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Abstract

In a recent paper, we introduced a new look-ahead algorithm for recursively com-
puting Padé approximants. This algorithm generates a subsequence of the Padé ap-
proximants on two adjacent rows (defined by fixed numerator degree) of the Padé
table. Its two basic versions reduce to the classical Levinson and Schur algorithms if
no look-ahead is required. In this paper, we show that the computational overhead
of the look-ahead steps in the O(N?) versions of the look-ahead Levinson and the
look-ahead Schur type algorithm can be further reduced.

If the algorithms are used to solve Toeplitz systems of equations Tx = b, then the
corresponding block LDU decompositions of T~! or T, respectively, can be found
with less computational effort than with any other look-ahead algorithm available
today.

Key words: Padé approximation, row recurrence, fast algorithm, sawtooth
recurrence, look-ahead, Toeplitz matrix, Levinson algorithm, Schur algorithm,
biorthogonal polynomials.

1 Introduction

In this paper, we improve the algorithm we proposed recently for computing
a (0, N) Padé form of a formal Laurent series h with complex coefficients [15].
This variant and others described previously in [12-14] construct regular or
column-regular Padé forms from regular or column-regular Padé forms of lower
denominator degree. The basic ingredient to proceed along adjacent rows in
the Padé table is to multiply both members of a regular pair by polynomials

Preprint submitted to Elsevier Preprint August 1996, revised June 1997



of low degree. To be more precise, these polynomials are two-point Padé forms
of residuals and numerators of the regular pair.

Here we describe a different approach. We have shown that the gaps between
two regular pairs of Padé forms can be filled by so-called left and right un-
derdetermined Padé forms, which correspond to inner formally biorthogonal
polynomials. However, in our algorithms [12-15], these underdetermined Padé
forms were constructed solely to complete the block LDU or the inverse block
LDU decomposition of a Toeplitz matrix, but were not used for anything else.
This is exactly, what we want to change here. We build the next regular pair
with the help of underdetermined Padé forms. Since we then no longer have
recurrences based on multiplication of polynomials, we lose the option to ex-
tend the fast O(N?) algorithms to superfast O(N log”> N) algorithms. This
disadvantage is compensated by the fact that the new algorithm has less over-
head than any other known look-ahead algorithm that computes the complete
factorization of a Toeplitz matrix. Moreover, superfast algorithms are faster
only for sufficiently large dimensions N, and hence, stable fast algorithms
are still of interest. Instead of products of polynomials, the new recurrences
only involve linear combinations of previous (underdetermined) Padé forms or
shifted copies of those.

The idea of using inner formally orthogonal or biorthogonal polynomials in
different kinds of look-ahead algorithms is by far not new. It was used in the
look-ahead Lanczos process [5], the look-ahead Hankel solver [8] and its block
version [23], and the look-ahead Toeplitz solvers [4,7]. However, to the best
of our knowledge it seems to be new to use underdetermined Padé forms to
construct recurrences in non-normal Padé tables. We will show that the Padé
approach can help to find more efficient recurrences. To convince the reader of
this statement, we reinterpret the algorithms proposed by Freund and Zha [7]
and by Freund [4] in terms of Padé approximation. We will see that these algo-
rithms can be improved by exploiting classical recurrences known in the Padé
literature. A nice overview of relations between formally biorthogonal polyno-
mials, Padé approximation, Hankel, and Toeplitz matrices in exact arithmetic
was recently written by Bultheel and van Barel [1].

A benefit of looking into algorithms for Toeplitz matrix factorization or for
constructing formally biorthogonal polynomials from the Padé point of view
is that the same arguments can be used to derive recurrences for Levinson and
Schur type algorithms. We would like to stress that in order to establish the
recurrences no deep understanding of Padé approximation is necessary, except
for the fact that (m,n) Padé forms exist for any pair of integers (m,n) with
nonnegative n and for some properties on regularity of Padé forms, which can
all be proved in one line.

Two main features of the algorithm proposed in [15] are inherited by the new



variant. The first one is that it performs look-ahead steps of minimal size and
the second is that it reduces to the classical Levinson [21] or Schur algorithm
[22], if only regular steps of size one are performed.

This paper is an extension of [15], and we therefore want to avoid to repro-
duce what we proved there. Instead, we only introduce the basic notation and
mention the definitions and statements we take from [15]. The paper is orga-
nized as follows. First we introduce some notation in Section 2. In Section 3
we define left and right underdetermined Padé forms. Section 4 contains the
new recurrences. In Section 5, we rederive the Freund and Zha algorithms in
terms of Padé approximation and show how the computational overhead of a
look-ahead step can be reduced by up to a factor of two. We compare the com-
putational work of the new algorithm and some other look-ahead algorithms
available in the literature in Section 6. Finally, Section 7 contains conclusions
and further developments.

