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of low degree. To be more precise, these polynomials are two-point Pad�e formsof residuals and numerators of the regular pair.Here we describe a di�erent approach. We have shown that the gaps betweentwo regular pairs of Pad�e forms can be �lled by so-called left and right un-derdetermined Pad�e forms, which correspond to inner formally biorthogonalpolynomials. However, in our algorithms [12{15], these underdetermined Pad�eforms were constructed solely to complete the block LDU or the inverse blockLDU decomposition of a Toeplitz matrix, but were not used for anything else.This is exactly, what we want to change here. We build the next regular pairwith the help of underdetermined Pad�e forms. Since we then no longer haverecurrences based on multiplication of polynomials, we lose the option to ex-tend the fast O(N2) algorithms to superfast O(N log2N) algorithms. Thisdisadvantage is compensated by the fact that the new algorithm has less over-head than any other known look-ahead algorithm that computes the completefactorization of a Toeplitz matrix. Moreover, superfast algorithms are fasteronly for su�ciently large dimensions N , and hence, stable fast algorithmsare still of interest. Instead of products of polynomials, the new recurrencesonly involve linear combinations of previous (underdetermined) Pad�e forms orshifted copies of those.The idea of using inner formally orthogonal or biorthogonal polynomials indi�erent kinds of look-ahead algorithms is by far not new. It was used in thelook-ahead Lanczos process [5], the look-ahead Hankel solver [8] and its blockversion [23], and the look-ahead Toeplitz solvers [4,7]. However, to the bestof our knowledge it seems to be new to use underdetermined Pad�e forms toconstruct recurrences in non-normal Pad�e tables. We will show that the Pad�eapproach can help to �nd more e�cient recurrences. To convince the reader ofthis statement, we reinterpret the algorithms proposed by Freund and Zha [7]and by Freund [4] in terms of Pad�e approximation. We will see that these algo-rithms can be improved by exploiting classical recurrences known in the Pad�eliterature. A nice overview of relations between formally biorthogonal polyno-mials, Pad�e approximation, Hankel, and Toeplitz matrices in exact arithmeticwas recently written by Bultheel and van Barel [1].A bene�t of looking into algorithms for Toeplitz matrix factorization or forconstructing formally biorthogonal polynomials from the Pad�e point of viewis that the same arguments can be used to derive recurrences for Levinson andSchur type algorithms. We would like to stress that in order to establish therecurrences no deep understanding of Pad�e approximation is necessary, exceptfor the fact that (m;n) Pad�e forms exist for any pair of integers (m;n) withnonnegative n and for some properties on regularity of Pad�e forms, which canall be proved in one line.Two main features of the algorithm proposed in [15] are inherited by the new2



variant. The �rst one is that it performs look-ahead steps of minimal size andthe second is that it reduces to the classical Levinson [21] or Schur algorithm[22], if only regular steps of size one are performed.This paper is an extension of [15], and we therefore want to avoid to repro-duce what we proved there. Instead, we only introduce the basic notation andmention the de�nitions and statements we take from [15]. The paper is orga-nized as follows. First we introduce some notation in Section 2. In Section 3we de�ne left and right underdetermined Pad�e forms. Section 4 contains thenew recurrences. In Section 5, we rederive the Freund and Zha algorithms interms of Pad�e approximation and show how the computational overhead of alook-ahead step can be reduced by up to a factor of two. We compare the com-putational work of the new algorithm and some other look-ahead algorithmsavailable in the literature in Section 6. Finally, Section 7 contains conclusionsand further developments.2 Preliminaries and NotationIn the following,Ll := fh 2 L ; �k = 0 if k < lg;L�m := fh 2 L ; �k = 0 if k > mg;Pm := fp 2 L ; p polynomial of degree at most mgdenote subsets of L, the set of formal Laurent series with complex coe�cients,h(�) := 1Xk=�1 �k�k; (2.1)and P, the set of all polynomials. The formal projection of h 2 L into Ll\L�mis denoted by �l:mh(�) := mXj=l �j�jand the mth coe�cient of h is written as �mh(�) := �m. We write h(�) =O+(� l) if h(�) 2 Ll. With h(1) and h(0) we denote the leading coe�cient ofh 2 L�0 and h 2 L0, respectively.For m 2 Zand n 2 N, where Zis the set of all integers and N is the subsetof all nonnegative integers, an (m;n) Pad�e form of h is any pair (p; q) 23



