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Abstract. We consider the approximation of the matrix ϕ-functions that appear in exponential integrators
for stiff systems of differential equations. For stiff systems, the field-of-values of the occurring matrices is large and
lies somewhere in the left complex half-plane. In order to obtain an efficient method uniformly for all matrices
with a field-of-values in the left complex half-plane, we consider the approximation by a rational Krylov subspace
method with equidistant poles of order one on the line Re z = γ > 0. We present error bounds that predict a faster
convergence rate as for the resolvent Krylov subspace approximation using a single repeated pole at γ > 0. Poles of
order one allow moreover for a parallel implementation of the corresponding rational Krylov subspace decomposition.
We analyze the convergence of the proposed rational Krylov subspace method and present numerical experiments
that illustrate our results.
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1. Introduction. Exponential integrators form an interesting class of numerical methods for
the time integration of stiff ordinary differential equations of the form

y′(t) = Ay(t) + g(t, y(t)) , y(t0) = y0 (1.1)

with a large matrix A. Such problems typically arise from a semi-discretization of a partial
differential equation, for instance, by finite-difference, finite-element, or pseudospectral methods.
The simplest exponential integrator is the exponential Euler method that reads

y(t0 + τ) ≈ y0 + τϕ1(τA)
(
Ay0 + g(t0, y0)

)
, ϕ1(z) =

ez − 1

z
,

where τ denotes the time step size and ϕ1 is an entire function.
Stiff ordinary differential equations might be characterized by a huge field-of-values W (A)

of the matrix A in the left complex half-plane. Such matrices A we therefore call “stiff” in the
following. Since explicit integrators have a small stability region in the left complex half-plane,
they usually fail to integrate stiff differential equations unless very small time steps are used. In
contrast, exponential integrators allow for the application of explicit schemes without a severe step
size restriction. The basic idea of these integrators is to treat the linear part Ay(t) in (1.1) exactly,
and to use an appropriate approximation for the nonlinear remainder g. More information about
the integration of stiff ordinary differential equations by exponential integrators can be found in
the review [21] by Hochbruck and Ostermann.

For the application of more general exponential integrators than the exponential Euler method,
the computation of ϕ`(τA)v is required, where v is a vector, A is a stiff matrix, and ϕ` is one of
the so-called ϕ-functions. These matrix functions are given by

ϕ`(τA) :=

∫ 1

0

e(1−s)τA
s`−1

(`− 1)!
ds =

1

τ `

∫ τ

0

e(τ−s)A
s`−1

(`− 1)!
ds , ` ≥ 1 . (1.2)

The efficient and reliable computation of ϕ`(τA)v is an important ingredient in every exponential
integrator. For stiff ordinary differential equations, one therefore needs to find methods to compute
these matrix functions times a vector efficiently for all matrices with a field-of-values in the left
complex half-plane. Recently, the use of rational Krylov subspaces for the approximation of
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f(A)v, where f is a function defined for matrices and/or operators, has been studied by a number
of papers, e.g. in [2, 3, 5–17,22–28,30–33,35]. Rational Krylov subspaces are of the form

Qm(A, v) =

{
pm−1(A)

qm−1(A)
v, pm−1 ∈ Pm−1

}
,

where Pm−1 designates the space of polynomials of degree smaller than or equal to m − 1 and
the denominator qm−1 ∈ Pm−1 is a fixed chosen polynomial. The choice of qm−1 determines the
properties of the rational Krylov subspace approximation. Of course, the roots of qm−1 must not
coincide with eigenvalues of the matrix A and therefore have to be located in the right complex
half-plane, since otherwise the matrix functions in the rational Krylov subspace were not defined
for arbitrary matrices with a field-of-values in the left complex half-plane. With the help of the
standard (polynomial) Krylov subspace

Km(A, v) = {pm−1(A)v, pm−1 ∈ Pm−1} ,

the rational Krylov subspace can alternatively be expressed as

Qm(A, v) = qm−1(A)−1Km(A, v) = Km(A, qm−1(A)−1v) .

In recent works on the approximation of matrix functions by Krylov subspace methods, it becomes
more and more apparent that, for stiff matrices A, rational Krylov subspace methods work tremen-
dously better than standard Krylov subspace methods. There is a strong analogy to the behavior
of the explicit and implicit Euler method for stiff systems. This can be seen, if we consider the
stiff problem

y′(t) = Ay(t) +
t`−1

(`− 1)!
v , y(0) = 0 , (1.3)

whose exact solution at time τ is given as y(τ) = τ `ϕ`(τA)v. In the following numerical experi-

ments, A ∈ RN2×N2

is the standard finite-difference discretization matrix for the two-dimensional
Laplacian on the unit square with homogeneous Dirichlet boundary conditions, where we use a
regular grid with N2 inner discretization points and mesh size 1

N+1 . The vector v contains the

evaluations of the function 30 · x(1 − x)y(1 − y), (x, y) ∈ [0, 1]2, at the inner grid points. By
applying the explicit Euler method with step size τ

m , we approximate y(τ) = y(tm) by

ym =
τ

m

m−1∑
p=0

(
I +

τ

m
A
)p
·
t`−1m−p−1

(`− 1)!
v ∈ Km(A, v) , tk = k · τ

m
, k = 0, . . . ,m ,

which can be interpreted as a fixed polynomial approximation to τ `ϕ`(τA)v in Km(A, v). Since
the terms ‖I + τ

mA‖
p, p = 0, . . . ,m− 1, have to remain bounded for m → ∞, we have to ensure

that ‖I + τ
mA‖ ≤ 1. As a result, the explicit method requires very small time steps in order to

achieve the desired accuracy and stability of the method. This can be seen in Figure 1.1. Where
the red diamond-marked line appears, it corresponds to the obtained error for the approximation
of ϕ1(τA)v for τ = 0.025 versus the computation time. Where the red diamond-marked line does
not appear, especially on the right-hand side of Figure 1.1, a reasonable approximation of the
solution in the given computation time was not possible. The blue circle-marked line corresponds
to the standard Krylov subspace approximation of ϕ1(τA)v in Km(A, v). The approximation is
significantly better for small matrices (e.g. [20]), but for only slightly larger, mildly stiff matrices,
the method deteriorates and for stiff matrices an efficient approximation is not possible at all. The
polynomial Krylov subspace approximation behaves analogously to the explicit Euler method for
stiff matrices with respect to accuracy and computation time.

