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Abstract The paper is concerned with the construction, implementatnd numer-
ical analysis of exponential multistep methods. These austlare related to explicit
Adams methods but, in contrast to the latter, make direcofiiee exponential and
related matrix functions of a (possibly rough) linearieatiof the vector field. This
feature enables them to integrate stiff problems explidittime.

A stiff error analysis is performed in an abstract framewafrknear semigroups
that includes semilinear evolution equations and theitiagpdiscretizations. A pos-
sible implementation of the proposed methods, includimgcttmputation of starting
values and the evaluation of the arising matrix functionKbylov subspace meth-
ods is discussed. Moreover, an interesting connectiondetvexponential Adams
methods and a class of local time stepping schemes is etedli

Numerical examples that illustrate the methods’ propgie included.
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1 Introduction

In this paper we are concerned with the construction, implgation and numeri-
cal analysis of exponential multistep methods for stiffiativalue problems of the
general form

u'(t) =F(tu(t)), u(t) = Uo. (1.2)
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Our main interest lies in abstract evolution equations fikeabolic initial boundary
value problems or spatial discretizations thereof. Aslimxgbonential integrators, the
formulation of the method relies on an appropriate linediin of the vector field and
employs the exponential and related function of this lifesdion. We will distinguish
two different cases throughout the paper, namely integgditw semilinear problems
and integrators that are based on a continuous lineanizatio

We start off with semilinear problems of the form

u'(t) = —Au(t) +g(t,u(t)), u(to) = Up (1.2)

which arise from (1.1) by identifying a dominant stiff parhe nonlinear remainder
is assumed to satisfy a local Lipschitz condition with a nmrateeLipschitz constant.
In practise, the form (1.2) can be obtained from (1.1) by aidh) linearization at
a certain state, e.g. at the initial state. For the numeschiltion of (1.2), we con-
sider the class of so-called exponential Adams methodsijrfireduced by Certaine
[2] and in a more systematic way by Ngrsett [14]. The main oution of our pa-
per is a rigorous error analysis for these methods. NoteGhato and Palencia [1]
constructed and analyzed a related clask-step methods, where the variation-of-
constants formula is taken over an interval of lengithnstead ofh. In contrast to
exponential Adams methods, all parasitic roots of theirho@s are on the unit cir-
cle.

As a second class of methods, we consider exponential tepliisethods which
are based on a continuous linearization of the vector fi@dgthe numerical tra-
jectory. These methods enjoy the property that the nonlityeavhich is integrated
explicitly in time, has a very small Lipschitz constant (gdty being zero at the be-
ginning of each step). Therefore, these methods admitrairge steps, in general.
The first method of this type appeared in a paper by Pope [1ff§psstep scheme
was proposed more recently by Tokman [18]. She also raisedubstion about the
existence of higher-order methods of this type. We preserg h general class of
linearized exponential multistep methods which is baseitempolation with a Her-
mite node at the beginning of each step. For both kind of nisthee propose starting
procedures which are inspired by a construction in [1].

The error analysis for our methods is carried out in an atsBanach space
framework of linear semigroups. We work under the assumpttiat—A generates an
analytic semigroup and that the nonlinear remairmdstocally Lipschitz continuous.
Such an assumption is typically fulfilled for parabolic iaitboundary value problems
and their spatial discretizations. We note that our angalyan also be carried out for
strongly continuous semigroups. We show thatitfstep exponential Adams method
converges with ordek, whereas the linearizddstep exponential Adams method is
shown to converge with ordde+ 1. These high-order convergence properties are
illustrated by numerical experiments.

Exponential Adams method are a special case of exponentiargl linear meth-
ods, for which an error analysis based on order conditionsegfound in [15]. The
analysis presented in the current paper is in the spiritglitional convergence proofs
for multistep methods. This is conceptually simpler and e€asily be generalized to
linearized methods.
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For the implementation of exponential multistep methods,cansider multiple
time stepping techniques and Krylov subspace methods hiedatter purpose, it is
advisable to rewrite the (linearized) exponential Adamshoeé as a perturbation of
the (linearized) exponential Euler method. The Krylov apimations then become
increasingly cheaper for each additional backward diffeee We illustrate this prop-
erty by a numerical experiment.

We conclude our paper by establishing an interesting cdiumelsetween explicit
local time stepping and exponential Adams methods. It toutsthat the explicit
local time stepping method of [5] can be interpreted as dquéar implementation
of an exponential Adams method, where small time steps a&etosapproximate the
arising matrix functions.

