \, \mu \, \mathrm{d}x.$$

Maxwell operator:

$$M = \begin{pmatrix} 0 & \frac{1}{\varepsilon} \operatorname{rot} \\ -\frac{1}{\mu} \operatorname{rot} & 0 \end{pmatrix}, \qquad D(M)$$

$$D(M) = H_0(rot) \times H(rot)$$

Restriction of M to X_0 :

$$M_0=Mig|_{X_0}$$
 , $D(M_0)=D(M)\cap X_0$

Well-posedness on a Lipschitz domain Ω

Theorem. *M* and M_0 are skew-adjoint on *X* and X_0 , respectively.

Hence,

- *M* and *M*₀ generate unitary *C*₀ groups $T(t) = e^{tM}$ on *X* and $T_0(t) = e^{tM_0}$ on *X*₀ (Stone's theorem)
- for every $(\mathbf{E}^0, \mathbf{H}^0) \in D(M_0)$, Maxwell's equations have a unique solution

$$(\mathbf{E}(t),\mathbf{H}(t)) \in C^1(\mathbb{R};X_0) \cap C(\mathbb{R};D(M_0))$$

with constant norm (energy)

• $Mw \in X_0$ for all $w \in D(M)$ (because div rot = 0)

•
$$D(M_0^j) = D(M^j) \cap X_0, j \in \mathbb{N}$$

Proof of skew-symmetry

Let
$$w = (\mathbf{E}, \mathbf{H}), \, \widetilde{w} = (\widetilde{\mathbf{E}}, \widetilde{\mathbf{H}}) \in D(M) = H_0(\operatorname{rot}) \times H(\operatorname{rot}).$$
$$M\begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} \frac{1}{\varepsilon} \operatorname{rot} \mathbf{H} \\ -\frac{1}{\mu} \operatorname{rot} \mathbf{E} \end{pmatrix}$$

Skew-symmetry of M:

$$(\mathcal{M}\mathbf{w}|\widetilde{\mathbf{w}})_{X} = (\frac{1}{\varepsilon}\operatorname{rot}\mathbf{H}|\widetilde{\mathbf{E}})_{\varepsilon} - (\frac{1}{\mu}\operatorname{rot}\mathbf{E}|\widetilde{\mathbf{H}})_{\mu}$$

= $\int_{\Omega}\operatorname{rot}\mathbf{H}\cdot\widetilde{\mathbf{E}}\,\mathrm{d}x - \int_{\Omega}\operatorname{rot}\mathbf{E}\cdot\widetilde{\mathbf{H}}\,\mathrm{d}x$
= $\int_{\Omega}\mathbf{H}\cdot\operatorname{rot}\widetilde{\mathbf{E}}\,\mathrm{d}x - \int_{\Omega}\mathbf{E}\cdot\operatorname{rot}\widetilde{\mathbf{H}}\,\mathrm{d}x$
= $-(\mathbf{H}|-\frac{1}{\mu}\operatorname{rot}\widetilde{\mathbf{E}})_{\mu} - (\mathbf{E}|\frac{1}{\varepsilon}\operatorname{rot}\widetilde{\mathbf{H}})_{\varepsilon} = -(\mathbf{w}|\mathcal{M}\widetilde{\mathbf{w}})_{X},$

Analogously for M_0 .

Regularity I

Lemma

Let $0 < \delta \leq \varepsilon, \mu \in W^{1,\infty}(\Omega)$ and $\partial_{ij}\varepsilon, \partial_{ij}\mu \in L^3(\Omega), \forall i, j$. Then $D(M_0^2) \hookrightarrow H^2(\Omega)^6$ and $(\mathbf{E}, \mathbf{H}) \in D(M_0^2)$ has traces

on
$$\Gamma_1^{\pm}$$
: $H_1 = E_2 = E_3 = 0$,
 $\partial_2 E_2 = \partial_3 E_2 = \partial_2 E_3 = \partial_3 E_3 = \partial_2 H_1 = \partial_3 H_1 = 0$,
on $\Gamma_{2,3}^{\pm}$: ...