In contrast to this, the implicit Euler method, where the rational approximation

ym =
τ

m

m∑
p=1

(
I − τ

m
A
)−p
·
t`−1m−p+1

(`− 1)!
v ∈ Qm(A, v) , tk = k · τ

m
, k = 0, . . . ,m ,
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Fig. 1.1: Accuracy of the explicit Euler method (red diamond-marked line) and of the standard
Krylov subspace method (blue circle-marked line) for a 3 969×3 969 - matrix (on the left-hand side)
and a 65 025× 65 025 - matrix (on the right-hand side) versus the computation time in seconds for
τ = 0.025 and ` = 1.
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Fig. 1.2: Accuracy of the implicit Euler method (red triangle-marked line) and of the rational
Krylov subspace method (blue square-marked line) for a 65 025× 65 025 - matrix (on the left-hand
side) and a 1 046 529× 1 046 529 - matrix (on the right-hand side) versus the computation time in
seconds for τ = 0.025 and ` = 1.

to y(τ) is used, works well even for much larger time steps in case of a stiff problem. The error
curve of the implicit Euler method versus the computation time in seconds is shown with the
red triangle-marked line in Figure 1.2. This time, the approximation lies in the rational Krylov
subspace Qm(A, v) = qm−1(A)−1Km(A, v) with qm−1(z) = (γ − z)m−1 and γ = m

τ . With the
choice γ = m

τ , it would be necessary to build the whole space from scratch, if one wants to rise
the dimension of the approximation space. In order to avoid this and to obtain a space that is
augmented by just one vector from step to step, one usually chooses a fixed γ (e.g. [12, 13]). The
performance of the approximation in the rational Krylov subspace with γ = 1

τ corresponds to
the blue square-marked line in Figure 1.2. That the rational Krylov method, which is inspired
by the implicit Euler method, outperforms the implicit Euler method and is more suited to the
computation of the ϕ-functions for stiff matrices can be clearly seen.
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Fig. 1.3: Locus of the field-of-values W (A) of the stiff matrix A, as well as the position of the
simple roots of the denominator polynomial q2m+1 of the rational Krylov subspace Q2m+2(A, v).

For the approximation to ϕ`(A)v uniformly for stiff matrices in the rational Krylov subspace
Qm(A, v) = (γI −A)−(m−1)Km(A, v) as above, the sublinear bound

inf
R∈Qm(A,v)

‖ϕ`(A)v −R‖ ≤ C

m
`
2

‖v‖ , ` ≥ 1

has been proved in [13]. In the following, we present a Krylov subspace method that allows
for faster convergence rates, which are uniform for all stiff matrices according to our setting.
Furthermore, the new method can be easily parallelized in time. In order to achieve these goals,
we consider an approximation method based on the special rational Krylov subspace

Q2m+2(A, v) =

{
p2m+1(A)

q2m+1(A)
v, p2m+1 ∈ P2m+1

}
,

where the denominator polynomial is chosen as

q2m+1(z) =

m∏
k=−m

(zk − z) ∈ P2m+1 , zk = γ + ihk , k = −m, . . . ,m , γ > 0 .

That is, the poles of the rational approximation are equidistant on the line Re z = γ > 0 in the
right complex half-plane, see Figure 1.3. Since the field-of-values of stiff matrices lies in the left
complex half-plane, the rational matrix functions in Q2m+2(A, v) are defined.

More exactly, we first obtain a uniform error estimate for the best approximation of ϕ`(A) in
the rational matrix space

R2m+1(A) =

{
p2m(A)

q2m+1(A)
, p2m ∈ P2m

}
. (1.4)

This result can then be used to bound the error of the rational Krylov subspace approximation
of ϕ`(A)v in Q2m+2(A, v). Since the approximation of ϕ`(A) in R2m+1(A) is uniform for stiff
matrices, this holds also true for the rational Krylov subspace approximation of ϕ`(A)v.

Applying partial fraction expansion, it turns out that this rational Krylov subspace can alter-
natively be written as

Q2m+2(A, v) = span

{
v,

1

z−m −A
v,

1

z−m+1 −A
v, . . . ,

1

zm −A
v

}
. (1.5)

In contrast to rational Krylov subspace methods with one multiple pole, one can compute the
basis of this rational Krylov subspace in parallel, by assigning to each node the solution of the
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linear system (zkI − A)x = v. If the stiff matrix A is large, which is the case for nearly all fine
discretizations of evolution equations, the parallel computation of the basis of Q2m+2(A, v) leads
to a significant speed-up compared to standard methods.

The paper is organized as follows: After some preliminaries in Section 2, we discuss the
approximation of the matrix ϕ-functions in the rational matrix subspace of the form (1.4) in
Section 3. The approximation in the corresponding Krylov subspace is discussed in Section 4 and
the choice of the free parameters in Section 5. Finally, numerical experiments are presented in
Section 6.

2. Preliminaries. In this paper, we consider stiff matrices A ∈ CN×N of arbitrary dimension
N with a field-of-values

W (A) = {(Ax, x) |x ∈ CN , ‖x‖ = 1}

in the left complex half-plane H−0 := {z ∈ C | Re z ≤ 0}. Hereby, (· , ·) is an inner product, the
vector space CN has been equipped with, and ‖ · ‖ designates its induced norm. As matrix norm,
we always choose the induced matrix norm, which we again designate by ‖ · ‖. One might also
characterize our matrices by

Re (Ax, x) ≤ 0 , ∀x ∈ CN .

Such matrices play an important role in the stability theory of differential equations. For simplicity,
we only consider matrices, but all results in the paper can be generalized to operators A on Hilbert
spaces and some results to operators A on Banach spaces.

We very often use notations that are common in the analysis of matrix functions. For example,
we may write 1

A , meaning the matrix A inserted in the function 1
z , instead of A−1 provided that

the considered function is defined on the spectrum of A. A comprehensive overview of the theory
of matrix functions can be found in the book [19] by Higham.

A result that relates the field-of-values of A to the stability of the matrix exponential is recalled
in the following lemma.

Lemma 2.1. Let A be a matrix with W (A) ⊆ H−0 and let τ ≥ 0 be arbitrarily chosen, then

‖eτA‖ ≤ 1 .

Proof. For the convenience of the reader, we first proof that∥∥∥∥ 1

z −A

∥∥∥∥ ≤ 1

dist(z,W (A))
, ∀ z 6∈W (A) , (2.1)

where dist(z,W (A)) designates the minimum distance of z from W (A) for a general inner product.
For the Euclidean norm, estimate (2.1) is well-known (e.g. [29], Theorem 1.19) and can be easily
transferred to general inner products. Let z0 6∈ W (A) be arbitrarily chosen. Then, we have for
any 0 6= x ∈ CN that (Ax, x)/(x, x) ∈W (A) and therefore

dist(z0,W (A)) ≤
∣∣∣∣z0 − (Ax, x)

(x, x)

∣∣∣∣ =
|((z0I −A)x, x)|

‖x‖2

or

dist(z0,W (A)) · ‖x‖2 ≤ |((z0I −A)x, x)| . (2.2)

Since z0 6∈W (A) and thus z0 6∈ Λ(A) ⊆W (A), we know that z0I −A is invertible. If one chooses
an arbitrary 0 6= y ∈ CN , then it follows by substituting 0 6= x = (z0I −A)−1y in (2.2) that

dist(z0,W (A)) · ‖(z0I −A)−1y‖2 ≤ |(y, (z0I −A)−1y)| ≤ ‖(z0I −A)−1y‖‖y‖
5



which is equivalent to

‖(z0I −A)−1y‖
‖y‖

≤ 1

dist(z0,W (A))
.