2 Exponential Adams methods

Throughout this section we write the right-hand didef (1.1) as
F(t,u) = —Au-+g(t,u) (2.1)

with a certain matrix (or linear operato) Such a representation can be achieved by
linearizing the function at a certain state, for instancthatinitial valueup.

Formally, the exact solution of (1.1) then satisfies theatarh-of-constants for-
mula

U(them) = € ™Mty +/ —(Mh-T)A g(tn+r,u(tn+r))dr (2.2)

for m> 0. The derivation of the numerical method proceeds in theesaay as for
explicit Adams methods. Given approximatiams~ u(t;j), we consider the interpo-
lation polynomialp, through the points

(tn—k+17 g(tn—k+1, Un—k+l)) IERES] (tna g(tnv Un)) )

given by
b(ta + 6h) = Gn+z ( )Dlem G —gitpu).  (23)

Here,[0! G, denotes thgth backward difference, defined recursively by
[lOC;n:C;n7 DJGn: DjilGn_DjilGn_]_7 ] :172,....

Replacing the nonlinearity, in (2.2) withm= 1 by the interpolation polynomigi,
defines the numerical method

h
Unir = € Mun +/ e ("=DAp(ty + 1)dT. (2.4)
0

By inserting the interpolation polynomial into (2.4), wet gfee scheme

k—1
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with weights¢1(z) = y(2) and

w(a::(_l){4141®2(j9>d9, j>o0. (2.5b)

We call (2.5) hencefortiexplicit) exponential Adams methodiote that the meth-
ods make explicit use of (matrix) functions Af For A = 0 the exponential Adams
methods reduce to the well-known classical explicit Adangthods, see, e.g., [8,
Chapter I111]. Exponential multistep methods were first dainced in [2] and then
generalized in [14]. The same class of methods was redissdveauch later in [3].
In all of theses papers, a rigorous error analysis for stdbfems is missing. Related
methods using rational approximation of the arising mdiixctions are presented
in [13] and [19].
In terms of¢-functions

1 pi-1 ]
bi(@)= [0y (21

the weights of exponential Adams methods are given by

1= o2,
o= ¢3+ %¢2,
¥ = ¢4+¢3+%¢2,
ya=¢s+ g¢4+ %¢3+ ;11¢2,
V6= o+ 205+ Lba+ 203+ L2,
Example 2.1Fork = 1 we obtain the exponential Euler method
Unt1 = Up + ho1(—hA)F (th, Un), (2.6)
while for k = 2 we have
Unt+1 = Un +ho1(—hA)F (th, Un) +hea(—hA) (G — Gn_1), (2.7)
which will be seen to be second-order convergent.

Note that (2.5a) can be interpreted as a corrected expahéntier step. If the
implementation of the products of the weights—hA) and the backward differences
0IG, is done with Krylov subspace methods, then the Euler steystout to be the
most expensive part. Our error analysis below shows|tH&G,|| = O(h') for suffi-
ciently smooth solutions, so it can be expected that Kryjppraximations become
cheaper with increasing see also [18].

It was proposed in [1] to define starting approximations .., ux_1 by replacing
the nonlinearity in (2.2) by the polynomial

k—1 6 .
p(to+ 6h) = Go-i-gl (€>A Go
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interpolating in (to,g(to, Uo)).. .-, (t—1,9(t_1,Uk_1)). Here AJGy denotes thejth
forward difference defined recursively by

A°G,=G,,  AIG,=41"1G,.1 Al 1G,, i=12,....

Approximationsuy, ..., Ux_; of appropriate order are obtained by solving the nonlin-
ear system

k—1
Um = Ug + mh1 (—mhAF (to, Up) + h/Z Ome(—hA)A'Gy, m=1,....k—1,
(=1

(2.8)
O i(2) = m (m-0)z 6
m,k(z)—/o e ¢ dé.

A comparison with (2.5b) yields
Om1(2) = mPda(m2),

where

Om2(2) = M*p3(M32) — 2P ¢o(m2),

Om3(2) = m*pa(m2) —mPh3(m3) + 1P z(m2),

Oma(2) = MPps(M2) — Smi*g4(m2) + Zm°ps(m2) — 2P go(m32),

Oms(2) = mPge(M2) — 2mPps(M2) + T pa(m2) — 2mPhs(m32) + 2o (m2).