L�m � (Pnnf0g) satisfyingh(�)q(�)� p(�) = O+(�m+n+1) 2 Lm+n+1: (2.2)The series e 2 L0 de�ned implicitly byh(�)q(�)� p(�) = �m+n+1e(�) (2.3)is called the residual of (p; q).Pad�e approximations can be listed in a Pad�e table, where we let the m-axispoint to the bottom and the n-axis point to the right. In this paper, we dealwith Pad�e forms in the (�1)st and the 0th row of the Pad�e table. A keypoint to our derivations is the use of regular (0; n) Pad�e forms. If we denoteby (p-n ; q-n ) a (�1; n� 1) Pad�e form of h and by e-n its residual, then we cande�ne a regular (0; n) Pad�e form (pn; qn) in the following equivalent ways [12]:(i) the Toeplitz matrix Tn = (�i�j)n�1i;j=0 is nonsingular;(ii) pnq-n � p-n qn 6= 0 2 L�n�1;(iii) e-n (0) 6= 0 and qn(0) 6= 0;(iv) pnq-n � p-n qn = �-n �n�1 6= 0, �-n 2 C .In order to make the notation more illustrative, we use arrows to indicate thelocation of neighboring Pad�e forms with respect to a regular (0; n) Pad�e formof h 2 L, as we did in the above de�nition. Hence, we denote a (�1; n � 1)Pad�e form by (p-n ; q-n ), a (�1; n) Pad�e form by (p"n; q"n), and a (0; n� 1) Pad�eform by (p n ; q n ). The corresponding residuals are denoted in the same way.The following picture shows the location of these Pad�e forms and illustratesthe notation. �10 n � 1 nq-nq n q"nqn (2.4)If (pn; qn) is a regular Pad�e form, then we call n a regular index. In thiscase, the four Pad�e forms shown in the picture can be computed by solvinglinear systems with coe�cient matrixTn. They are uniquely determined up toscaling. Once we have qn, we obtain pn = ��1:0(hqn) and en = �n+1:1(hqn)from formal projections, and similar for the other Pad�e forms. Settingqn(�) = nXj=0 �j;n�j4



and using the analogous notation for q"n, q n , and q-n , the coe�cients of qn andq"n are determined by the well-known Yule-Walker equationsTn 2666664 �1;n...�n;n 3777775 = ��0;n 2666664 �1...�n 3777775 ; Tn 2666664 �"0;n...�"n�1;n 3777775 = ��"n;n 2666664��n...��1 3777775and the coe�cients of q n and q-n byTn 2666664 � 0;n...� n�1;n 3777775 = p n (1)2666666664 10...03777777775 ; Tn 2666664 �-0;n...�-n�1;n 3777775 = e-n (0)2666666664 0...013777777775 :These equations are also called fundamental equations [16] and their solutionsare called generators in the context of displacement structure [20]. Since n isa regular index, we clearly have�0;n 6= 0; �"n;n 6= 0; p n (1) 6= 0; e-n (0) 6= 0: (2.5)We can therefore use the freedom we have in scaling Pad�e forms by settingthese quantities to one and assume in the following the normalizations�0;n = 1; �"n;n = 1; p n (1) = 1; e-n (0) = 1: (2.6)Although we de�ned Pad�e forms for arbitrary m 2 Zand n 2 N in (2.3), wewant to give the de�nitions of the four Pad�e forms in (2.4) explicitly again,because they play such a fundamental role throughout this paper:hqn � pn = �n+1en; (pn; qn) 2 L�0 �Pn; en 2 L0hq-n � p-n = �n�1e-n ; (p-n ; q-n ) 2 L��1 �Pn�1; e-n 2 L0hq n � p n = �ne n ; (p n ; q n ) 2 L�0 �Pn�1; e n 2 L0hq"n � p"n = �ne"n; (p"n; q"n) 2 L��1 �Pn; e"n 2 L0 (2.7)The somehow dubiously looking last three equivalent de�nitions (ii){(iv) ofa regular (0; n) Pad�e form can be proved in one line by multiplying the �rst5



equation in (2.7) by q-n , the second equation by qn, and subtracting:p-n qn| {z }L�n�1 � pnq-n| {z }L�n�1 = �n�1(�2enq-n| {z }L2 � e-n qn| {z }L0 ) 2 Ln�1: (2.8)So, what one really has to know about Pad�e approximation for our purposes isthat a regular index n corresponds to a nonsingular Toeplitz matrixTn and onehas to remember (2.7) from the de�nition of Pad�e forms. The nonsingularityof Tn then implies (2.5), which allows the normalization (2.6).3 Pad�e forms and formally biorthogonal polynomialsAs we mentioned in the introduction, the new recurrences not only use regularpairs of Pad�e forms but also certain underdetermined Pad�e forms de�nedbelow. This is motivated by the close connection between Pad�e forms andformally biorthogonal polynomials (FBOPs) with respect to a sesquilinearform h�; �i on P � P de�ned by its momentsh� i; �ji := �i�j :Let h be given by (2.1) and denote by s? the conjugated and reected poly-nomial of s 2 Pn de�ned as s? = �ns(��1). If qn+k 2 Pn+k, then hq?n+k; � ii = 0for i = 0; : : : ; n� 1 if and only if there exists pn+k 2 L�k such thathqn+k � pn+k = �n+k+1en+k = O+(�n+k+1); (3.1)see [15, Lemma 7.1]. If n is a regular index and q?n+k is of full degree n+k, thenq?n+k is called an (n+ k)th inner left FBOP. For k = 0, it is an nth left FBOP[7,12,15]. Comparing (3.1) for k = 0 with the de�nition (2.7) of a (0; n) Pad�eform of h shows the close connection to left FBOPs. From the third de�nitionin (2.7), it follows that hq �n ; � ii = 0 for i = 0; : : : ; n� 2. However, q �n is an(n� 1)st left FBOP if and only if it has full degree n� 1, or, equivalently, ifq n (0) 6= 0.De�nition 1 If n is a regular index and k � 1, then any pair (pn+k ; qn+k) 2L�k � Pn+k with qn+k(0) 6= 0 satisfying (3.1) is called a (0; n + k) left under-determined Pad�e form (with respect to the regular index n), and en+k 2 L0 iscalled its residual.Similarly it was shown in [15, Lemma 7.2], that if q"n+k 2 Pn+k, thenh� i; q"n+ki = 0 for i = 0; : : : ; n � 1 if and only if there exists p"n+k 2 L��16