Because 0 6= y ∈ CN can be chosen arbitrarily, we also have

‖(z0I −A)−1‖ = sup
06=y∈CN

‖(z0I −A)−1y‖
‖y‖

≤ 1

dist(z0,W (A))
.

With the help of estimate (2.1) we can conclude for τ > 0, m ∈ N, and W (A) ⊆ H−0 that∥∥∥∥ 1

1− τ
mA

∥∥∥∥ =
m

τ

∥∥∥∥ 1
m
τ −A

∥∥∥∥ ≤ 1 ⇒
∥∥∥∥( 1

1− τ
mA

)m∥∥∥∥ ≤ 1 . (2.3)

The convergence of the implicit Euler method now gives

1 ≥ lim
m→∞

∥∥∥∥( 1

1− τ
mA

)m∥∥∥∥ =

∥∥∥∥ lim
m→∞

(
1

1− τ
mA

)m∥∥∥∥ =
∥∥eτA∥∥ ,

where the first equality follows by the reverse triangle inequality. For τ = 0, the assertion is
obtained immediately from e0·A = I.

Inequality (2.3) shows, i.a., that the implicit Euler method is A-stable, since the whole left
complex half-plane belongs to the stability region.

A simple integral transform of (1.2) shows that the matrix ϕ-functions can also be written as

ϕ`(A) =

∫ ∞
0

esA · 1[0,1](s)
(1− s)`−1

(`− 1)!
ds , ` ≥ 1 , (2.4)

where 1[0,1](s) denotes the indicator function that is equal to 1 for s ∈ [0, 1] and 0 elsewhere. The
rational matrix functions r(A) ∈ R2m+1(A), that we intend to use for the approximation, can
be represented by a similar integral. Before we can state this integral representation, we need to
remark that, via partial fraction expansion, the space R2m+1(A), as given in (1.4), can be written
in an alternative form.

Lemma 2.2. We have

R2m+1(A) = span

{
1

z−m −A
, . . . ,

1

zm −A

}
, zk = γ + ihk , k = −m, . . . ,m .

Proof. Since for stiff matrices the matrix functions are defined for both spaces, it remains to
show that we have for z ∈ C the equality of the following two function sets

P2m

q2m+1
=

{
p2m(z)

q2m+1(z)
, p2m ∈ P2m

}
= span

{
1

z−m − z
, . . . ,

1

zm − z

}
:= M , (2.5)

where q2m+1(z) =
∏m
k=−m(zk − z). Let r(z) =

∑m
k=−m ak

1
zk−z ∈ M be arbitrary. A simple

calculation shows that

r(z) =

m∑
k=−m

ak
1

zk − z
=

1

q2m+1(z)

m∑
k=−m

ak

m∏
l=−m
l 6=k

(zl − z) ∈
P2m

q2m+1
.

Vice versa, let r(z) = p2m(z)/q2m+1(z). Partial fraction expansion yields

r(z) = −
m∑

k=−m

p2m(zk)

q′2m+1(zk)
· 1

zk − z
=

m∑
k=−m

ak
1

zk − z
with ak = − p2m(zk)

q′2m+1(zk)
.
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The validity of (2.5) can then be transferred from z ∈ C to matrices A ∈ CN×N .
Prepared by Lemma 2.2, we can state an integral representation for functions belonging to

R2m+1(A) similar to the representation of the matrix ϕ-functions in (2.4).
Lemma 2.3. The rational matrix functions that appear in the rational matrix subspace

R2m+1(A) for a matrix A with W (A) ⊆ H−0 can be written as

m∑
k=−m

ak
1

γ + ihk −A
=

∫ ∞
0

esA ·
m∑

k=−m

ake
−(γ+ihk)s ds . (2.6)

Proof. According to Lemma 2.2, R2m+1(A) is the set of all linear combinations as they appear
on the left-hand side of (2.6). We further obtain ‖esAe−(γ+ihk)s‖ ≤ |e−(γ+ihk)s|‖esA‖ ≤ e−γs for
s ≥ 0 by Lemma 2.1. Thus, the following improper Riemann integral exists and can be easily
computed to ∫ ∞

0

esAe−(γ+ihk)s ds =
1

γ + ihk −A
.

Due to the linearity of the integration, the lemma is proved.
The next lemma sounds simple, but it has the far-reaching consequence that all theorems that

we prove for matrices A with W (A) ⊆ H−0 in the following hold true for all matrices τA, τ ≥ 0,
with the same constants in the theorems.

Lemma 2.4. Let A be a matrix with W (A) ⊆ H−0 , then also

W (τA) ⊆ H−0 , ∀ τ ≥ 0 .

Proof. Let z be in W (τA). Then, there exists an x ∈ CN with ‖x‖ = 1, such that

z = ((τA)x, x) = τ (Ax, x) .

Hence, Re z = τ Re (Ax, x) ≤ 0 for τ ≥ 0.

3. Approximation of the matrix ϕ-functions. We start with the question of how well
the matrix ϕ-functions for stiff matrices can be approximated by rational matrix functions with
poles of order one at γ + ihk, k = −m, . . . ,m, on the line Re z = γ > 0. More exactly, let
A ∈ CN×N be a matrix with W (A) ⊆ H−0 . We consider the approximation of ϕ`(A), ` ≥ 1, in the
rational matrix subspace

R2m+1(A) =

{
p2m(A)

q2m+1(A)
, p2m ∈ P2m

}
, q2m+1(A) =

m∏
k=−m

(zkI −A) , zk = γ + ihk .

This space can be written in short as R2m+1(A) = {r(A), r ∈ P2m/q2m+1}.
We are interested in uniform bounds, i.e. bounds that are correct for all matrices A with a

field-of-values in the left complex half-plane. The following theorem states a bound of that kind.
Theorem 3.1. Let A have a field-of-values in the left complex half-plane, i.e. W (A) ⊆ H−0 ,

and choose the fixed denominator polynomial q2m+1(z) =
∏m
k=−m(γ + ihk − z). Then, we have

inf
r∈ P2m

q2m+1

‖ϕ`(A)− r(A)‖ ≤ C1
e−

γπ
h

1− e− 2γπ
h

+ C2
1

(hm)`
, ` ≥ 1 , (3.1)

where the coefficients C1 and C2 depend only on γ and `.
The bound of the theorem well reflects the idea of the proof. The ϕ-functions along the

imaginary axis are band-limited in Fourier space. They therefore allow for an approximation
within a finite spectrum, which gives the second part of the error bound with constant C2. In
view of (2.6), the inverse (zkI − A)−1 can be seen as the Laplace transform of esA. Because of

7



the damping in the Laplace transform due to the shift γ > 0, the approximation in the remaining
spectrum is exponentially damped, leading to the first part of the bound with constant C1.