2 Preliminaries and Notation

In the following,

,CI::{h eL: yp=0ifk< l},
Lro={hel; uy=0ifk>m},
Pn:={p € L; p polynomial of degree at most m}

denote subsets of L, the set of formal Laurent series with complex coefficients,

h(¢) = f: prCt (2.1)

k=—c0

and P, the set of all polynomials. The formal projection of h € L into £;N L,
is denoted by

Wy (C) = iﬂjCj
=l

and the mth coefficient of h is written as I,,h(() := . We write h(() =
O, (¢ if h(¢) € L. With h(co) and h(0) we denote the leading coefficient of
h € L5 and h € Ly, respectively.

For m € Z and n € N, where Z is the set of all integers and N is the subset
of all nonnegative integers, an (m,n) Padé form of h is any pair (p,q) €



L x (P,\{0}) satisfying

B(Oa(C) = p(O) = O (C™1) € Lo, (2.2)

The series e € Ly defined implicitly by

is called the residual of (p,q).

Padé approximations can be listed in a Padé table, where we let the m-axis
point to the bottom and the n-axis point to the right. In this paper, we deal
with Padé forms in the (—1)st and the Oth row of the Padé table. A key
point to our derivations is the use of regular (0,n) Padé forms. If we denote
by (p,¢>) a (—1,n — 1) Padé form of h and by e} its residual, then we can
define a regular (0,n) Padé form (p,, ¢,,) in the following equivalent ways [12]:
(i) the Toeplitz matrix T, = (y1i—;)} ;o is nonsingular;
i) pugy —Ppdn #0 € L _4;

)
i) p
iii) (0 )%Oaﬂdqn( ) # 0;

V) prgy = ppgn = AT £0, AR € C.

In order to make the notation more illustrative, we use arrows to indicate the
location of neighboring Padé forms with respect to a regular (0,n) Padé form
of h € L, as we did in the above definition. Hence, we denote a (—1,n — 1)
Padé form by (p,¢>), a (—1,n) Padé form by (p!, ¢!), and a (0,n — 1) Padé
form by (p:,¢5 ). The corresponding residuals are denoted in the same way.
The following picture shows the location of these Padé forms and illustrates
the notation.

—1 aq)
n—1 n (2-4)

If (pn,q,) is a regular Padé form, then we call n a regular index. In this
case, the four Padé forms shown in the picture can be computed by solving
linear systems with coefficient matrix T,,. They are uniquely determined up to
scaling. Once we have ¢,, we obtain p, = [l_...0(hq,) and €, = I, 41.00(hqy)
from formal projections, and similar for the other Padé forms. Setting

()= Z:Pj,an



and using the analogous notation for ¢!, ¢°, and ¢, the coefficients of ¢, and
q! are determined by the well-known Yule-Walker equations

Pin Hi pg,n H—n
Tn = —Pon ) Tn = _Pl,n
Prn fn Pt =

and the coefficients of ¢5~ and ¢, by

1 . 0
Pon 0 Pon
T, = p,, (0) S = ¢, (0)
0
p:—l,n p?”L\—l,TL
_0_ _1_

These equations are also called fundamental equations [16] and their solutions
are called generators in the context of displacement structure [20]. Since n is
a regular index, we clearly have

Pon 7£ 07 Pz,n 7£ 07 p:(oo) 7£ 07 67,1\(0) 7£ 0. (25)

We can therefore use the freedom we have in scaling Padé forms by setting
these quantities to one and assume in the following the normalizations

pO,n - 17 pz,n = 17 pnF(OO) = 17 67,1\(0) = 1 (26)

Although we defined Padé forms for arbitrary m € Z and n € N in (2.3), we
want to give the definitions of the four Padé forms in (2.4) explicitly again,
because they play such a fundamental role throughout this paper:

hqn —Pn = §n+1€n7

(Pns qn) € L5 X P, en € Lo
hay —py ="y, (pp
(
(

Sy ) ELY Y X Py, e €L
sy | 1 0 2.7
psLg) € LS X Py, e € L

phoaly e L7, x P, el € Ly

n

ha' —py = (el
hgl —pl = (el

The somehow dubiously looking last three equivalent definitions (ii)—(iv) of
a regular (0,n) Padé form can be proved in one line by multiplying the first



equation in (2.7) by ¢, the second equation by ¢,, and subtracting:

P n — Puty = " H(Cengy — engn) € Looa. (2.8)
—— Ne— ———— S —
£y £y Lo Lo

So, what one really has to know about Padé approximation for our purposes is
that a regular index n corresponds to a nonsingular Toeplitz matrix T,, and one
has to remember (2.7) from the definition of Padé forms. The nonsingularity
of T, then implies (2.5), which allows the normalization (2.6).