such that hq"n+k � p"n+k = �ne"n+k = O+(�n): (3.2)Here, q"n+k is called an (n+k)th inner right FBOP if n is a regular index and ifq"n+k is of full degree n+k. The case k = 0 relates to the de�nition of a (�1; n)Pad�e form of h, hence upper neighbors of regular Pad�e forms correspond toright FBOPs. It follows from the second equation in (2.7), that h� i; q-�n i = 0for i = 0; : : : ; n � 2. Thus q-n is an (n � 1)st right FBOP if and only if it hasfull degree n� 1.De�nition 2 If n is a regular index and k � 1, then any pair (p"n+k ; q"n+k) 2L��1 �Pn+k n Pn+k�1 satisfying (3.2) is called a (�1; n + k) right underdeter-mined Pad�e form (with respect to the regular index n), and e"n+k 2 L0 is calledits residual.Clearly, (0; n+k) left and (�1; n+k) right underdetermined Pad�e forms existfor any k � 1. This can be seen by recognizing that the coe�cient matrix ofthe n � (n + k) underdetermined linear system for the unknown coe�cientsof the denominators of the underdetermined Pad�e forms contains Tn as asubmatrix. Since n is assumed to be a regular index, Tn is nonsingular. Thusone can choose the coe�cients not belonging to this subsystem arbitrarily andthen compute the unique solution of the subsystem.Like the algorithm of [15], our new algorithm will perform regular steps iden-tical to those of the classical Levinson or Schur algorithms whenever possible.Hence, we will consider only the look-ahead steps here. If such look-aheadsteps are necessary, the new algorithm builds the same blocks as the one of[15], since it is also based on regular pairs of Pad�e forms. In particular, thelook-ahead steps are of minimal size. However, we no longer construct two-point Pad�e forms to compute the regular pair, but instead use the left andright underdetermined Pad�e forms we computed in between. In [15], we pro-ceeded from one regular pair to the other with the help of a suitable two-pointPad�e form. This can be illustrated as0�1 n n + khh hh �� to be computedto be computed@@ @@where circles represent Pad�e forms and a line connecting two Pad�e formsindicates that they belong to di�erent blocks of the Pad�e table. In the picture,this means that n and n+k are regular indices, which is further emphasized byvertical lines. Moreover, any underdetermined Pad�e form in between was also7



computed from the regular pair corresponding to the index n. An extensionof this type of algorithm to block Toeplitz matrices is given by Van Barel andBultheel [24]. They prove that even the block algorithm is weakly stabe.The complete block LDU decomposition of the Toeplitz matrix T requires thecomputation of residuals and numerators of Pad�e forms, but the computa-tion of denominators is not necessary. Such algorithms are called Schur-typealgorithms. Levinson-type algorithms compute an inverse block LDU decom-position, which contains the coe�cients of denominators of Pad�e forms only. Ablock starting with the regular index n contains the coe�cients of the (�1; n)and the (0; n) Pad�e forms, the (�1; n + 1); : : : ; (�1; n+ k � 1) right, and the(0; n + 1); : : : ; (0; n + k � 1) left underdetermined Pad�e forms. It turns outthat it pays o� to compute also the (�1; n+ k � 1) Pad�e form (the upper leftneighbor of the regular (0; n+ k) Pad�e form) although none of the coe�cientsof this Pad�e form occur in the block decomposition of T or T�1. It is impor-tant to understand that the (�1; n+ k� 1) Pad�e form and the (�1; n+ k� 1)right underdetermined Pad�e form are di�erent if k > 1.4 Alternative recurrencesIn the following, we always assume the normalization (2.6) introduced in Sec-tion 2 for regular Pad�e forms and �0;n = �"n;n = 1, i.e., the �rst two normal-izations of (2.6), for underdetermined Pad�e forms.Before we state our main theorem, we would like to illustrate the recurrencesby the following pictures. Here, circles represent Pad�e forms and squares standfor underdetermined Pad�e forms. The (underdetermined) Pad�e form distin-guished by an arrow is computed from the other (underdetermined) Pad�eforms (or shifted copies of them) shown in the picture. Vertical lines representthe end of a look-ahead block, i.e., the �rst column on the right of a verticalline corresponds to a regular index. In general, these lines do not correspondto blocks of the Pad�e table. In all our pictures, n and n + k are assumed tobe regular indices.(4a) Compute the upper left neighbor of the regular (0; n+k) Pad�e form, i.e.,the (�1; n+k�1) Pad�e form (p-n+k ; q-n+k) (represented by the circle insidethe square). 0�1 n n+ kh hh� to be computedRecall that the (�1; n+k�1) right underdetermined Pad�e form indicated8