Note that, up to the alternating sign, the coefficientsrof coincide with those for
¥j(2). This can be easily verified from the definition of these fior.

Under appropriate assumptions (see Section 4 below), thignear system (2.8)
has a unique solutiofus, ..., ux_1) for h sufficiently small. The solution can be com-
puted by fixed point iteration, cf. [1, Section 4].

3 Linearized exponential multistep methods

The numerical schemes considered so far are based on a kirgglgzation of the
right-hand sidd~. Next we construct methods based on a continuous lineemizat
of (1.1) along the numerical solution. For a given paiptapproximatingu(ty), we
define

oF JoF
%(tnyun)» dh= ot

The numerical schemes given below will makelicit use of these quantities. In the
above notation, (1.1) takes the form

U (t) = Jau(t) + dnt 4 gn(t, u(t)). (3.2)

The variation-of-constants formula thus yields the follogvrepresentation of the
exact solution fom > 0

= = (tn,Un),  Gn(t,u) = F(t,u) — Jnu—dnt. (3.1)

h
U(them) = €™hu(ty) + /Om eMT% ((ty 4+ T)dn + gn(tn + T, U(ta + 7)) ) dT. (3.3)
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In contrast to exponential Adams methods, we can now exjhleitelations

7(tn, Un) = 0, %(tn, Un) = O (34)

by approximatingg, in (3.3) by a Hermite interpolation polynomi@}, of degreek
satisfyingpn(tn) = 0 and interpolating in the points

(tn7k+1;gn(tn7k+1, Un7k+l)) yeees (tna On(tn, Un))~
This polynomial is given by
i

R k—1 . —6
Pu(tr+6h) =G+ Y (—1)l+1e< j ); %Dfem, (3.5)
=1 =1

whereGn m = gn(tm, Um) and DiGn’m denotes theth backward difference defined
recursively by

1°Gnm= Gnm, DGum=0"1Gym— 0 Gy m 1, j=12.... (3.6)

Replacinggy in (3.3) by this polynomial defines the numerical scheme

1
Uns1 = € +h / (-0 (1, 1 Bh)dly + Pu(tn -+ 6h))dO (3.7a)
0
k-1 j ‘
= Un+ho1(hJ)F (tn, Un) +h*¢2(hd)ch +h 5 V,-H(hah)lz 10%nn
=1 /=1

which we calllinearized exponential Adams methioginceforth. Its weights

Vita(2) = (-1)+t / fe1-0)zg (_je> do (3.7b)

0

expressed in terms @f-functions are

—2¢3,

—3¢4— ¢3,

—4¢s — 34 — %4’37

Y5 = —5¢5 — 6¢5 — 1;1434— %4’3.

Example 3.1For k = 1 we obtain thelinearized exponential Euler methg@lso
calledexponential Rosenbrock—Euler method

Un+1 = Un + N1 (hdh)F (tn, Un) + h*¢a(hdn)d, (38)
which is second-order convergent. Foe 2 we get third-order scheme
Un1 = Un+ N1 (hJ)F (tn, Un) + h?$2(hdh)dn — 2hd3(hdh)(Grn— Gnn-1)  (3.9)

which was first presented in [11].

SN
Il

7

)
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Motivated by the approach in [1], we suggest to constructistavalues by re-
placing the nonlinearitg, in (3.3) by the interpolation polynomial

k—1 ) 0 j
P (to+ 6h) = Goo + (—1)19<.> (-1)"2A'Gop
;1 ] lZl ¢

satisfyingp’(tp) = 0 and interpolating in

(to,Go(to, o)), - - -, (tk—1, 0 (tk—1, Uk—1)) -

Here, the forward differences are defined analogously 8).(3he approximations
up,...,Ux_ 1 are obtained by solving the nonlinear system

Um = Ug + (Mh)¢1(Mhd)F (to, Ug) 4+ (Mh)2@2(mhd)do

k—1 J

+h Gnjhd) ¥ “FAlGe,  m=1,... k-1,
2,omhb) 3 =

where

6mi@) = (-1)! |

" em-6)zg (9) de.
0

J
A straightforward calculation shows that

—2m>¢3(m2),
2) = 3m*¢4(M2) — M>p3(m2),

(
(

Gm3(2) = —4mPgs(m3) + 3t ¢a(m2) — ZmPh3(m2),
(

B
2

S
i

Note that, up to the alternating sign, the coefficient&pf coincide with those for
¥i(2). This can be easily verified from the definition of these fior.