3 Padé forms and formally biorthogonal polynomials

As we mentioned in the introduction, the new recurrences not only use regular
pairs of Padé forms but also certain underdetermined Padé forms defined
below. This is motivated by the close connection between Padé forms and
formally biorthogonal polynomials (FBOPs) with respect to a sesquilinear
form (-,-) on P x P defined by its moments

<§i7 C]> = g

Let h be given by (2.1) and denote by s* the conjugated and reflected poly-
nomial of s € P, defined as s* = ("5(¢™"). If ¢oyr € Poys, then (¢, () =0
for 1 =0,...,n —1 if and only if there exists p,1; € L} such that

_ Cn—l—k—l—l

hGnik — Pt Cntk — O+(Cn+k+1)v (3'1)

see [15, Lemma 7.1]. If n is a regular index and ¢, is of full degree n+k, then
¢4y is called an (n + k)th inner left FBOP. For k = 0, it is an nth left FBOP
[7,12,15]. Comparing (3.1) for & = 0 with the definition (2.7) of a (0,n) Padé
form of h shows the close connection to left FBOPs. From the third definition
in (2.7), it follows that (¢7*, (") =0 for 1 = 0,...,n — 2. However, ¢©* is an

n

(n — 1)st left FBOP if and only if it has full degree n — 1, or, equivalently, if
q, (0) # 0.

Definition 1 If n is a regular index and k > 1, then any pair (putk, Goik) €
L5 X Pogr with ¢,4x(0) # 0 satisfying (3.1) is called a (0,n + k) left under-
determined Padé form (with respect to the regular index n), and e,y € Lo is
called its residual.

Similarly it was shown in [15, Lemma 7.2], that if qZ_I_k € Puik, then
<§i,q2+k> =0 for ¢ =0,...,n — 1 if and only if there exists p;-k e L,



such that

hQZ-Hc - p;-k = C”eLk = O+(§n)- (3-2)

Here, qZ_I_k is called an (n+k)th inner right FBOP if n is a regular index and if
qZ_I_k is of full degree n+ k. The case k = 0 relates to the definition of a (—1,n)
Padé form of h, hence upper neighbors of regular Padé forms correspond to
right FBOPs. It follows from the second equation in (2.7), that ((*,¢>*) = 0
fori =0,...,n —2. Thus ¢, is an (n — 1)st right FBOP if and only if it has
full degree n — 1.

Definition 2 If n is a regular index and k > 1, then any pair (pz_l_k,qz_l_k) €
L5 X Pagk \ Poyr—1 satisfying (3.2) is called a (—=1,n + k) right underdeter-
mined Padé form (with respect to the reqular index n), and ez_l_k € Loy is called
its residual.

Clearly, (0,n 4+ k) left and (—1,n + k) right underdetermined Padé forms exist
for any k > 1. This can be seen by recognizing that the coefficient matrix of
the n x (n + k) underdetermined linear system for the unknown coefficients
of the denominators of the underdetermined Padé forms contains T, as a
submatrix. Since n is assumed to be a regular index, T,, is nonsingular. Thus
one can choose the coefficients not belonging to this subsystem arbitrarily and
then compute the unique solution of the subsystem.

Like the algorithm of [15], our new algorithm will perform regular steps iden-
tical to those of the classical Levinson or Schur algorithms whenever possible.
Hence, we will consider only the look-ahead steps here. If such look-ahead
steps are necessary, the new algorithm builds the same blocks as the one of
[15], since it is also based on regular pairs of Padé forms. In particular, the
look-ahead steps are of minimal size. However, we no longer construct two-
point Padé forms to compute the regular pair, but instead use the left and
right underdetermined Padé forms we computed in between. In [15], we pro-
ceeded from one regular pair to the other with the help of a suitable two-point
Padé form. This can be illustrated as

-1 to be computed
0 to be computed

n n+k

where circles represent Padé forms and a line connecting two Padé forms
indicates that they belong to different blocks of the Padé table. In the picture,
this means that n and n+k are regular indices, which is further emphasized by
vertical lines. Moreover, any underdetermined Padé form in between was also



computed from the regular pair corresponding to the index n. An extension
of this type of algorithm to block Toeplitz matrices is given by Van Barel and
Bultheel [24]. They prove that even the block algorithm is weakly stabe.

The complete block LDU decomposition of the Toeplitz matrix T requires the
computation of residuals and numerators of Padé forms, but the computa-
tion of denominators is not necessary. Such algorithms are called Schur-type
algorithms. Levinson-type algorithms compute an inverse block LDU decom-
position, which contains the coefficients of denominators of Padé forms only. A
block starting with the regular index n contains the coefficients of the (—1,n)
and the (0,n) Padé forms, the (—=1,n +1),...,(=1,n 4+ k — 1) right, and the
(0,n +1),...,(0,n + k — 1) left underdetermined Padé forms. It turns out
that it pays off to compute also the (—1,n 4+ k — 1) Padé form (the upper left
neighbor of the regular (0,n + k) Padé form) although none of the coefficients
of this Padé form occur in the block decomposition of T or T~ It is impor-
tant to understand that the (—1,n 4+ k — 1) Padé form and the (—=1,n+k—1)
right underdetermined Padé form are different if & > 1.