by the square at the same position is di�erent from the (�1; n + k � 1)Pad�e form we want to compute.(4b) Compute the regular (0; n+ k) Pad�e form (pn+k; qn+k).0�1 n n+ khh h� to be computed@@(4c) Compute the (0; n+ j) left underdetermined Pad�e form (pn+j ; qn+j) fromthe (0; n+j�1) (left underdetermined) Pad�e form and from the auxiliary(�1; n� 1) Pad�e form.0�1 n n+ kn + jh � to be computed(4d) From the auxiliary (�1; n� 1) Pad�e form and the (�1; n+ j � 1) (rightunderdetermined) Pad�e form compute the (�1; n + j) right underdeter-mined Pad�e form (p"n+j ; q"n+j).0�1 n n+ kn + jh � to be computedThe pictures clearly show that except for computing the next auxiliary upperleft neighbor of a regular pair itself in (4a), the auxiliary (�1; n � 1) Pad�eform (p-n ; q-n ) is used in every other recurrence of our algorithm.In the sequel, we will use the following notation, where n still denotes a regularindex: e"n+j = 1Xl=0 ""n+l;n+j� l; pn+j = 1Xl=0 ��j+l;n+j�j�l; p-n = 1Xl=0 �-l;n+j��1�l:Theorem 3 Let (pn; qn), (p-n ; q-n ) be a regular pair of (0; n) and (�1; n � 1)Pad�e forms of h 2 L with residuals en and e-n , and let (p"n; q"n) be a (�1; n)Pad�e form of h with residual e"n. Moreover, let (pn+j ; qn+j) be (0; n + j) leftand (p"n+j ; q"n+j) be (�1; n+j) right underdetermined Pad�e forms with residualsen+j , e"n+j , j = 1; : : : ; k � 1, respectively.9



(a) If a nontrivial solution of the linear system2666664 ""n;n � � � ""n;n+k�1... ...""n+k�1;n � � � ""n+k�1;n+k�1 37777752666664 �-0...�-k�1 3777775 = ek�1e-n+k(0) (4.1)exists, then (p-n+k; q-n+k) with2666664 p-n+kq-n+k�k�1e-n+k 3777775 = k�1Xj=0 2666664 p"n+jq"n+je"n+j 3777775 �-j (4.2)is a (�1; n+ k � 1) Pad�e form of h with residual e-n+k.(b) Let #n+k = �en+k�1(0)=e-n (0): (4.3)If a solution of2666664 �0;n � � � ��k+1;n+k�1... ...�k�1;n � � � �0;n+k�1 37777752666664 �0...�k�1 3777775 (4.4)= �2666666664 0��k+1;n+k�1...��1;n+k�1 3777777775� 2666666664 �-0;n�-1;n...�-k�1;n 3777777775#n+kexists, then (pn+k; qn+k) with2666664 pn+kqn+k�en+k 3777775 = 2666664 pn+k�1qn+k�1en+k�1 3777775+ k�1Xj=0 2666664 �k�jpn+j�k�jqn+jen+j 3777775 �j + �k+1 2666664 p-nq-ne-n 3777775#n+k (4.5)is a (0; n+ k) Pad�e form of h with qn+k(0) = 1 and residual en+k.10



(c) For j = 1; : : : ; k � 1, let #n+j = �en+j�1(0)=e-n (0). Then2666664 pn+jqn+j�jen+j 3777775 = 2666664 pn+j�1qn+j�1�j�1en+j�1 3777775+ 2666664 �2p-n�2q-ne-n 3777775 #n+j�j�1 (4.6)yields a (0; n+ j) left underdetermined Pad�e form with residual en+j.(d) For j = 1; : : : ; k � 1, let #"n+j = ��"0;n+j�1=�-0;n. Then2666664 p"n+jq"n+je"n+j 3777775 = 2666664 p"n+j�1q"n+j�1e"n+j�1 3777775 � + 2666664 �p-n�q-ne-n 3777775#"n+j ; (4.7)yields a (�1; n+ j) right underdetermined Pad�e form with residual e"n+j .PROOF. First recall from (2.5) that e-n (0) 6= 0 if n is a regular index. More-over, it follows from the discussion at the end of Section 7 in [15] that in thecase that we start a look-ahead step, also �-0;n 6= 0. Therefore, all quotientsarising in the theorem are well de�ned.(a) We use (4.2) as the de�nition of p-n+k and q-n+k. Then we have by De�ni-tion 2 and by (2.7) hq-n+k � p-n+k = �n k�1Xj=0 e"n+j�-j : (4.8)This series is O+(�n+k�1) if and only if�0:k�2 k�1Xj=0 e"n+j�-j = 0;which is equivalent to (4.1) if one takes the normalization (2.6) into account.Moreover, p-n+k 2 L��1 since p"n+j 2 L��1, and q-n+k 2 Pn+k�1 follows fromqn+j 2 Pn+j, j = 0; : : : ; k � 1.(b) Again we interpret (4.5) as the de�nition of its left hand side. From De�-11