For the proof of Theorem 3.1, the concept of bounded variation is required. We say that a
function f is of bounded variation on the unit circle T = [−π, π), consisting of R modulo 2π, if

VarT f := sup

n−1∑
k=1

|f(xk+1)− f(xk)| <∞ ,

where the supremum is taken for all finite sequences x1 < x2 < . . . < xn, with xk ∈ T, k = 1, . . . , n.
Functions of bounded variation possess a countable number of discontinuities αk ∈ T. In the
following we also need a modified notion of Var given as Var∗T f := VarT f

∗, where f∗ is a correction
of f such that f∗(αk) is between lims↗αk f(s) and lims↘αk f(s) for all interior discontinuities αk
(see [4], p. 17).

Proof. [of Theorem 3.1] Let A be an arbitrary matrix with a field-of-values in the left complex
half-plane. Because of Lemma 2.2 above, we obtain

inf
r∈ P2m

q2m+1

‖ϕ`(A)− r(A)‖ = inf
a−m,...,am

∥∥∥∥∥ϕ`(A)−
m∑

k=−m

ak
1

γ + ihk −A

∥∥∥∥∥ .
Due to the integral representations (2.4) and (2.6) and with the help of Lemma 2.1, we can reduce
the approximation of ϕ`(A) to a one-dimensional approximation problem, that is∥∥∥∥∥ϕ`(A)−

m∑
k=−m

ak
1

γ + ihk −A

∥∥∥∥∥ ≤
∫ ∞
0

‖esA‖

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds
≤
∫ ∞
0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds .
We now assume without loss of generality that h < π, so that π

h > 1, and split the integral as

∫ ∞
0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds (3.2)

=

∫ π
h

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds+

∞∑
l=1

∫ (2l+1)πh

(2l−1)πh

∣∣∣∣∣
m∑

k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds .
In order to apply standard results from the theory of trigonometric approximation, we have to
extend the first term containing the indicator function in a suitable manner to the interval [−πh ,

π
h ).

Since we are interested in a best possible trigonometric approximation, we should ensure that the
extended function has sufficient smoothness properties. For that purpose, we define a new function

g(s) :=


C

∫ s

−1
e
− 1

1−(2t+1)2 dt , −1 < s < 0

1 , s ≥ 0

0 , s ≤ −1

with C =

(∫ 0

−1
e
− 1

1−(2t+1)2 dt

)−1
, (3.3)

where g ∈ C∞(R) and |g(s)| ≤ 1 for s ∈ R. Furthermore, we set

f`(s) := g(s) · eγs (1− s)`−1

(`− 1)!
· 1[−1,1](s) ∈ C`−2(R) , f` ∈ C∞(R\{1}) .

One can check, that f` has a weak derivative of order `−1 with jump discontinuity at the point 1.
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Since the function g is defined such that g(s) = 1 for s ≥ 0, we are now able to estimate∫ π
h

0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds =

∫ π
h

0

e−γs

∣∣∣∣∣f`(s)−
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds
≤
∫ π

h

0

∣∣∣∣∣f`(s)−
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds
≤
∫ π

h

−πh

∣∣∣∣∣f`(s)−
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds .
The coefficients ak, k = −m, . . . ,m, are chosen such that∫ π

h

−πh

∣∣∣∣∣f`(s)−
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds = min
b−m,...,bm

∫ π
h

−πh

∣∣∣∣∣f`(s)−
m∑

k=−m

bke
−ihks

∣∣∣∣∣ ds
=

1

h
· min
b−m,...,bm

∫ π

−π

∣∣∣∣∣f` ( sh)−
m∑

k=−m

bke
−iks

∣∣∣∣∣ ds
=:

1

h
· Em

(
f`

( ·
h

))
1
,

where Em(f)1 denotes the best trigonometric approximation of a periodic function f on T in the
L1-norm. Due to the fact that a best trigonometric approximation to the restriction f`

∣∣
T : T→ R

is a real trigonometric polynomial, the coefficients bk can be restricted to coefficients that fulfill
b−k = bk. Consequently, the estimate of Em is a standard real approximation problem for the
function f` ∈ L1(T), seen as a function on the torus. We will use the notations of the book [4] by
DeVore and Lorentz. According to Theorem 2.3 in Chapter 7 on page 205 in [4], we have

Em

(
f`

( ·
h

))
1
≤ C` ω`

(
f`

( ·
h

)
,

1

m

)
1

with a fixed constant C` that does not depend on f`, and ω`(· , ·)1 is the L1-modulus of smoothness
of order `. According to Theorem 9.3 in Chapter 2 on page 53 and the definition of the modified
variation Var∗, we further obtain

ω`

(
f`

( ·
h

)
,

1

m

)
1

≤ 1

m`
·Var∗T f

(`−1)
`

( ·
h

)
≤ 1

m`
·VarT u`(·) ,

where u`(s) = f
(`−1)
` ( sh ) = d`−1

ds`−1

[
f`(

s
h )
]

for s ∈ T\{h}, and on the jump at h, u`(·) is defined as

the mean of the left and right limit of f
(`−1)
` ( ·h ). The function u` is then of bounded variation

on T. We also define the transformed function ũ`(·) = f
(`−1)
` (·), where the function ũ`(·) is again

defined as the mean of the left and right limit at the jump at 1. Since ũ`(s) = 0 for s ≤ −1 and
s > 1, it follows that

VarT u`(·) =
1

h`−1
Var[−πh ,

π
h )
ũ`(·) =

1

h`−1
Var[−1,1] ũ`(·) ,

where the transformed function ũ`(·) does not depend on h. Altogether, we have∫ π
h

−πh

∣∣∣∣∣f`(s)−
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds ≤ C2
1

(hm)`
, C2 = C`Var[−1,1] ũ`(·)

with the fixed constant C2 which does depend only on ` and γ. Our first term in (3.2) is thus
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bounded. For the second term, we obtain the immediate estimate

∞∑
l=1

∫ (2l+1)πh

(2l−1)πh

∣∣∣∣∣
m∑

k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds ≤
∞∑
l=1

e−γ(2l−1)
π
h

∫ (2l+1)πh

(2l−1)πh

∣∣∣∣∣
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds
=

∫ π
h

−πh

∣∣∣∣∣
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds · e−γ
π
h

1− e−2γ πh
.

Since we take the coefficients ak according to the best approximation, we can further conclude
that ∫ π

h

−πh

∣∣∣∣∣
m∑

k=−m

ake
−ihks

∣∣∣∣∣ ds ≤
∫ π

h

−πh
|f`(s)| ds + min

b−m,...,bm

∫ π
h

−πh

∣∣∣∣∣f`(s)−
m∑

k=−m

bke
−ihks

∣∣∣∣∣ ds
≤ 2

∫ π
h

−πh
|f`(s)| ds ,

by choosing bk = 0 for k = −m, . . . ,m. Finally, we have∫ π
h

−πh
|f`(s)| ds =

∫ π
h

−πh

∣∣∣∣g(s) · eγs (1− s)`−1

(`− 1)!
· 1[−1,1](s)

∣∣∣∣ ds ≤ eγ ∫ 1

−1

∣∣∣∣ (1− s)`−1(`− 1)!