4 Alternative recurrences

In the following, we always assume the normalization (2.6) introduced in Sec-
tion 2 for regular Padé forms and pg,, = plm =1, i¢.e., the first two normal-
izations of (2.6), for underdetermined Padé forms.

Before we state our main theorem, we would like to illustrate the recurrences
by the following pictures. Here, circles represent Padé forms and squares stand
for underdetermined Padé forms. The (underdetermined) Padé form distin-
guished by an arrow is computed from the other (underdetermined) Padé
forms (or shifted copies of them) shown in the picture. Vertical lines represent
the end of a look-ahead block, i.e., the first column on the right of a vertical
line corresponds to a regular index. In general, these lines do not correspond
to blocks of the Padé table. In all our pictures, n and n + k£ are assumed to
be regular indices.

(4a) Compute the upper left neighbor of the regular (0,n + k) Padé form, i.e.,
the (—1,n4+k—1) Padé form (p, ., ¢,y ,) (represented by the circle inside

-1 ‘Q HRERE G—'i to be computed
0

n n+k

the square).

Recall that the (—1,n+4%—1) right underdetermined Padé form indicated



by the square at the same position is different from the (—1,n + k — 1)
Padé form we want to compute.
(4b) Compute the regular (0,n + k) Padé form (puir, Gntk)-

-1
0 % (][] [ D‘G— to be computed
n n+k

(4c) Compute the (0,1 4 7) left underdetermined Padé form (pu4;, ¢nt;) from
the (0,n+7—1) (left underdetermined) Padé form and from the auxiliary
(—1,n — 1) Padé form.

-1 0O
0 [] to be computed

n n+j) n4+k

(4d) From the auxiliary (—1,n — 1) Padé form and the (—1,n + j — 1) (right
underdetermined) Padé form compute the (—1,n + 7) right underdeter-

mined Padé form (pz_l_j, qZH).

-1 Q‘ ] B—’i to be computed
0

n n+j) n4+k

The pictures clearly show that except for computing the next auxiliary upper
left neighbor of a regular pair itself in (4a), the auxiliary (—1,n — 1) Padé
form (p.>, ¢) is used in every other recurrence of our algorithm.

In the sequel, we will use the following notation, where n still denotes a regular
index:

o0 o0 o0

0 T ! - 3 -1l

nti =D EmrtnssC Puti = 2 Tejpinri G =D m ¢
=0 (=0 (=0

Theorem 3 Let (pn,q,), (py,qy) be a regular pair of (0,n) and (—1,n — 1)
Padé forms of h € L with residuals ¢, and €, and let (pl,ql) be a (—1,n)
Padé form of h with residual €. Moreover, let (pnyi,Gnr;) be (0,n + 7) left
and (pz_l_j, qZ_I_j) be (—1,n+7) right underdetermined Padé forms with residuals

€ntjs eiﬂ, jg=1,....k—1, respectively.



(a) If a nontrivial solution of the linear system

gl,n e gz,n—l—k—l 00\
' Ceeln(0) (A1)
T T
€n+k—1,n e €n+k—1,n+k—1 01,:—1
exists, then (py ., gy with
< t
Pk b1 Prt;
_ T N
Q7,1\+k - n+j 0]’ (4-2)
=0
k- t
167,1\+k Cntj
is a (—1,n+k —1) Padé form of h with residual ).
(b) Let
Dok = —nsia (0)/e3(0). (43)
If a solution of
Ton - T—k4+1,n+k—1 bo
(4.4)
Tk=1,n " TOomn4k-1 Or—1
0 W&n
N
T—k+1,n+k-1 Tn
. N
L 7T_17n+k_1 i _ﬂ-k\—l,n_
exists, then (Putk, Gnik) with
Pr+k Prtk—1 1 Py Py
_ _; k41
Gtk | = | Gorret |+ 20 | P gugs | 05+ C g | Onr (45)
=0
CEnth €nth-1 €nt; €

is a (0,n+ k) Padé form of h with ¢,+1(0) =1 and residual e, 1.
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(c) Forg=1,....,k—1, let ¥,4; = —e,4;-1(0)/e>(0). Then

Prtj Prtj—1 Cp
Gntj | = Grtj—1 + | Cag> Dy 71 (4.6)
et e e

yields a (0,n + j) left underdetermined Padé form with residual e, ;.

(d) Forjg=1,....,k—1, let 1914-]‘ = —ng_'_j_l/wé\’n. Then

Py Py Cply

_ T
A e L GRS RVt R (4.7)
ez-l—j ez-l-j—l e

yields a (—1,n + 7) right underdetermined Padé form with residual ez_l_j.