nition 1 we obtainhqn+k � pn+k = �n+k 0@en+k�1 + � k�1Xj=0 en+j�j + e-n #n+k1A : (4.9)This series is O+(�n+k+1) for #n+k de�ned by (4.3). The condition pn+k 2 L�0is equivalent to (4.4), since pn+j 2 L�j and p-n 2 L��1. Finally, qn+k 2 Pn+ksince �k�jqn+j 2 Pn+k and �k+1q-n 2 Pn+k. The normalization follows fromqn+k�1(0) = 1.(c) We have hqn+j � pn+j = �n+j (en+j�1 + e-n #n+j) = O+(�n+j+1)for #n+j as stated in the theorem. It is easily seen that qn+j 2 Pn+j and, fromp-n 2 L��1, we conclude that pn+j 2 L�j .(d) The approximation property is satis�ed automatically:hq"n+j � p"n+j = �n(�e"n+j�1 + e-n #"n+j) = O+(�n)for arbitrary #"n+j. The given #"n+j ensures p"n+j 2 L��1. Finally, q"n+j 2 Pn+j,which concludes the proof.As we mentioned before, underdetermined Pad�e forms are never unique (noteven up to scaling), so one has some degree of freedom in constructing them.Our choice of underdetermined polynomials leads to a block LDU factoriza-tion, where the blocks of the block diagonal matrix inherit the Toeplitz struc-ture [15, Theorem 8.1].We next prove a lemma concerning the length k of a look-ahead step.Lemma 4 Let n = nl be a regular index. Then the following two statementsare equivalent:(a) the index n + k is a regular index,(b) the coe�cient matrices L"(l) = (""n+i;n+j)k�1i;j=0 and L(l) = (�i�j;n+j)k�1i;j=0 in(4.1) and (4.4) are nonsingular.PROOF. Assume that n + k is a regular index. This is equivalent to Tn+kbeing nonsingular. By Corollary 7.2 in [12] or [15, Section 8], the matricesL(l) and L"(l) are the diagonal blocks of the lower block triangular matrices12



L = THR and L" = TR". Since R and R" are unit upper triangular, theleading principal submatrices of T, L, and L" are of same rank. Hence, Tn+kis nonsingular if and only if L(l) and L"(l) are nonsingular.The theorem shows that starting from a regular pair, one can compute subse-quent underdetermined Pad�e forms, and from those one can obtain the nextregular pair. The only recurrence missing is the one for the upper neighbor(p"n; q"n) of the regular Pad�e form (pn; qn). However, this is an easy task, sinceone can apply one of the well-known Frobenius identities, see Gragg [9, Theo-rem 5.2]. To give all the recurrences required by our new algorithm, we wantto recall this identity from [15, Theorem 7.4]:Theorem 5 Let (pn; qn), (p-n ; q-n ) be a regular pair of (0; n) and (�1; n � 1)Pad�e forms of h 2 L with residuals en and e-n , respectively. If we de�ne264�n�n 375 = 1e-n (0) 264 �0;n��-0;n 375 ; (4.10)then 2666664 p"nq"ne"n 3777775 := 2666664 �p-n pn�q-n qne-n �en 3777775264�n�n 375 (4.11)is a (�1; n) Pad�e form of h with residual e"n.PROOF. It was shown in [15] that [15, Theorem 7.4] is valid for k = 0also. The explicit expression in (4.10) follows readily from (7.15) in [15] byexploiting that the determinant of the coe�cient matrix in (7.15) is equal toe-n (0). The latter follows from (2.8).The following picture completes the list of recurrences used in our new algo-rithm:(4e) Compute the (�1; n) Pad�e form (p"n; q"n) if n is a regular index.0�1 nh hh� to be computed@@ 13