For h sufficiently small, the nonlinear system (3.10) has a ungpletion which
can be approximated by fixed point iteration.

4 Error analysis

So far, we have considered a finite dimensional setting vitleing a square matrix.
The main ingredients for the construction of our schemesreviige variation-of-
constants formula and the possibility to define approprizéix functions.

The purpose of this section is to give an error analysis fiffr mtoblems. We
will derive uniform error bounds on bounded time intervdlke bounds are of the
form ChP, where the constar@ is independent of the stiffness of the problem and
the employed time step site Throughout this sectioi; > 0 will denote a generic
constant.

An appropriate framework for carrying out this analysis semigroups of linear
operators. We will therefore make the following assumgjdior more details, we
refer to [4,9, 16].
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Assumption 4.1 Let X be a Banach space with norfr||. We assume that A is a
linear operator on X and that—A) is the infinitesimal generator of an analytic semi-
groupe A on X. o

Without loss of generality, we assume that the sector coimigithe spectrum of\
is bounded away from the origin. In this case, the fractiqggmliers ofA are well
defined. For a fixedr with0 < o < 1, let

V={veX|A%eX}cCX.

ThenV is a Banach space with nortfv|ly = ||A%V|| which is equivalent to the
graph norm ofA?. Recall that under the above assumptions, the followinghpaic
smoothing property holds:

le™ M xex+[IVAE A xex <C),  yit >0, (4.1)

Our main assumption on the nonlinearity will be the follogin

Assumption 4.2 We assume that g[0,T] x V — X is locally Lipschitz-continuous
in a strip along the exact solution u. o

Recall that this framework covers semilinear parabolicatigns, such as reaction-
diffusion equations, and their spatial discretizatiorws. fRore details, we refer to [9,
Chapter 3].

4.1 Convergence of exponential Adams methods

We are now in the position to state our main convergence trésulexponential
Adams methods.

Theorem 4.3 Let the initial value problenil.2)satisfy Assumptions 4.1 and 4.2, and
consider for its numerical solution the k-step exponenidhms method2.5) with
step size h satisfyin@ < h < H with H sufficiently small. Let (t) = g(t,u(t)) and
assume that £ CX([0,T],X). Then, for

|uj —u(y) |, <coh®, j=1,...k-1, (4.2)

the error bound
lun — u(ta)[[v < C-h* sup|| ¥ (t)]|
0<t<tn
holds uniformly ird < nh< T. The constant C depends on T, but it is independent of
n and h.

The error bound given in this theorem can in principle be dediby verifying the
order conditions (2.7) for exponential general linear rodthgiven in [15]. Here we
present a simpler proof based on interpolation errors. B@g our proof can easily
be generalized to linearized exponential Adams methodSeadftion 4.2 below.
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Proof Let pn denote the interpolation polynomial through the exact data

(tn—ks1, Ftn—ks1)), - -, (th, F(tn)),

wheref (t) = g(t,u(t)). This polynomial has the form

Pn(tn + 6h) = Tg(lw’ (‘f) 01 (ta),
where the backward differences are defined by
DOF (tm) = f(tm), O f(tm) =01 (tn) =0 H(tm1), j=12,....
Its interpolation error is given by

f (th 4+ 6h) — Pn(tn + 6h) = hK(=1)k (ke> f®(z(8)) (4.3)

for certain intermediate times(0) € [tn_k+1,th+1]. The variation-of-constants for-
mula allows us to write the solution of (1.1) in the form

U(ths1) = e u(t) + h / h1-0)AR, (tn + Bh)d + &1 (4.4)

with defect

am_h/ (tn+ 6h) — Pn(tn + 6h))d6.

Due to (4.3) and (4.1) this defect is bounded by

Insall SCHEIM,  fldnsaly <CHHOM, M= sup [[f9(1)].