PROOF. First recall from (2.5) that €>(0) # 0 if n is a regular index. More-
over, it follows from the discussion at the end of Section 7 in [15] that in the
case that we start a look-ahead step, also mp,, # 0. Therefore, all quotients
arising in the theorem are well defined.

a) We use (4.2) as the definition of p>,, and ¢ ,. Then we have by Defini-
n+k n+k
tion 2 and by (2.7)

k—1
haper, — Py = ¢" Z elﬂ‘e;‘\- (4.8)
7=0

This series is Oy (¢"**1) if and only if

k—1
o2 ) ezﬂ‘@j\ =0,
=0

which is equivalent to (4.1) if one takes the normalization (2.6) into account.
Moreover, pr, € L*, since pz_l_j € L, and ¢y, € Puyr—1 follows from
dn+j E,Pn_m‘,j:(),...,k—l.

(b) Again we interpret (4.5) as the definition of its left hand side. From Defi-

11



nition 1 we obtain

k—1
hGnik — Pryk = Cn+k (€n+k—1 +¢ Z entili + egﬂn%) . (4-9)

7=0

This series is O, (¢"t*+1) for ¥,,; defined by (4.3). The condition p,.) € L
is equivalent to (4.4), since p,y; € L7 and p € L7,. Finally, goyr € Poys
since §k_jqn+j € Poyr and (¥*1¢N € P,yx. The normalization follows from
(]n+k—1(0) =L

(c) We have

hnri — Pats = (" (€ngjo1 + ep¥ngy) = O4(¢"HT

for ¥,,4+; as stated in the theorem. It is easily seen that ¢,4+; € P,4; and, from
py € L7, we conclude that p,,; € L7.

(d) The approximation property is satisfied automatically:

hahei = Phay = C"(Celsjor + epdly;) = 04(C)

for arbitrary ﬁz_l_j. The given 19;, ensures pz_l_j € L7,. Finally, qZ_I_j € Pnyj,

J
which concludes the proof. O

As we mentioned before, underdetermined Padé forms are never unique (not
even up to scaling), so one has some degree of freedom in constructing them.
Our choice of underdetermined polynomials leads to a block LDU factoriza-
tion, where the blocks of the block diagonal matrix inherit the Toeplitz struc-
ture [15, Theorem 8.1].

We next prove a lemma concerning the length £ of a look-ahead step.

Lemma 4 Let n = n; be a reqular index. Then the following two statements
are equivalent:

(a) the index n + k is a regular index,
(b) the coefficient matrices LT = (52+Z»7n+j)f’;:10 and LY = (m;_; ,4)572, in
(4.1) and (4.4) are nonsingular.

PROOF. Assume that n + k is a regular index. This is equivalent to T,
being nonsingular. By Corollary 7.2 in [12] or [15, Section 8], the matrices
L") and L™ are the diagonal blocks of the lower block triangular matrices

12



L = THR and L' = TR'. Since R and R' are unit upper triangular, the
leading principal submatrices of T, L, and L' are of same rank. Hence, T,
is nonsingular if and only if L) and L™ are nonsingular. O

The theorem shows that starting from a regular pair, one can compute subse-
quent underdetermined Padé forms, and from those one can obtain the next
regular pair. The only recurrence missing is the one for the upper neighbor
(p!, ql) of the regular Padé form (p,,q,). However, this is an easy task, since
one can apply one of the well-known Frobenius identities, see Gragg [9, Theo-
rem 5.2]. To give all the recurrences required by our new algorithm, we want
to recall this identity from [15, Theorem 7.4]:

Theorem 5 Let (pn,q,), (py,qy) be a regular pair of (0,n) and (—=1,n — 1)
Padé forms of h € L with residuals e,, and e, respectively. If we define

n’

Qi 1 7T0,n (4 10)
3, en(0) —w&n ’ ‘
then
o (o P
a,
al | = lay (4.11)

ﬁn

el e~ (e
is a (—1,n) Padé form of h with residual €.

PROOF. It was shown in [15] that [15, Theorem 7.4] is valid for & = 0
also. The explicit expression in (4.10) follows readily from (7.15) in [15] by
exploiting that the determinant of the coefficient matrix in (7.15) is equal to

e~(0). The latter follows from (2.8). O
The following picture completes the list of recurrences used in our new algo-
rithm:

(4e) Compute the (—1,7n) Padé form (p!,q!) if n is a regular index.