Levinson algorithm Schur algorithmn = 01. q"0 = q0 = 1""0;0 = �0 p"0 = ��1:�1 h, p0 = ��1:0he"0 = �0:1 h, e0 = �1:1 h2. q-0 = 0 p-0 = 1, e-0 = �1WHILE n < N k = 1IF n is a column regular index3. q-n+1 = q"n p-n+1 = p"n, e-n+1 = e"n4. �"0;n = ��1(hq"n), "n;n = �n+1(hqn)5. "(n)0 = ��"0;n="n;n, (n)0 = �"n;n=""n;n6. q"n+1 = �q"n + qn"(n)0 p"n+1 = �p"n + pn"(n)0e"n+1 = e"n + en"(n)07. qn+1 = �q"n(n)0 + qn pn+1 = �p"n(n)0 + pnen+1 = ��1(e"n(n)0 + en)8. ""n+1;n+1 = "n;n(1� "(n)0 =(n)0 )ELSE9. compute required coe�cients of pn, enand p-n , e-nWHILE n + k is not a regular index10. compute qn+k from (4.6) compute pn+k , en+k from (4.6)compute q"n+k from (4.7) compute p"n+k , e"n+k from (4.7)11. compute required coe�cients of p-n , e-nand pn+j , en+j , p"n+j , e"n+j , j = 0; : : : ; kk = k + 1END WHILE (n+ k is not a regular index)12. compute regular qn+k from (4.5)compute q-n+k from (4.2) compute pn+k , en+k from (4.5)compute p-n+k e-n+k from (4.2)13. compute q"n+k from (4.11) compute p"n+k , e"n+k from (4.11)END IF n = n+ kEND WHILE (n < N)Table 1Look-ahead Levinson and Schur algorithm14



Note that all the desired properties of Pad�e forms are enforced numerically,hence the algorithm works for exact as well as for near breakdowns of theclassical algorithms. For exact breakdowns, the recurrences even simplify con-siderably. Since this situation is more or less irrelevant in practice, we do notpresent these simpli�cations here.In Table 1 we sketch our new look-ahead Levinson and Schur algorithm inone table in order to make the similarities clear. Step 1 is the initializationphase. Step 2 prepares for a possible look-ahead step at index 0. Steps 3{8 represent classical recurrences, Steps 9{13 look-ahead recurrences. Here,underdetermined Pad�e forms are computed in Steps 10{11 (Pictures (4c) and(4d)), regular pairs of Pad�e forms are computed in Step 12 (Pictures (4a)and (4b)). Finally, the upper neighbor of a regular Pad�e form is computed inStep 13 (Picture (4e)). Clearly, like for the classical recurrences (Step 5), thecoe�cients used from solving the linear systems (4.1) and (4.4) in Steps 10and 12 are the same for the Levinson and for the Schur algorithm.Detailed versions of these algorithms are given in [17]. We have implementedthese and other variants from [15] in C for the particular application of solvinglinear systems with non-Hermitian Toeplitz coe�cient matrices. Numericalexperiments including comparisons with the Fortran code of the look-aheadLevinson algorithm of Chan and Hansen [3] are reported in [18]. Here, thereader can also �nd a discussion about look-ahead strategies and options forusing the output of Levinson and Schur algorithms for solving Toeplitz systemsof equations.5 Related algorithmsAnother approach to derive look-ahead Levinson and Schur type algorithmsfor computing a complete (inverse) LDU factorization of a Toeplitz matrix isby �nding recurrences for formally biorthogonal polynomials. This was doneby Freund and Zha [7] (Levinson algorithm) and by Freund [4] (Schur algo-rithm). In the notation we used within this paper, we can now interpret theirrecurrences in terms of Pad�e approximation. The statement of the followingcorollary is contained implicitly in [7] and [4], but we want to give an indepen-dent proof here, because it shows again the advantage of the Pad�e approach,where one can use the same argument to prove the Levinson and the Schurrecurrences.Here is an illustration of the di�erent types of recurrences used in the algo-rithms [7] and [4], where the notation 'n = q"n and  n = q�n was used. As in15



Section 4 we assume that n and n+ k are regular indices.(5a) Compute the (�1; n + k) Pad�e form (p"n+k ; q"n+k), which is the upperneighbor of the regular (0; n + k) Pad�e form.0�1 n n+ kh h h� to be computed��(5b) Compute the regular (0; n+ k) Pad�e form (pn+k; qn+k).0�1 n n+ kh h h� to be computed@@(5c) Compute the upper left neighbor of the (0; n + k) Pad�e form, i.e., the(�1; n+ k � 1) Pad�e form (p-n+k ; q-n+k).0�1 n n+ kh hh� to be computed(5d) Compute the left neighbor of the (0; n+k) Pad�e form, i.e., the (0; n+k�1)Pad�e form (p n+k ; q n+k).0�1 n n+ kh h� to be computed(5e) Compute the (0; n + j) left underdetermined Pad�e form (pn+j ; qn+j).0�1 n n+ kn + jh � to be computed(5f) Compute the (�1; n+ j) right underdetermined Pad�e form (p"n+j ; q"n+j).0�1 n n+ kn + jh � to be computedLet us comment on the pictures before we give the exact recurrences in Corol-lary 6 below. Comparing with the pictures in Section 4, any recurrence usedhere also has a symmetric counterpart. However, this symmetry seems unnec-16