0<t<th;1

Let &, = un — u(ty) denote the error at timg with ey = 0. Taking the difference
between (2.4) and (4.4) yields the error recursion

1
ent1 =€ Men+h /0 e "R (py(tn + 6h) — Pn(tn + 6h))dO — Sny1.  (4.5)
We solve this recursion to get
n—-1 . 1 1
e, =h Z)e*(nfjfl)hA (/ e "= (p;(tj + 6h) — pj(t; + 6h))d6 — hé”l) .
= Jo

We next use the Lipschitz condition (with constaftfrom Assumption 4.2 and the
stability bound (4.1) to estimate terms of the form

He*("*j)hA(g(tj,Uj) - g(tj7u(tj))> Hv <CyLt, % [[ejly -
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Note that this bound is uniform as long as the numerical Emluemains sufficiently
close to the exact solution. This is the case Hbsufficiently small as the present
proof shows. Since

tj*" gCtj;“m, 0<m<k-1,

we have

He*(”*”hA(Pj (tj + 6h) — Pj (t; + 6h)) HV

J

<C He_(n_j)hA(g(thUz) —g(tlau(tf))) Hv
(=]—k+1
i
<C t 5 llecdly -
]

From this we finally infer the estimate

The stated error bound then follows from a discrete Gronigatima (Lemma 2.15
in [11]). |

Remark 4.4 (a) The above proof shows that exponential Adams methodseoga
with full order for linear problems

u'(t) +Aut) = f(t), Uo = u(0),

if the right-hand sidef is sufficiently smooth. In contrast to standard integratoos
compatibility conditions at = 0 are required for abstract parabolic problems.

(b) Under the assumptions of the theorem, the starting proeg2.8) yields starting
values(u,...,ux_1) which satisfy (4.2).

(c) Fora =0, Assumption 4.1 can obviously be relaxed to the requirenien(—A)
is the infinitesimal generator of a strongly continuous ggmip €A on X.

We illustrate our convergence result with a numerical edam@onsider the
semilinear parabolic problem

ou J2u

E(th) - W(X’t) =

m"‘(D(X,t) (46)

with x € [0,1] andt € [0, 1], subject to homogeneous Dirichlet boundary conditions.
The source functio® is chosen in such a way that the exact solution of the problem
isU(x,t) = x(1—x) €. Discretizing (4.6) in space by standard finite differencéh

200 grid points yields a stiff initial value problem of therfio (1.2). We integrate this
system in time with exponentiéitstep Adams methods fér=1,...,6 and compute
the errors in a discrete? norm. The results which are displayed in Fig. 4.1 in a
double-logarithmic diagram are in perfect agreement witadrem 4.3.
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-2 -1
10 step size 10

Fig. 4.1 Order plot for the exponenti&tstep Adams method& & 1, ..., 6) applied to example (4.6). The
problem is discretized in space with 200 grid points andgreted in time with constant step sizes. The
dashed lines are straight lines of sldp&hey are added for purpose of comparison

4.2 Convergence of linearized exponential multistep nagho

For simplicity, we restrict our error analysis to semilingaoblems fulfilling (2.1).
In this case, (3.1) takes the form

7} 7}
h=—A+ (), dh=

7]
gn(t,U) = g(t,u) — a—g(tn,un)u— ot
Our main hypothesis on the nonlineargys the following.

(tn, Un)v
4.7)

Assumption 4.5 We assume that the initial value problgih?2) possesses a suffi-
ciently smooth solution 1[0, T] — V with derivatives inV, and that:d0, T] xV — X

is Fréchet-differentiable in a strip along the exact solutioti.o&curring derivatives
are assumed to be uniformly bounded. o

We are now in the position to prove our convergence theorem.

Theorem 4.6 Let the initial value problenl.2)satisfy Assumptions1and4.5, and
consider for its numerical solution the k-step linearizeg@ential Adams method
(3.7)with step size h satisfyiri< h < H for H sufficiently small. Let () = g(t,u(t))
and assume that &€ C<t1([0,T], X). Then, for

luj —u(t) [y <coh ™t j=1.. k-1, (4.8)
the error bound
Jun = ut) v < C- 4 sup (114D 1)+ u D 1) )
o<t<tp

holds uniformly in0 < nh< T. The constant C depends on T, but it is independent of
nand h.
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Proof The proof of this theorem is very close to that of Theorem %8s time, we
consider the Hermite interpolation polynomi& through the exact data

(tn—k+1, fn(tn—k+1))a---7 (tm fn(tn))a

satisfying pj,(tn) = f;(tn). Here we denotedy(t) = ga(t,u(t)). This interpolation
polynomial is given by

- k-1 . /—0 j
pn(t+ 80) = fo(t) + 601+ 3 (-116( ) o)~ 3ttt ).
=1 J /=1
The backward differences are defined by
Dofn(tm) = fn(tm), DJ fn(tm) = I]j_lfn(tm)_Ijj_lf|'](tm7_1)7 ] = 1,27....