-1 %L(;— to be computed
0

n

13



Levinson algorithm Schur algorithm
n=>0
Lo lgh=qp=1 ph=Tcor by po = _cooh
5370 = Lo eg =1lg.co by €9 =100 b
2. | g =0 po =1 e =-1
WHILE n < N
k=1
IF n is a column regular index
3. ‘]7,1\4-1 = ‘]Z P;z\+1 = Plv 6;1\4-1 = el
4. | mo, = oa(hgl), enn = Moy (hgn)
5. 1 = =r Senn W = —enn/el
6. | gher = Cal + 0" Phar = Cph+ P

€l+1 = e + €n’Yg(n)

7o | gopr = CaS” + g0

Pos1 =PI 4 p,
enpr = (Ul +ey)

8. 52+1,n+1 = enn(l - ’Yg(n)/%()n))

ELSE
9. | compute required coefficients of p,, €,
and p, €3

WHILE n + k£ is not a regular index

10. | compute ¢4k from (4.6)

compute qZ_I_k from (4.7)

compute ppik, €tk from (4.6)

compute p;-kv €2+k from (4.7)

11. | compute required coeflicients of p;>, e
and Pn+js €ntgy pz+j7 624_]‘7]. =0,.. '7k

k=Fk+1

END WHILE (n + k is not a regular index)

12. | compute regular ¢,y from (4.5)
compute ¢, from (4.2)

compute ppik, €ntk from (4.5)
compute p> e~ from (4.2)

13. | compute qZ_I_k from (4.11)

compute p;-kv €2+k from (4.11)

END IF

n=n+k

END WHILE (n < N)

Table 1
Look-ahead Levinson and Schur algorithm
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Note that all the desired properties of Padé forms are enforced numerically,
hence the algorithm works for exact as well as for near breakdowns of the
classical algorithms. For exact breakdowns, the recurrences even simplify con-
siderably. Since this situation is more or less irrelevant in practice, we do not
present these simplifications here.

In Table 1 we sketch our new look-ahead Levinson and Schur algorithm in
one table in order to make the similarities clear. Step 1 is the initialization
phase. Step 2 prepares for a possible look-ahead step at index 0. Steps 3—
8 represent classical recurrences, Steps 9-13 look-ahead recurrences. Here,
underdetermined Padé forms are computed in Steps 10-11 (Pictures (4c) and
(4d)), regular pairs of Padé forms are computed in Step 12 (Pictures (4a)
and (4b)). Finally, the upper neighbor of a regular Padé form is computed in
Step 13 (Picture (4e)). Clearly, like for the classical recurrences (Step 5), the
coefficients used from solving the linear systems (4.1) and (4.4) in Steps 10
and 12 are the same for the Levinson and for the Schur algorithm.

Detailed versions of these algorithms are given in [17]. We have implemented
these and other variants from [15] in C for the particular application of solving
linear systems with non-Hermitian Toeplitz coefficient matrices. Numerical
experiments including comparisons with the Fortran code of the look-ahead
Levinson algorithm of Chan and Hansen [3] are reported in [18]. Here, the
reader can also find a discussion about look-ahead strategies and options for
using the output of Levinson and Schur algorithms for solving Toeplitz systems
of equations.

5 Related algorithms

Another approach to derive look-ahead Levinson and Schur type algorithms
for computing a complete (inverse) LDU factorization of a Toeplitz matrix is
by finding recurrences for formally biorthogonal polynomials. This was done
by Freund and Zha [7] (Levinson algorithm) and by Freund [4] (Schur algo-
rithm). In the notation we used within this paper, we can now interpret their
recurrences in terms of Padé approximation. The statement of the following
corollary is contained implicitly in [7] and [4], but we want to give an indepen-
dent proof here, because it shows again the advantage of the Padé approach,
where one can use the same argument to prove the Levinson and the Schur
recurrences.

Here is an illustration of the different types of recurrences used in the algo-
rithms [7] and [4], where the notation ¢, = ¢! and v, = ¢ was used. As in
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Section 4 we assume that n and n + k are regular indices.

(5a) Compute the (—1,n + k) Padé form (pz_l_k,qz_l_k), which is the upper
neighbor of the regular (0,n + k) Padé form.

~1 FDDDD

to be computed

0

B

n n+k
(5b) Compute the regular (0,n + k) Padé form (puir, Gntk)-
-1
0

T

oo
n n+k

to be computed

(5¢) Compute the upper left neighbor of the (0,n + k) Padé form, i.e., the
(—1,n+ k—1) Padé form (p, s, gor)-

to be computed

-1 FDDD
0

.

n n+k

(5d) Compute the left neighbor of the (0, n+k) Padé form, i.e., the (0, n+k—1)
Padé form (pf, .. a55)
-1

0 ‘ODDD
n n+k

to be computed

I

(5e) Compute the (0,n + j) left underdetermined Padé form (putj, ¢nti)-

-1 O
[
n n+3 n+k

to be computed

I

(5f) Compute the (—1,n + j) right underdetermined Padé form (pz_l_j, qZH).