essary as we have shown above. In particular, the recurrence illustrated in (5a)can be replaced by the inexpensive one (4e). Moreover (5c) can be eliminated if(5f) is replaced by (4d). We therefore renounce to give the recurrence for q n+k.It looks similar to (4.2). If these savings are incorporated into the algorithms[4,7], then the only di�erence to our new algorithm is that our recurrence tocompute the next regular pair involves q-n and the algorithm of [7] involvesq-n+k. This should not make a big di�erence in the numerical behavior of thealgorithms.Note that (5e), which illustrates the recurrences for inner left FBOPs, looksidentical to (4c). In fact, inner left FBOPs are computed exactly the sameway as ours given in Theorem 3. For inner right FBOPs, q n instead of q-n isused, see (4d) and (5f). This results in a block diagonal matrix of the LDUdecomposition of T, whose blocks do no longer inherit the Toeplitz structure.We give the complete derivation only for the recurrences in pictures (5a) and(5b) in order to show how things simplify using the Pad�e connection. Theremaining recurrences from the algorithms [4,7] have either been proved inTheorem 3 or can be eliminated. Again, we assume q"n to be monic and qn(0) =1 for all n = 0; 1; : : :.Corollary 6 Let the assumptions of Theorem 3 be satis�ed, and assume inaddition, that n+ k is a regular index.(a) Let #"n+k = ��"0;n+k�1=� 0;n+k. Then a unique solution of2666664 ""n;n � � � ""n;n+k�1... ...""n+k�1;n � � � ""n+k�1;n+k�1 37777752666664 �"0...�"k�1 3777775 = �2666666664 0""n;n+k�1...""n+k�2;n+k�1 3777777775 (5.1)exists and (p"n+k ; q"n+k) with2666664 p"n+kq"n+k�ke"n+k 3777775 = � 2666664 p"n+k�1q"n+k�1e"n+k�1 3777775+ k�1Xj=0 2666664 p"n+jq"n+je"n+j 3777775 �"j + 2666664 p n+kq n+ke n+k 3777775#"n+k (5.2)is a (�1; n+ k) Pad�e form of h with monic q"n+k and residual e"n+k.17



(b) Let #n+k = �en+k�1(0)=e-n+k(0). Then a unique solution of2666664 �0;n � � � ��k+1;n+k�1... ...�k�1;n � � � �0;n+k�1 37777752666664 �0...�k�1 3777775 = �2666666664 0��k+1;n+k�1...��1;n+k�1 3777777775 (5.3)exists and (pn+k ; qn+k) with2666664 pn+kqn+ken+k 3777775 = 2666664 pn+k�1qn+k�1en+k�1 3777775+ k�1Xj=0 2666664 �k�jpn+j�k�jqn+jen+j 3777775 �j + � 2666664 p-n+kq-n+ke-n+k 3777775#n+k (5.4)is a (0; n+ k) Pad�e form of h with monic qn+k(0) = 1 and residual en+k.PROOF. First observe that the coe�cient matrices of both linear systemsare nonsingular, if and only if n+k is a regular index by Lemma 4. Moreover,if n+ k is a regular index, then "-n+k;n+k 6= 0 and � 0;n+k 6= 0 by (2.5).(a) We proceed similar to Theorem 3. From De�nition 2 we obtainhq"n+k � p"n+k = �n 0@�e"n+k�1 + k�1Xj=0 e"n+j�"j + �ke n+k#"n+k1A : (5.5)Hence, the condition hq"n+k�p"n+k = O+(�n+k) is equivalent to (5.1). Moreover,�p"n+k�1+p n+k#"n+k 2 L��1, so that p"n+k 2 L��1. The last condition, q"n+k 2 Pn+kbeing monic, is obvious.(b) Clearly, qn+k 2 Pn+k and qn+k(0) = 1. We obtain from De�nition 1hqn+k � pn+k = �n+k 0@en+k�1 + � k�1Xj=0 en+j�j + e-n+k#n+k1A : (5.6)Hence, the condition hqn+k � pn+k = O+(�n+k+1) is ful�lled for #n+k de�nedas stated in the corollary. Moreover, pn+k 2 L�0 if the coe�cients �j solve thelinear system (5.3). 18



Operations in a Levinson Schurblock of size k > 1inner products 2k {saxpys 4k � 1 8k � 2Table 2Operation counts for our new look-ahead Levinson and Schur algorithm6 Operation countsRecall that our new algorithm computes the same Pad�e forms and underde-termined Pad�e forms as the one proposed in [15]. Therefore, this variant ofthe Levinson algorithm can also be implemented by computing the same num-ber of inner products as the classical Levinson algorithm without look-ahead,see [15, Section 8]. If we neglect computations which cost of the order O(k3)operations, where k is the (look-ahead) step size, then the only signi�cant op-erations are saxpys and inner products. This assumption is justi�ed as longas the look-ahead steps remain small, which is usually the case in practical ap-plications. The computational costs of a look-ahead step in the new Levinsonand Schur algorithms are given in Table 2.In Table 3, we summarize the overhead of all the variants we proposed inthis and the previous papers. For comparison, we added the overhead of otheravailable algorithms, namely the Levinson algorithm proposed by Freund andZha [7], the Schur algorithm of Freund [4], and the Levinson algorithm ofChan and Hansen [3]. Since all but the algorithm of Chan and Hansen [3] donot have an overhead of inner products, we list only saxpys. With overhead,we mean the di�erence of the total number of operations to construct a blockof size k and the total number of operations of k steps of the correspondingclassical algorithm.The upper part of Table 3 contains algorithms which compute only regularPad�e forms but no underdetermined Pad�e forms. Hence these algorithms donot compute a complete block LDU or inverse block LDU decomposition ofT. For Levinson type algorithms, a Toeplitz system of equations can then besolved by applying an inversion formula of Gohberg-Semencul type, see e.g.,[16]. However, if no complete factorization of T is computed, then a Schur typealgorithm is only applicable for solving a Toeplitz system if the denominatorsof the regular Pad�e forms are computed also. This costs additional overhead.If one is interested only in the numerator and residual of the (0; N) Pad�e formitself, then the computation of denominators is not necessary.The lower part of Table 3 gives the overhead for algorithms which provide19