Its interpolation error is given by

—e> i (2(0)
k k+1

fn(tnh -+ 6h) — Pn(tn + 6h) = hk+1(—1)ke<

for certain intermediate time&(0) € [tn_k+1,th+1]. The variation-of-constants for-
mula (3.3) allows us then to write the solution of (1.1) as

1
U(tn11) = €™hu(tn) +h /0 & Oh ((ta+Oh)dn+ Palta+ 6N)) + 1 (4.9)
with defect
1
Svi1—=h /0 (-0 (£, (t, + Bh) — Pn(tn + Oh))d6.

Due to (4.1) and the smoothnessfgf the defect is bounded by

|8hsa]] < CHY2M, 18nsally < CHYZ-M,
M= sup (If* ) +Clu* D).
0<t<tpi1

Taking the difference between (3.7a) and (4.9) yields thereecursion

1
eni1 = e, +h /O =0 (B, (1, + Bh) — Pn(tn+ 6N))dO — Sny 1.

We solve this error recursion and use the differentiabaity (cf. Assumption 4.5)
to bound the difference of the interpolation polynomialsisimilar way as in the
proof of the previous theorem. In particular, applying ttebdity result of [12, Ap-
pendix A] (which might introduce an additional step sizenieson) yields

e (g 1, u0t)) 05t )) | <S5 lery -

In order to bound the additional term

fa(t) = 2 1, u0)) + 92 (t, u(t) 1),



Exponential multistep methods of Adams-type 13

-2 -1
10 step size 10

Fig. 4.2 Order plot for the linearized exponentlaktep Adams methods (diamondtss 1,...,5) applied
to example (4.6). The problem is discretized in space with @@ points and integrated in time with
constant step sizes. The results obtained with the expahdrétep Adams methods (circles) far=
1,...,6 are drawn for comparison. The dashed lines are straighg bfieslopek. They are added for
purpose of comparison

we make use of the relations (3.4). Note that the numeridatisa remains suffi-
ciently close to the exact solution fét sufficiently small. This guarantees the uni-
form boundedness of the arising Lipschitz constants. Eyampdpall these bounds
finally shows that

n—-1 1
lenlly <C. max leilly +Ch%?(||ej‘lv +hk+1) +Cl&nlly -
j=1,... k=1 = tn,J

The application of a discrete Gronwall lemma (Lemma 2.15L1) thus concludes
the proof. O

Remark 4.7 Under the assumptions of the theorem, the starting valusguoted
from (3.10) satisfy (4.8).

In order to illustrate the convergence result of Theoremwestake up example
(4.6) and integrate it this time with the linearized expdiark-step Adams methods
fork=1,...,5. The results, together with the results of the previouserpgnt are
displayed in Fig. 4.2. The linearized methods obviouslyehawaller error constants.

5 Implementation issues

In this section, we comment on possible implementationshefrhatrix functions
arising in (linearized) exponential multistep methodstiker issues like variable step
sizes and variable order implementations will be discusssglvhere.
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5.1 Diagonalization

If the dimension of the problem is small enough or if the dizgl@ation of the matrix
A can be computed efficiently (by fast Fourier transformatiyg.), then the initial
value problem (1.2) should be transformed into the basisgeihwectors. The matrix
functions can be precomputed on the eigenvaluea afd used for all time steps.
Clearly, for an implementation using diagonalization, @xgntial Adams methods
are much more attractive than linearized multistep metfsidse the latter require a
new diagonalization ad, in each time step.

5.2 (Rational) Krylov subspace methods

For large scale problems, (rational) Krylov subspace nmisthwan be applied to ap-
proximate the products of matrix functions with vectorsac® this approximation
does not reuse computations from previous time steps, & doematter that the ma-
trix J, is different in each of the time steps (except that the ev@naf J, itself
might be expensive). Since Krylov subspace methods benefit properties of the
vector which multiplies the matrix function, one should kxtthat the backward dif-
ferences used in (3.7a) satisiGn, = O(h?) due to (3.4) andl’Gn = O(h"), £ > 2

if the assumptions of Theorem 4.6 are satisfied. We thustetive scheme (3.7) as

k-1 ‘
Uns1 = Un+ e (hda)F (th, Un) +h?d2(hdy)dn + h/z B (hh)O'Gnp,  (5.13)
=1

where

k-1
B = % > Vit (5.1b)
=0

Table 5.1 shows these coefficients in termgdfinctions.