-1 ] to be computed
0 O

n n+j) n4+k

Let us comment on the pictures before we give the exact recurrences in Corol-
lary 6 below. Comparing with the pictures in Section 4, any recurrence used
here also has a symmetric counterpart. However, this symmetry seems unnec-
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essary as we have shown above. In particular, the recurrence illustrated in (5a)
can be replaced by the inexpensive one (4e). Moreover (5¢) can be eliminated if
(5f) is replaced by (4d). We therefore renounce to give the recurrence for g% ;.
It looks similar to (4.2). If these savings are incorporated into the algorithms
[4,7], then the only difference to our new algorithm is that our recurrence to
compute the next regular pair involves ¢~ and the algorithm of [7] involves
¢pyp- This should not make a big difference in the numerical behavior of the
algorithms.

Note that (5e), which illustrates the recurrences for inner left FBOPs, looks
identical to (4c¢). In fact, inner left FBOPs are computed exactly the same
way as ours given in Theorem 3. For inner right FBOPs, ¢ instead of ¢ is
used, see (4d) and (5f). This results in a block diagonal matrix of the LDU

decomposition of T, whose blocks do no longer inherit the Toeplitz structure.

We give the complete derivation only for the recurrences in pictures (5a) and
(5b) in order to show how things simplify using the Padé connection. The
remaining recurrences from the algorithms [4,7] have either been proved in
Theorem 3 or can be eliminated. Again, we assume ¢! to be monic and ¢,(0) =
1 foralln=0,1,...

Corollary 6 Let the assumptions of Theorem 3 be satisfied, and assume in
addition, that n + k is a reqular index.

(a) Let 192_% = —ng_'_k_l/w(fn_l_k. Then a unique solution of
_ . -
T T
gl,n e gn,n—l—k—l 00 1
1 1 T :
€n+k—1,n e €n+k—1,n+k—1 ek—l 1+
_€n+k—2,n—|—k—1 1
exists and (pz_l_k,qz_l_k) with
T T T
Prtk Pryik—1 b1 Pr+j p:—l—k
t | t | gt t
otk = Qntk-1 + Z n+j 0]‘ + qak ﬁn-l—k (5.2)
J=0
kT T T
¢ Crntk Crntk—1 €ntj e:—l—k

is a (—1,n+ k) Padé form of h with monic qZ_I_k and residual e;-k-
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(b) Let Vg, = —€nyn-1(0)/er,1(0). Then a unique solution of

0
Topn  °°° T—k4+1,n+k—1 bo
T—k+1n+k-1
= (5.3)
Tk=1,n " TOn4k-1 Or—1
| T—1n+k-1 |
exists and (Putk, Gork) With
k—j N
Pr+k Prtk-1 b1 § ]pn-l-j Pk
_ k—j ) N
Ttk | = | k-1 | T Z ¢ T qnyj ‘91 +¢ 9n1k Dt (5'4)
Jj=0 .
Entk €ntk-1 €n+j Cntk

is a (0,n + k) Padé form of h with monic ¢,11(0) = 1 and residual €, 4.

PROOF. First observe that the coefficient matrices of both linear systems
are nonsingular, if and only if n 4 k is a regular index by Lemma 4. Moreover,
if n + k is a regular index, then 7, . # 0 and 7§, # 0 by (2.5).

(a) We proceed similar to Theorem 3. From Definition 2 we obtain

E—1
hQZJrk - p1+k = (" (§€2+k—1 + Z eLj@} + gkegﬁ—kﬁz-l—k) . (5-5)
7=0

Hence, the condition hq;-k —pz_l_k = 0,4 (¢"**) is equivalent to (5.1). Moreover,
sz—l—k—l—l_p:—l—kﬂz—l—k € L*,sothat p;-k € L*,. Thelast condition, qZ_I_k € Prik
being monic, is obvious.

(b) Clearly, gotk € Putr and ¢u1x(0) = 1. We obtain from Definition 1

k—1
hGnik — Pk = Cn+k (€n+k—1 +¢ Z entili + €§+k19n+k) . (5-6)

=0

Hence, the condition hg,ix — poyr = O4(¢C"H+1) is fulfilled for 9,4, defined
as stated in the corollary. Moreover, p,y; € L5 if the coeflicients 0; solve the
linear system (5.3). 0
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Operations in a | Levinson | Schur

block of size £ > 1

inner products 2k -

SAXPYS 4k — 1 Rk —2

Table 2
Operation counts for our new look-ahead Levinson and Schur algorithm

6 Operation counts

Recall that our new algorithm computes the same Padé forms and underde-
termined Padé forms as the one proposed in [15]. Therefore, this variant of
the Levinson algorithm can also be implemented by computing the same num-
ber of inner products as the classical Levinson algorithm without look-ahead,
see [15, Section 8]. If we neglect computations which cost of the order O(k?)
operations, where k is the (look-ahead) step size, then the only significant op-
erations are SAXPYs and inner products. This assumption is justified as long
as the look-ahead steps remain small, which is usually the case in practical ap-
plications. The computational costs of a look-ahead step in the new Levinson
and Schur algorithms are given in Table 2.