∣∣∣∣ ds ≤ eγ 2`

`!
.

Hence, the second term in (3.2) is bounded by

∞∑
l=1

∫ (2l+1)πh

(2l−1)πh

∣∣∣∣∣
m∑

k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds ≤ C1
e−γ

π
h

1− e−2γ πh
, C1 = eγ

2`+1

`!
,

where C1 depends only on γ and `.
With Lemma 2.4, we instantly obtain the following corollary, which shows that the approxi-

mation works uniform in time and is therefore suitable for stiff problems in time integration.
Corollary 3.2. Let A have a field-of-values in the left complex half-plane and take the fixed

denominator polynomial q2m+1(z) =
∏m
k=−m(γ + ihk − z). Then, we have for all τ ≥ 0

inf
r∈ P2m

q2m+1

‖ϕ`(τA)− r(τA)‖ ≤ C1
e−

γπ
h

1− e− 2γπ
h

+ C2
1

(hm)`
, ` ≥ 1 ,

where C1 and C2 depend only on γ and `.
Similarly, all other theorems can be reformulated with the help of Lemma 2.4. Since these

reformulations are obvious, we will not state them as corollaries in the following, and without loss
of generality we will formulate our results for τ = 1.

4. Rational Krylov subspace approximation. We now carry the results on the approxi-
mation of ϕ`(A) in the rational matrix subspace R2m+1(A) over to the approximation of ϕ`(A)v in
the rational Krylov subspace Q2m+2(A, v). In Subsection 4.1, we state the resulting error bounds
and we discuss the computation of the rational Krylov subspace approximation in Subsection 4.2.

4.1. Error bounds. We consider the approximation of ϕ`(A)v in the rational Krylov sub-
space

Q2m+2(A, v) =

{
p2m+1(A)

q2m+1(A)
v, p2m+1 ∈ P2m+1

}
, q2m+1(A) =

m∏
k=−m

(zkI −A)

with zk = γ + ihk for k = −m, . . . ,m. The basic idea is to restrict the large matrix A ∈ CN×N
to the subspace Q2m+2(A, v) by using the restriction Am = PmAPm, where Pm is the orthogonal
projection onto Q2m+2(A, v). If this subspace has dimension 2m + 2, the matrix Am has rank
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2m+ 2 and can therefore be represented by a small (2m+ 2)× (2m+ 2) - matrix Sm. The matrix
ϕ-function times a vector is then approximated as

ϕ`(A)v ≈ ϕ`(Am)v ,

where ϕ`(Am)v can be computed more efficiently than ϕ`(A)v, when A is a large matrix. In
contrast to the previous section, we choose an approximation in the space P2m+1/q2m+1 instead
of P2m/q2m+1. The additional vector v in the rational Krylov subspace Q2m+2(A, v) compared to
R2m+1(A)v = p2m(A)/q2m+1(A)v, p2m ∈ P2m, is needed to ensure that r(A)v = r(Am)v for every
rational function r ∈ P2m/q2m+1. This condition requires Pmv = v so that we have to include
v in the rational Krylov subspace. Since (P2m/q2m+1)(A)v + span{v} = (P2m+1/q2m+1)(A)v =
Q2m+2(A, v), we consider from now on the approximation of ϕ`(A)v in the rational Krylov sub-
space Q2m+2(A, v). This is no restriction and allows nevertheless the application of the previous
results for the approximation of the matrix ϕ-functions in the subspace R2m+1(A) because of the
inclusion P2m/q2m+1 ⊂ P2m+1/q2m+1. We start with a lemma that shows that the locus of W (A)
in the left complex half-plane is preserved for the restriction Am = PmAPm.

Lemma 4.1. Let A ∈ CN×N be such that W (A) ⊆ H−0 and let Pm be the orthogonal projec-
tion to the rational Krylov subspace Q2m+2(A, v). Then, the restriction Am = PmAPm of A to
Q2m+2(A, v) belongs to our studied class of matrices, i.e. W (Am) ⊆ H−0 .

Proof. Let x ∈ CN be an arbitrary vector and set y = Pmx. Since Pm is an orthogonal
projection and is therefore self-adjoint, we have

Re (Amx, x) = Re (PmAPmx, x) = Re (APmx, Pmx) = Re (Ay, y) ≤ 0

by our assumption W (A) ⊆ H−0 . This is equivalent to W (Am) ⊆ H−0 .
Prepared with this lemma, the following theorem states the convergence rate for the approxi-

mation of ϕ`(A)v by ϕ`(Am)v in the rational Krylov subspace Q2m+2(A, v).
Theorem 4.2. Let A be an arbitrary matrix with W (A) ⊆ H−0 and let v be an arbitrary vector.

Further, let Am = PmAPm be the restriction of A to the rational Krylov subspace Q2m+2(A, v),
where Pm is the orthogonal projection onto Q2m+2(A, v). Then, we have the bound

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2

[
C1

e−
γπ
h

1− e− 2γπ
h

+ C2
1

(hm)`

]
‖v‖ , ` ≥ 1 , (4.1)

where C1 and C2 depend only on γ and `.
Proof. It is well-known (cf. [3], p. 21), that the rational Krylov subspace approximation in

the space Q2m+2(A, v) is exact for every rational function of the form r ∈ P2m+1/q2m+1, that is
r(A)v = r(Am)v. Therefore, we can write

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ ‖ϕ`(A)− r(A)‖‖v‖+ ‖ϕ`(Am)− r(Am)‖‖v‖ .

For the rational function r ∈ P2m+1/q2m+1, we can in particular choose a function in the
space P2m/q2m+1 ⊂ P2m+1/q2m+1. Since we have W (A) ⊆ H−0 and also, due to Lemma 4.1,
W (Am) ⊆ H−0 , we can then use the same estimates as in the proof of Theorem 3.1 on both parts
of the sum to give

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2‖v‖
∫ ∞
0

∣∣∣∣∣1[0,1](s)
(1− s)`−1

(`− 1)!
−

m∑
k=−m

ake
−(γ+ihk)s

∣∣∣∣∣ ds .
From here, the proof proceeds analogously to the proof of Theorem 3.1 and we end up with

‖ϕ`(A)v − ϕ`(Am)v‖ ≤ 2

[
C1

e−
γπ
h

1− e− 2γπ
h

+ C2
1

(hm)`

]
‖v‖ ,

where C1 and C2 are the same constants as in Theorem 3.1.
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Theorem 4.2 predicts a sublinear convergence that is independent of the norm of A. More
precisely, we have obtained a uniform error estimate for arbitrary matrices with a large field-
of-values somewhere in the left complex half-plane. In the case that the matrix A stems from
a spatial discretization, we therefore have a grid-independent approximation of ϕ`(A)v in the
rational Krylov subspace Q2m+2(A, v). It should be noted that only the second term in the bound
(4.1) decreases with the number m of iteration steps. For this reason, the free parameters γ and
h must be suitably selected in order to obtain a reasonable error bound. We will come back to
this issue in Section 5, where we discuss possible choices for these parameters.