Overhead of saxpys for a Type Levinson Schurblock of size k > 1Gutknecht/Hochbruck [15] regular 2k � 2 4k � 4Huckle [19] regular 2k � 2 |new algorithm reg. + inner 2k � 1 4k � 2Gutknecht/Hochbruck [15] reg. + inner 4k � 3 6k � 5Freund/Zha [7], [4] reg. + inner 4k 6kChan/Hansen [3] reg. + inner 4k � 4 |Table 3Overhead for di�erent look-ahead algorithms for solving Toeplitz systems.a complete (inverse) block LDU decomposition of T. For these algorithms,underdetermined Pad�e forms or inner FBOPs are computed also. Our newvariant turns out to be the cheapest method known today. In particular, itsLevinson form has only roughly half the overhead of other methods that alsoproduce the full inverse LDU decomposition of T.As in the variants in [15], overhead occurs only in look-ahead steps. In aregular step (k = 1), we do not have to compute q-n , p-n , and e-n , since theseare just rescaled versions of q"n�1, p"n�1, and e"n�1. Clearly, this scaling is doneonly implicitly.Note that the overhead of a look-ahead step in the new Schur algorithm is twiceas high as that of the Levinson algorithm. This is due to the fact that numer-ators and residuals of all underdetermined Pad�e forms have to be computed,while the Levinson algorithm computes only denominators. However, recallthat for the Schur algorithm proposed in [15], the same argument does notapply, since even if the complete factorization is computed, this factorizationcontains only numerators but not residuals of (0; n+ j) left underdeterminedPad�e forms and residuals but not numerators of (�1; n+ j) right underdeter-mined Pad�e forms [12, Theorem 7.1]. Hence here, the overhead for computingunderdetermined Pad�e forms is the same as in the Levinson algorithm. Addi-tional overhead comes only from computing the regular pair.7 Conclusions and further developmentsIn this paper, we have shown how regular pairs and suitably de�ned under-determined Pad�e forms can be used to derive e�cient algorithms to computecertain Pad�e forms in adjacent rows of the Pad�e table. This approach is also20



applicable to other algorithms, such as the look-ahead Hankel solvers describedin [2,11] or the look-ahead Lanczos algorithm in its three-term [5] or its cou-pled two-term version [6]. These algorithms are based on recurrences alongone diagonal or along two adjacent diagonals in the Pad�e table. Moreover, itseems possible to extend our new algorithm to block Toeplitz matrices, similarto the extensions [23,24].While for Toeplitz and Hankel solvers algorithms which contain as its maincomputational tool polynomial multiplications seem fairly attractive, in par-ticular due to the possibility to make them superfast, this situation is to-tally di�erent for the Lanczos or the isometric Arnoldi algorithm [10]. Here,performing polynomial multiplications would mean to perform matrix-vectormultiplications. Since matrix-vectormultiplications usually dominate the com-putational cost, this is overhead one de�nitely wants to save. Hence, for thisapplication, the only option is to take an approach similar to the one pre-sented here and incorporate inner formally orthogonal polynomials into thecomputation. Substantial savings in the algorithms of [5,6] can be achieved byusing regular, row-regular or column-regular pairs in these algorithms. For ex-ample, using regular pairs in the three-term version of the look-ahead Lanczosalgorithm avoids to orthogonalize inner vectors against the complete previousblock. Moreover, regular vectors need then only be orthogonalized against thelast block and one further vector. For the Levinson type (block) Hankel solverssuch a simpli�cation was exploited in [8,23] already without using the relationto Pad�e approximation. For details we refer to [17].AcknowledgementThe author would like to thank Martin Gutknecht and Christian Lubich fortheir suggestions which helped to improve the presentation of the paper.References[1] A. Bultheel and M. Van Barel. Formal orthogonal polynomials andHankel/Toeplitz duality. Numer. Alg., 10:289{335, 1995.[2] S. Cabay and R. Meleshko. A weakly stable algorithm for Pad�e approximantsand the inversion of Hankel matrices. SIAM J. Matrix Anal. Appl., 14:735{765,1993.[3] T. F. Chan and P. C. Hansen. A look-ahead Levinson algorithm for generalToeplitz systems. IEEE Trans. Signal Processing, 40(5):1079{1090, 1992. .21
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