(Costabel, Dauge, 2000)

The NZCZ method

$$A = \begin{pmatrix} 0 & \frac{1}{\varepsilon} C_1 \\ \frac{1}{\mu} C_2 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -\frac{1}{\varepsilon} C_2 \\ -\frac{1}{\mu} C_1 & 0 \end{pmatrix}$$

A and B act on $X = L^2(\Omega)^6$ with domains

$$\begin{array}{ll} D(A) &= \{(u,v) \in X \, | \, (C_1v, C_2u) \in X, \\ & u_1 = 0 \text{ on } \Gamma_2^{\pm}, \ u_2 = 0 \text{ on } \Gamma_3^{\pm}, \ u_3 = 0 \text{ on } \Gamma_1^{\pm} \}, \\ D(B) &= \dots \end{array}$$

Then: Aw + Bw = Mw for $w \in D(A) \cap D(B) \subset D(M)$.

Lemma: A and B are skew-adjoint in X.

Consequence:
$$(I - \tau A)^{-1}$$
 and $(I + \tau A)(I - \tau A)^{-1}$ are contractions $(I - \tau B)^{-1}$ and $(I + \tau B)(I - \tau B)^{-1}$ are contractions

Unconditional stability

Maxwell's equations on a cuboid Ω

$$\partial_t u = M u = (\mathbf{A} + \mathbf{B}) u, \qquad u = \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}, \qquad u(\mathbf{0}) = w$$

Peaceman-Rachford method (alternating direction implicit method)

 $u(n\tau) \approx u^n = S_{\tau}^n w, \qquad S_{\tau} = (I - \frac{\tau}{2}B)^{-1}(I + \frac{\tau}{2}A)(I - \frac{\tau}{2}A)^{-1}(I + \frac{\tau}{2}B)$

A and B are skew-adjoint in X, hence

$$\left\| (I + \frac{\tau}{2}A)(I - \frac{\tau}{2}A)^{-1} \right\| = \left\| (I + \frac{\tau}{2}B)(I - \frac{\tau}{2}B)^{-1} \right\| = 1$$

and thus

$$\|u^n\| \leq \underbrace{\left\| (I - \frac{\tau}{2}B)^{-1} \right\|}_{\leq 1} \cdot \underbrace{\|\dots\|}_{=1} \cdot \left\| (I + \frac{\tau}{2}B)w \right\|$$

Local and global error

$$u^n = S^n_{\tau} w$$
, $u(t_n) = T_0(t_n) w$, $u(0) = w$, $t_n = n \tau$

Global error

$$S_{\tau}^{n} w - T_{0}(t_{n}) w = \sum_{j=0}^{n-1} S_{\tau}^{n-j-1} \underbrace{\left(S_{\tau} - T_{0}(\tau)\right) T_{0}(t_{j}) w}_{\text{local error}}$$

Goal: error bound for local error:

$$\| (S_{\tau} - T_0(\tau)) v \| \le c \tau^3 (\|v\| + \|M_0^3 v\|)$$

this implies an error bound for global error:

$$\| \mathcal{S}^n_{ au} \mathbf{w} - \mathcal{T}_0(t_n) \mathbf{w} \| \leq c \, t_{\scriptscriptstyle \mathsf{end}} au^2 (\| \mathbf{w} \| + \| \mathcal{M}^3_0 \mathbf{w} \|), \qquad t_n \leq t_{\scriptscriptstyle \mathsf{end}}$$

Error bound for the local error

Preparation: For $j \in \mathbb{N}$, $\tau > 0$ and $v \in X_0$ define

$$\Lambda_j(\tau)\mathbf{v} = \int_0^1 \frac{(1-\theta)^{j-1}}{(j-1)!} T_0(\theta\tau)\mathbf{v} \, \mathrm{d}\theta, \qquad \|\Lambda_j(\tau)\| \le 1$$

• for $v \in D(M^3) \cap X_0$, local error has the form

$$\begin{aligned} (S_{\tau} - T_{0}(\tau))v \\ &= \tau^{3}(I - \frac{\tau}{2}B)^{-1}(I - \frac{\tau}{2}A)^{-1}[\frac{1}{2}\Lambda_{2}(\tau) - \Lambda_{3}(\tau)]M_{0}^{3}v \\ &- \frac{\tau^{3}}{4}(I - \frac{\tau}{2}B)^{-1}(I - \frac{\tau}{2}A)^{-1}AB(I - M_{0})^{-2}\Lambda_{1}(\tau)(I - M_{0})^{2}M_{0}v \end{aligned}$$