For purpose of illustration, we consider the following tdimrensional parabolic
problem
1

U
— (X1, %,t) =AU (X, %p,t) = —————
(X1, %2,t) (X1, %2, 1) 1+U (xg,%,1)2

o (5.2)

with (x1,%2) € [0,1]? andt € [0,0.2], subject to homogenous Dirichlet boundary con-
ditions. We discretized (5.2) by standard finite differenwgth N = 75 grid points

in each direction and integrated the resulting semidiescpgbblem with the lin-
earized exponential 5-step method using Krylov subspadbads. The left picture
of Fig. 5.1 shows the norms of the backward differenc@&, ,, m=1,...,4. For
this example, the first differences are even smaller thars¢lend differences. The
different behavior of the differences within the first timtess is due to the fact that
the initial data does not satisfy the compatibility coratiss att = O.

The right picture of Fig. 5.1 shows the number of Krylov stegrguired to achieve
the desired accuracy 61(h"+2). As expected, most of the Krylov steps are required
to approximateds (hJ,)F (tn, un), while the products of the coefficients with the back-
ward differences can be approximated in low dimensionald&rgubspaces.
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Table 5.1 The coefficientg , of method (5.1)

45F7
30 1
20 1

10

Fig. 5.1 Norms of backward differences and employed Krylov dimensidhs.curves represent function
values (squares), first differences (circles), seconewmiffces (stars), third differences (pluses), fourth
differences (diamonds)

Analogously, we rewrite the starting procedure (3.10) bijnileg

3 )'$ s
Beme(2) == % Omj(2).
5
This yields the nonlinear system of equations
k=1 _

Um = Up -+ (Mh)¢1(Mhd)F (to, Up) + (Mh)%2(mhd)do + h/z Bcm(hd)A Gop,
=1

which can be solved by fixed point iteratiorhifs sufficiently small.
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|
100 cpu time 10l

Fig. 5.2 Error versus cpu time for the exponent{&l+ 1)-step Adams methods (dashed lines) and the
linearized exponentidi-step Adams methods (lines) for the Brusselator problem frody $ection 7.1]
with a = 0.02. The casek = 1 (squares)k = 2 (circles) k = 3 (stars) and = 4 (pluses) are shown

To illustrate the efficiency of the linearized exponentialatns methods for par-
ticular examples, we consider the Brusselator problem féation 7.1 in [10] with
a = 0.02. In our experiment, the products of the matrix functiorihhwectors are
approximated by the Arnoldi method. Figure 5.2 shows theresf different meth-
ods as a function of the cpu time. As expected, the linearzgunential methods
clearly outperform the exponential Adams methods in theamgxe. The reasons for
this behavior are that the evaluation of the Jacobian isivelg cheap and that the
vectors multiplying the matrix functions have smaller nomhich results in smaller
Krylov subspaces. Moreover, the linearized methods hawlenerror constants.

5.3 Multiple time stepping

The construction of exponential Adams methods was basedpiading the nonlin-
earity g in the variation-of-constants formula (2.2) by the locakinpolation poly-
nomial p, defined in (2.3). Thus the method can also be interpreted lemgdhe

differential equation

Yn(T) = —Ayn(T) + Pn(tn + 1), Yn(0) = un, (5.3)

on the time interval0, h] exactly and settingn;1 = yn(h). For an approximation one
could also solve (5.3) by an explicit scheme using smaltee tsteps. The method can
then be interpreted as a multiple time stepping procedung @wsmacro time step
for sampling the nonlinearitg and a micro time step for the solution of (5.3). Since
the method requires only one evaluationgoper macro time step, such a multiple
time stepping implementation is attractive if the evaloiatof the nonlinearityg is
much more expensive than a few matrix vector multiplicatiosith A.