In Table 3, we summarize the overhead of all the variants we proposed in
this and the previous papers. For comparison, we added the overhead of other
available algorithms, namely the Levinson algorithm proposed by Freund and
Zha [7], the Schur algorithm of Freund [4], and the Levinson algorithm of
Chan and Hansen [3]. Since all but the algorithm of Chan and Hansen [3] do
not have an overhead of inner products, we list only SAXPYs. With overhead,
we mean the difference of the total number of operations to construct a block
of size k and the total number of operations of k steps of the corresponding
classical algorithm.

The upper part of Table 3 contains algorithms which compute only regular
Padé forms but no underdetermined Padé forms. Hence these algorithms do
not compute a complete block LDU or inverse block LDU decomposition of
T. For Levinson type algorithms, a Toeplitz system of equations can then be
solved by applying an inversion formula of Gohberg-Semencul type, see e.g.,
[16]. However, if no complete factorization of T is computed, then a Schur type
algorithm is only applicable for solving a Toeplitz system if the denominators
of the regular Padé forms are computed also. This costs additional overhead.
If one is interested only in the numerator and residual of the (0, N') Padé form
itself, then the computation of denominators is not necessary.

The lower part of Table 3 gives the overhead for algorithms which provide
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Overhead of saAxpvs for a Type Levinson | Schur

block of size £ > 1

Gutknecht/Hochbruck [15] regular 2k —2 |4k -4
Huckle [19] regular 2k —2 —
new algorithm reg. 4+ inner | 2k —1 | 4k —2

Gutknecht/Hochbruck [15] | reg. + inner | 4k -3 | 6k—5

Freund/Zha [7], [4] reg. + inner 4k 6k

Chan/Hansen [3] reg. + inner | 4k —4 —

Table 3

Overhead for different look-ahead algorithms for solving Toeplitz systems.

a complete (inverse) block LDU decomposition of T. For these algorithms,
underdetermined Padé forms or inner FBOPs are computed also. Our new
variant turns out to be the cheapest method known today. In particular, its
Levinson form has only roughly half the overhead of other methods that also
produce the full inverse LDU decomposition of T.

As in the variants in [15], overhead occurs only in look-ahead steps. In a
regular step (k = 1), we do not have to compute ¢, p», and e, since these

n
are just rescaled versions of qz_l, pi_l, and 62_1. Clearly, this scaling is done
only implicitly.

Note that the overhead of a look-ahead step in the new Schur algorithm is twice
as high as that of the Levinson algorithm. This is due to the fact that numer-
ators and residuals of all underdetermined Padé forms have to be computed,
while the Levinson algorithm computes only denominators. However, recall
that for the Schur algorithm proposed in [15], the same argument does not
apply, since even if the complete factorization is computed, this factorization
contains only numerators but not residuals of (0,n + j) left underdetermined
Padé forms and residuals but not numerators of (—1,n + j) right underdeter-
mined Padé forms [12, Theorem 7.1]. Hence here, the overhead for computing
underdetermined Padé forms is the same as in the Levinson algorithm. Addi-
tional overhead comes only from computing the regular pair.

7 Conclusions and further developments

In this paper, we have shown how regular pairs and suitably defined under-
determined Padé forms can be used to derive efficient algorithms to compute
certain Padé forms in adjacent rows of the Padé table. This approach is also
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applicable to other algorithms, such as the look-ahead Hankel solvers described
in [2,11] or the look-ahead Lanczos algorithm in its three-term [5] or its cou-
pled two-term version [6]. These algorithms are based on recurrences along
one diagonal or along two adjacent diagonals in the Padé table. Moreover, it
seems possible to extend our new algorithm to block Toeplitz matrices, similar
to the extensions [23,24].

While for Toeplitz and Hankel solvers algorithms which contain as its main
computational tool polynomial multiplications seem fairly attractive, in par-
ticular due to the possibility to make them superfast, this situation is to-
tally different for the Lanczos or the isometric Arnoldi algorithm [10]. Here,
performing polynomial multiplications would mean to perform matrix-vector
multiplications. Since matrix-vector multiplications usually dominate the com-
putational cost, this is overhead one definitely wants to save. Hence, for this
application, the only option is to take an approach similar to the one pre-
sented here and incorporate inner formally orthogonal polynomials into the
computation. Substantial savings in the algorithms of [5,6] can be achieved by
using regular, row-regular or column-regular pairs in these algorithms. For ex-
ample, using regular pairs in the three-term version of the look-ahead Lanczos
algorithm avoids to orthogonalize inner vectors against the complete previous
block. Moreover, regular vectors need then only be orthogonalized against the
last block and one further vector. For the Levinson type (block) Hankel solvers
such a simplification was exploited in [8,23] already without using the relation
to Padé approximation. For details we refer to [17].
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