[Hansen, Ostermann, 2008]

it remains to bound

$$\|AB(I - M_0)^{-2}(\dots)v\|.$$

Regularity II

Lemma

If $0 < \delta \leq \varepsilon, \mu \in W^{1,\infty}(\Omega)$ and $\partial_{ij}\varepsilon, \partial_{ij}\mu \in L^3(\Omega), \forall i, j$, then $D(M_0^2) \hookrightarrow H^2(\Omega)^6 \cap D(AB) \cap D(A)$

cf. [Costabel & Dauge 2000]

Consequence: $AB(I - M_0)^{-2} : X_0 \rightarrow X$ bounded:

$$\|AB(I-M_0)^{-2}v\| \le \|(I-M_0)^{-2}v\|_{H^2} \le c\|(I-M_0)^{-2}v\|_{D(M_0^2)} \le C\|v\|$$

Main result: Error bound for the NZCZ method

Theorem

Assumptions:

- $\varepsilon, \mu \in W^{1,\infty}(\Omega)$ with $\varepsilon, \mu \ge \delta > 0$
- $\partial_i \partial_j \varepsilon$, $\partial_i \partial_j \mu \in L^3(\Omega)$ for all $i, j \in \{1, 2, 3\}$
- initial data satisfies $w = (\mathbf{E}, \mathbf{H}) \in D(M^3) \cap X_0 = D(M^3_0)$

Then, the global error of the NZCZ method is bounded by

$$\| \mathcal{S}^n_{ au} w - \mathcal{T}_0(t_n) w \| \leq c t_{\scriptscriptstyle \mathsf{end}} au^2 \left(\| w \| + \left\| \mathcal{M}^3_0 w \right\|
ight)$$

for all $n \in \mathbb{N}$, $\tau > 0$ with $t_n = n \tau \in [0, t_{end}]$.

c is independent of n, τ .

Outline

1. Linear Maxwell's equations

2. Namiki; Zheng, Chen, Zhang method

3. Error analysis of NZCZ method

4. Summary and outlook

Numerical example

Maxwell's equations on
$$\Omega = [0, 1]^3$$

+ b.c. + i.c. + divergence conditions
special exact solution for $\varepsilon \equiv \mu \equiv 1$, $(\kappa, \lambda) \in \mathbb{Z}^2 \setminus \{0, 0\}$

$$u_{\kappa\lambda}^1(t, x) = \begin{pmatrix} \sin(\kappa \pi x_2) \sin(\lambda \pi x_3) \cos(\sqrt{\kappa^2 + \lambda^2} \pi t) \\ 0 \\ 0 \\ -\frac{\lambda}{\sqrt{\kappa^2 + \lambda^2}} \sin(\kappa \pi x_2) \cos(\lambda \pi x_3) \sin(\sqrt{\kappa^2 + \lambda^2} \pi t) \\ \frac{\kappa}{\sqrt{\kappa^2 + \lambda^2}} \cos(\kappa \pi x_2) \sin(\lambda \pi x_3) \sin(\sqrt{\kappa^2 + \lambda^2} \pi t) \end{pmatrix}$$

 $u_{\kappa\lambda}^{2,3}$ analogously (zeros at other positions, x_i permuted) • superposition: $a_{\kappa\lambda}^{\ell} \in \mathbb{R}$, $a_{00}^{\ell} = 0$, $\ell = 1, 2, 3$

$$u(t,x) = \sum_{\kappa=0}^{\kappa_{\max}} \sum_{\lambda=0}^{\lambda_{\max}} \left(a_{\kappa\lambda}^{1} u_{\kappa\lambda}^{1}(t,x) + a_{\kappa\lambda}^{2} u_{\kappa\lambda}^{2}(t,x) + a_{\kappa\lambda}^{3} u_{\kappa\lambda}^{3}(t,x) \right)$$

Smooth data: $a_{11}^{j} \neq 0$

$$\|w\|_{X} = 1, \|M_{0}^{3}w\|_{X} = \mathcal{O}(1)$$
: order two

 $\|w\|_X = 1, \|M_0^3 w\|_X \gg 1$: order reduction

Summary and outlook

- error analysis for Namiki; Zheng, Chen, Zhang method for Maxwell's equations on a cuboid
- proved rigorous bounds for abstract problem
- numerical results clearly indicate order reduction for nonsmooth data
- M. Hochbruck, T. Jahnke, R. Schnaubelt, *Convergence of an ADI splitting for Maxwell's equations*, Preprint 2013, available online.

future work

- error analysis for full discretization
- nonlinear material laws