For the linearized exponential multistep methods we have = yn(h), where
yn(h) is the exact solution of

Y(T) = InYn(T) + (tn + 1) + Pn(ta + T), ¥n(0) = un, (5.4)
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over the interva|0, h]. The polynomiap, was defined in (3.5). Hence a multiple time
stepping implementation is possible for these methods ds we

6 Application to partitioned problems

As a further application of exponential multistep methodas, consider problems
where the stiff and the nonstiff components can be diststtrd:

!
vl  |LZ]||v at,vyw)| . .|V a(t,v,w)
B ] M v R M S i B
Here, the stiff components are denotedvbgnd the nonstiff components loy, re-
spectively. Let
I 0
*~[o0

be the projector onto the stiff components. In this situati@ can apply an exponen-
tial Adams method (2.5) with

e [58]. vn- [S2][2] (] o2

For an error analysis of exponential Adams methods appliedi$ partitioning, we
have to verify the assumptions of Theorem 4.3. For this mepwe assume that the
spectrum ol is bounded away from the origin, thatfulfills Assumption 4.1 on a
Banach spac¥, , and thatB is a bounded operator on a Banach spégeWe then
consider the Banach spacés= X, x Xg andV =V x Xg, where

VL ={veX |L%VeX }CTX.

Assumption 4.1 is obviously fulfilled for the operatardefined in (6.2), ify L1 :
X. — Xg is bounded. Assumption 4.2 is fulfilled,4f: Xg — X, is bounded and i:
[0,T] xVL x Xg — X_andb: [0,T] x V. x Xg — Xg are locally Lipschitz continuous
in a strip along the exact solution.

For an analytic functiomp it is easily verified that

) 0

P = hvgnL) g(0)1 ] ©2)

where

P2 = === (6.4)



18 Marlis Hochbruck, Alexander Ostermann

-2

10 2

10 N

10

10
error

10
error

10
error

-4

10 10" -

10

10 10 10

-1 -1 -1
step size 10 step size 10 step size 10

Fig. 6.1 Order plots for different refinement factops The results were obtained with the exponential
4-step Adams method applied to (6.6) and clearly show order(fehich is the slope of the dashed line)

The block structure oA can thus be exploited in the implementation. Using (6.3, th
exponential Adams method (2.5a), applied to (6.1), (6.2)se

k—1 _
Vi1 =V + hd1(hL) (Lvn + ZWa +an) +h 5 yj(hL) O’ (Zwh +an),
=1

k-1
W1 = wn+hv(¢1<hL>vn+h¢2<hL><2wq+an> +hy V,»“(hL>D1<2wn+an>>
=1

k—1 )
+hZJVj(O)DJ(BWn+bn)-
]:

Alternatively, if in addition to the assumptions posed afydiie operator : X —
Xg is bounded, then Assumption 4.1 and 4.2 are fulfilled for

B T [ R

In this case, the exponential Adams method reads

k—1 ,
Vnt1 = Vn+ h@1(hL) (Lvn 4+ ZWh +aq) +h ZV] (hL)O) (Zwh + an) ,
=

k-1 ,
W1 :Wn+h%)/j(0)DJ(Y\h+BVVn+bn).
J:

Note that the update of the stiff components is the same aweeflowever, the
nonstiff components can be computed more efficiently simcaatrix functions are
required.

As an application we consider a discretization of the dampege equation

a2u au 92U

W(x,t)JrJW(x,t) = WU(x,t) (6.6)
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which was also presented in [5]. We equip this problem witthbigeneous Dirichlet
boundary conditions on the interv@l 6]. Its exact solution is

_at
U(xt) = %sin(m)sin(%\/mﬁ - 02) : (6.7)

We discretized (6.6) with fourth-order finite differences dpace and locally re-
fined the grid in the subintervé?, 4], where we reduced the grid size by a factor of
p=2,6,10, respectively. Fig. 6.1 shows the errors of the expoak#istep Adams
method withh = Ax;/6 for coarse grid sizedAx. = 0.2,0.1,0.05,0.025 which are
used in[0,2) U (4, 6]. The matrixA was chosen as in (6.2) with the blodksy corre-
sponding to the refined grid points aad= b = 0. For this example, it turns out that
even the exponential 3-step Adams method is accurate ertougjire fourth-order
convergence in the coarse grid size. We omit the graphs #freceurves cannot be
distinguished from those of the 4-step method.

As an alternative that avoids matrix functions, the resglfiine-grid equations
can also be solved by an explicit time stepping scheme. Su@pproach requires
small time steps on the time intervial, t1] and leads to a multiple time stepping
method as described in Section 5.3. For the consideredgamlil gives the explicit
local-time stepping method proposed in [5]. For relatedhoés$ and ideas, we refer
to [6,7].
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