4.2. Efficient computation of the rational Krylov subspace approximation. It re-
mains to show that the rational Krylov subspace approximation ϕ`(Am)v can be computed more
efficiently than the original matrix function ϕ`(A)v. The standard procedure is to use the Gram-
Schmidt process to determine an orthonormal basis Vm = [v1 v2 · · · v2m+2] ∈ CN×(2m+2) of the
rational Krylov subspace Q2m+2(A, v) with respect to the chosen inner product (· , ·) on CN . This
is realized by Algorithm 1 below. When an orthonormal basis Vm has been calculated, the orthogo-
nal projection on the rational Krylov subspace is given by Pm = VmV

+
m , where V +

m : CN → C2m+2

is the Moore-Penrose pseudoinverse of Vm : C2m+2 → CN satisfying

VmV
+
m Vm = Vm , V +

m VmV
+
m = V +

m , (VmV
+
m )∗ = VmV

+
m , (V +

m Vm)∗ = V +
m Vm .

With the notation (·)∗, we denote the adjoint with respect to the inner product on CN or, respec-
tively, Cm. Hereby, the space Cm is always endowed with the standard Euclidean inner product,
but the space CN might be equipped with another inner product. The adjoint with respect to the
Euclidean inner product in both spaces is designated by (·)H , meaning conjugated and transposed
as usual. With these notations, the rational Krylov subspace approximation reads

ϕ`(Am)v = Vmϕ`(Sm)V +
m v ,

where Sm = V +
mAVm ∈ C(2m+2)×(2m+2) is, in general, a small matrix. For the standard Euclidean

inner product on CN this simplifies to Pm = VmV
H
m and

ϕ`(Am)v = Vmϕ`(Sm)V Hm v = ‖v‖Vmϕ`(Sm)e1

with Sm = V Hm AVm and V Hm v = ‖v‖e1, where e1 is the first unit vector in C2m+2. Typically,
ϕ`(Am)v is a good approximation to ϕ`(A)v for 2m+ 2� N . To compute ϕ`(Sm)e1 for the small
matrix Sm one can use known algorithms for dense matrices (see e.g. [1]).

5. On the choice of γ and h. In order to choose the two parameters γ and h appropriately,
we have to know how the constant C2 = C`Var[−1,1] ũ`(·) in the bound (3.1) depends on γ.
Therefore, we will first establish an upper bound for the total variation of ũ` on the interval

[−1, 1]. Remember that ũ` in the proof of Theorem 3.1 was defined as ũ`(·) = f
(`−1)
` (·) for s 6= 1

and as the mean of the left and right limit at s = 1, where

f`(s) = g(s) · eγs (1− s)`−1

(`− 1)!
· 1[−1,1](s) .

Consequently, the function ũ` is differentiable on [−1, 1), has a jump at 1, and is equal to zero
outside [−1, 1]. By the definition of the total variation, we thus can bound the variation of ũ` by

Var[−1,1] ũ`(·) ≤
∫ 1

−1
|f (`)` (s)| ds+ sup

s∈[−1,1)
|f (`−1)` (s)| .

The last term is needed to take the jump of ũ` at the point 1 into account. To estimate |f (`)` (s)|
and |f (`−1)` (s)| for s ∈ [−1, 1), we use the general Leibniz rule. We set

Cg := max
k=0,...,`

max
s∈[−1,1]

|g(k)(s)| ,
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where g is the function defined in (3.3). Since g does not depend on γ, the same holds true for
the constant Cg, and we have

|f (`−1)` (s)| ≤ Cg ·
`−1∑
k=0

(
`− 1

k

) ∣∣∣∣∣
(
eγs

(1− s)`−1

(`− 1)!

)(k)
∣∣∣∣∣ , s ∈ [−1, 1) .

Applying the Leibniz rule once more, we get∣∣∣∣∣
(
eγs

(1− s)`−1

(`− 1)!

)(k)
∣∣∣∣∣ ≤

k∑
j=0

(
k

j

) ∣∣∣(eγs)(k−j)∣∣∣ ∣∣∣∣∣
(

(1− s)`−1

(`− 1)!

)(j)
∣∣∣∣∣ ≤ 2eγ(1 + γ)k ,

since the last factor in the sum can be bounded by 2 for all j = 0, . . . , k, ` ≥ 1 and s ∈ [−1, 1).

For the second term |f (`)` (s)|, one can proceed analogously. So, we conclude that

|f (`−1)` (s)| ≤ 2Cge
γ(2 + γ)`−1 and |f (`)` (s)| ≤ 2Cge

γ(2 + γ)` .

Altogether, we obtain

Var[−1,1] ũ`(·) ≤ 6Cge
γ(2 + γ)`

and therefore

C2 ≤ C̃`eγ(2 + γ)` ,

where C̃` depends only on ` but not on γ and h.
To select the parameters γ and h in a suitable way, we now have to take the whole expression

C1
e−

γπ
h

1− e− 2γπ
h

+ C2
1

(hm)`
≤ 2`+1

`!

eγ(1−
π
h )

1− e− 2γπ
h

+ C̃` e
γ(2 + γ)`

1

(hm)`
(5.1)

of our error bound into consideration. We can observe that the free parameter γ should neither
be chosen too large nor too small to keep the two terms in (5.1) of moderate size.

Moreover, we have to deal with the question of a proper choice of the second parameter h.
Since the first term in (5.1) does not depend on the iteration index m, a possible strategy could
be to choose γ and h such that

C1
e−

γπ
h

1− e− 2γπ
h

≤ tol ,

where tol is a given tolerance, e.g. tol = 10−4. Noting that the second term in (5.1) is of
size O( 1

h`
), it is obvious that too small values of h should be avoided. Additionally, very small

values of h can lead to instability problems in the parallel computation of the rational Krylov
subspace decomposition. The stability problems can be cured by using Ruhe’s serial rational
Arnoldi orthogonalization procedure (cf. [31]), but this would then be a serial algorithm. On the
other hand, h should not be chosen larger than one, since this would unfortunately result in large
values for the prefactor eγ(2 + γ)` of the second term. We resume these correlations in Table 5.1
for the case ` = 1.

A second possibility to determine the parameters γ and h is to fix γ and to choose h in such
a way that both terms in (5.1) decrease equally with m, which leads to

e−
γπ
h =

1

(hm)`
⇐⇒ h =

γπ

`

1

W
(
γπm
`

) , (5.2)

where W (·) denotes the Lambert W function, which fulfills the equation z = W (z)eW (z) for any
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C1
e−

γπ
h

1−e−
2γπ
h

h γ eγ(2 + γ)

10−4 0.25 1 8.2

10−4 0.5 2.1 33.5

10−4 1 5 1038.9

10−4 2 18.6 2.5 · 109

Table 5.1: Correlation of γ and h for tol = 10−4, ` = 1.

z ∈ C. Due to the well-known lower and upper bound for the Lambert W function (cf. [18])

ln(z)− ln(ln(z)) ≤W (z) ≤ ln(z) , z ≥ e ,

the choice (5.2) ensures that both terms in (5.1) decrease like

C1
e−

γπ
h

1− e− 2γπ
h

+ C2
1

(hm)`
≤ Cγ,`

(
ln(m)

m

)`
with a constant Cγ,` depending only on γ and `.

6. Numerical experiments. In our first experiment in Subsection 6.1, we check the pre-
dicted convergence rates numerically. Subsection 6.2 studies the performance of the parallel version
of our algorithm compared to the serial version. And finally, in Subsection 6.3, we present ex-
periments with a finite-element discretization of a wave equation with homogeneous Neumann
boundary conditions.

6.1. Convergence rate testing. We first consider a small test example, where we approx-
imate ϕ`(A)v in the rational Krylov subspace Q2m+2(A, v) for a 2 000 × 2 000 - matrix A whose
eigenvalues Λ(A) = {λ1, . . . , λ2 000} lie on the boundary of the left semicircle around 0 with ra-
dius 100 in the left complex half-plane. For this, we build a diagonal matrix that contains the
selected eigenvalues, and perform a similarity transform with an orthogonal test matrix Q from
the Matlab gallery ‘orthog’ (type k = 1). This allows us to determine the exact matrix function by
simply computing ϕ`(A) = QHϕ`(D)Q, where D is the diagonal matrix D = diag(λ1, . . . , λ2 000).
By construction, A is normal and since the field-of-values is in this case the convex hull of its
eigenvalues, W (A) is located in the left complex half-plane and the matrix A therefore fits in our
framework. The initial value v is chosen as a random vector and the free parameters are set to
γ = 2 and h = 0.5 according to Table 5.1.

In Figure 6.1, we plot ln(Em)/ ln(m) against the number m of iteration steps, where Em
designates the error for the approximation of ϕ`(A)v in the rational Krylov subspace Q2m+2(A, v)
given as Em = ‖ϕ`(A)v − ϕ`(Am)v‖. The curves correspond for ` = 1, 2, 3, 4 to the black solid,
red dashed, blue dotted, and green dash-dotted line. As expected from our convergence analysis,
ln(Em)/ ln(m) tends to −` for larger dimensions of the rational Krylov subspace.

6.2. A parallel test example. Parallel computing is mainly used either to treat extremely
large problems, that cannot be handled on a single computer, or to save computation time by
solving problems of medium or large size faster. Here, we direct our attention to the second
case: Since we have 2m + 1 different poles zk = γ + ihk, k = −m, . . . ,m, and therefore 2m + 1
independent linear system (zkI − A)−1v to solve, our method is perfectly suited for a parallel
implementation in time. By computing p single linear systems simultaneously on p kernels, a
tremendous speed-up can be obtained.

Possible variants of a parallel rational Krylov algorithm are discussed by Skoogh in [34]. His
general parallel algorithm is shown in Algorithm 1. This algorithm determines an orthonormal
basis Vm = [v1 v2 · · · v2m+2] of the rational Krylov subspace Q2m+2(A, v) with the prescribed
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Fig. 6.1: Plot of ln(Em)/ ln(m) versus m.

denominator polynomial q2m+1(z) =
∏m
k=−m(zk − z) by using the Gram-Schmidt process. After

solving in each loop p linear systems (zkI−A)wk = w̃k on p different kernels, the resulting vectors
are orthogonalized to each other. In our experiments, we only use one loop per time step and take
w̃k = v for all k. A master program performs the program control, manages the communication
and does all orthogonalizations, while the slave programs each solve one of the occurring linear
systems.

Algorithm 1: Parallel rational Krylov algorithm

given: matrix A ∈ CN×N , vector v ∈ CN ,
set of poles Z := {zk = γ + ihk, k = −m, . . . ,m}

v1 = v/‖v‖
j = 1
while j ≤ 2m+ 1

choose vectors w̃k, k = 1, . . . , p
choose poles zk ∈ Z, k = 1, . . . , p
compute wk = (zkI −A)−1w̃k, k = 1, . . . , p
for k = 1, . . . , p do

for i = 1, . . . , j
hi,j = (wk, vi)

end for

wk = wk −
∑j
i=1 hi,jvi

hj+1,j = ‖wk‖
vj+1 = wk/hj+1,j

j = j + 1
end for

end while

To illustrate that a parallel implementation of the rational Krylov subspace method can sig-
nificantly outperform the serial computation, we consider a full matrix A ∈ C1 500×1 500 with a
field-of-values [−1500,−1] on the negative real line and a random vector v of norm one. We
approximate ϕ1(τA)v and ϕ4(τA)v, τ = 0.05, by applying a parallel and a serial version of our
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rational Krylov subspace decomposition with h = 0.25 and γ = 1 in accordance with Table 5.1.
We use reorthogonalization in both algorithms. In Figure 6.2, the approximation error is plotted
against the computation time in seconds. The parallel version (red solid line) has been computed
on a local cluster of 13 heterogeneous workstations using MPI and the serial version (blue dashed
line) has been computed on one of the fastest workstations, both times using the C program-
ming language. The network is not a high-performance network suited for parallel computation.
Nevertheless, the parallel-in-time version of our rational Krylov subspace method is tremendously
faster for our test problem, as can be seen in Figure 6.2. The smallest error corresponds to the
dimension 100 of the Krylov subspace. The green dash-dotted line displays the error obtained
by the implicit Euler method applied to the stiff equation (1.3) with solution y(τ) = τ `ϕ`(τA)v,
where we scaled the result by τ−`. This error curve serves as a reference for standard stiff time
integration methods. For comparable computation time, the ϕ4-function can be approximated
more accurately than the ϕ1-function, which is in concordance with our theory. However, the
implicit Euler method does not improve for higher ϕ-functions.

We also measured the error and time for a Krylov subspace of dimension 450. For this
computation slightly more than one billion of floating point operations (1 Tflop) are necessary.
The parallel variant computed an approximation of ϕ1(τA)v with an error of 1.044555 · 10−9 in
33.53 seconds. The serial variant computed an approximation with the same error in 837.6 seconds,
which corresponds to approximately 14 minutes.

In Figure 6.3, ϕ1(τA)v and ϕ4(τA)v have been computed on a single machine with 12 true
kernels. The performance of the parallel version is again superior to the serial variant of the
algorithm. The small jump in the red solid line for the parallel version in the approximation of
the ϕ1-function occurs exactly from the change from 12 to 13 threads.

In Figure 6.4, ϕ4(A)v has been computed for a full matrix A ∈ C1 500×1 500 with a field-of-values
[−1 500 i,−i] on the imaginary axis and a random vector v. On the left-hand side of Figure 6.4,
error versus computation time is shown for the local cluster of 13 heterogeneous workstations and
on the right-hand side for the single machine with 12 true kernels. As before, the red solid line
refers to the parallel implementation of the rational Krylov subspace method, the blue dashed line
to the serial version of the rational Krylov subspace method, and the green dash-dotted line to
the implicit Euler method. Again, the parallel implementation shows a significant speed-up.

Our test examples clearly demonstrate that a parallel rational Krylov subspace implementation
can be significantly more efficient than a serial implementation.

6.3. Finite-element discretization. We discretize the wave equation

u′′ = 4u− u , u(0) = u0 , u′(0) = u′0

with homogeneous Neumann boundary conditions by linear finite elements on the domain Ω shown
in Figure 6.5.

Fig. 6.5: Mesh for Ω with 667 nodes. Fig. 6.6: Discrete initial value.
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Fig. 6.2: Comparison of a serial (blue dashed line) and a parallel (red solid line) implementation
on a local cluster of 13 heterogeneous workstations of the rational Krylov subspace method as well
as the implicit Euler method (green dash-dotted line). The error of the approximation of ϕ1(τA)v
(top) and ϕ4(τA)v (bottom) is plotted versus the computing time in seconds for a full matrix
A ∈ C1 500×1 500 with field-of-values [−1 500,−1], τ = 0.05, and a random vector v ∈ C1 500.
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Fig. 6.3: Comparison of a serial (blue dashed line) and a parallel (red solid line) implementation on
a machine with 12 true kernels of the rational Krylov subspace method as well as the implicit Euler
method (green dash-dotted line). The error of the approximation of ϕ1(τA)v (top) and ϕ4(τA)v
(bottom) is plotted versus the computing time in seconds for a full matrix A ∈ C1 500×1 500 with
field-of-values [−1 500,−1], τ = 0.05, and a random vector v ∈ C1 500.

More exactly, we consider the first-order formulation

[
M 0
0 M

] [
q
p

]′
=

[
0 M

−(K +M) 0

] [
q
p

]
,

[
q(0)
p(0)

]
=

[
q0
p0

]
,

where q and p are the discretizations of u and u′, M is the standard mass matrix and the stiffness
matrix −(K +M) is the discretization of 4u− u on the grid. Our chosen initial value u0 can be
seen in Figure 6.6. The velocity u′0 has been chosen to be zero. Since K and M are symmetric
positive definite matrices, K +M is positive definite and symmetric as well. With y = [ qT pT ]T
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Fig. 6.4: Comparison of a serial (blue dashed line) and a parallel (red solid line) implementation of
the rational Krylov subspace method as well as the implicit Euler method (green dash-dotted line).
The error of the approximation of ϕ4(A)v is plotted versus the computing time in seconds for a full
matrix A ∈ C1 500×1 500 with field-of-values [−1 500 i,−i] and a random vector v ∈ C1 500 On the
left-hand side a local cluster of 13 heterogeneous workstations has been used, on the right-hand
side a single machine with 12 true kernels.

we obtain

y′ =

[
0 I

−M−1(K +M) 0

] [
q
p

]
=: Ay , y(0) =

[
q(0)
p(0)

]
=

[
q0
p0

]
= y0 .

Let N be the number of nodes in the current finite-element grid. For the symmetric and positive
definite matrix

B =

[
K +M 0

0 M

]
,

we equip the space C2N with the inner product (· , ·)B given as([
q
p

]
,

[
q̃
p̃

])
B

= q̃H(K +M) q + p̃HMp =
[
q̃H p̃H

] [ K +M 0
0 M

] [
q
p

]
. (6.1)

This inner product corresponds to the discretization of a suitable norm in the continuous case.
That the discrete norm is properly chosen, is also reflected in the following lemma.

Lemma 6.1. With respect to the inner product (6.1), we have

Re (Ay, y)B ≤ 0 , ∀ y ∈ C2N .

Proof. With a simple calculation, we have for an arbitrary y = [ qT pT ]T ∈ C2N

(Ay, y)B =

([
0 I

−M−1(K +M) 0

] [
q
p

]
,

[
q
p

])
B

=

([
p

−M−1(K +M) q

]
,

[
q
p

])
B

= qH(K +M) p− pH(K +M) q = 2i Im(qH(K +M) p)

and hence

Re (Ay, y)B = 0 ≤ 0 ,
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Fig. 6.7: Accuracy of the polynomial Krylov subspace method (red solid line) and of the parallel
rational Krylov subspace method (blue dashed line) for the approximation of ϕ1(τA)Ay0 for a
1 334 × 1 334 - matrix (on the left-hand side) and a 78 862 × 78 862 - matrix (on the right-hand
side) versus dimension of the Krylov subspaces. The black dash-dotted line has the predicted
convergence order O

(
1
m

)
for the ϕ1-function.

that is, the statement of our lemma.

Lemma 6.1 shows that our theory is applicable. The choice of suitable norms is not only
crucial for the continuous problem, but also for the discretized equations. At least, if one would
like to have such desirable features as a grid-independent convergence. With respect to the rational
Krylov approximation according to Subsection 4.2, the pseudoinverse V +

m reads V +
m = V Hm B, the

projection is Pm = VmV
H
m B and the small matrix Sm = V Hm BAVm. One can easily check that

Sm = V Hm BAVm = V Hm

[
0 K +M

−(K +M) 0

]
Vm ,

so that the entry M−1(K +M) in A has not to be computed.

In Figure 6.7, we compare the approximation errors of the exponential Euler method y(τ) ≈
y0 + τϕ1(τA)Ay0 with τ = 0.5, where the matrix ϕ1-function of τA times Ay0 has been approx-
imated by the “non-stiff” standard polynomial Krylov subspace method (with properly chosen
norms, of course) and with the “stiff” rational Krylov subspace method with h = 0.5, γ = 1,
respectively. For the ϕ1-function, our main theorem states a convergence rate of order O

(
1
m

)
up to a constant that is small enough for our choice of parameters. To illustrate that the error
curve in our experiment behaves as predicted, we included a line of this order in the plot. For
larger systems, it becomes obvious that the rational Krylov subspace method is more suited to
the numerical solution of stiff problems.

7. Conclusion. We analyzed the convergence of a rational Krylov subspace method for the
approximation of ϕ`(A)v, ` ≥ 1, independent of the norm of the matrix A having a field-of-values
in the left complex half-plane with respect to a general inner product. Up to an exponentially
small term, the convergence is sublinear, O(m−`), for the ϕ`-functions. Due to the chosen simple
poles, the method might be massively parallelized in time, which has the potential to render a
significant speed-up that standard Runge-Kutta methods for stiff problems cannot possess due
to their serial nature. The obtained error bounds are slightly improved in the current setting
compared to the resolvent Krylov subspace approximation using a single repeated pole. We also
emphasized the analogy of the standard Krylov subspace method to a non-stiff method and the
rational Krylov subspace method to a stiff solver. The gain in efficiency of the “stiff” rational
Krylov method with respect to the “non-stiff” standard Krylov subspace method is apparent.
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