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Abstract The paper is concerned with the construction, implementation and numer-
ical analysis of exponential multistep methods. These methods are related to explicit
Adams methods but, in contrast to the latter, make direct useof the exponential and
related matrix functions of a (possibly rough) linearization of the vector field. This
feature enables them to integrate stiff problems explicitly in time.

A stiff error analysis is performed in an abstract frameworkof linear semigroups
that includes semilinear evolution equations and their spatial discretizations. A pos-
sible implementation of the proposed methods, including the computation of starting
values and the evaluation of the arising matrix functions byKrylov subspace meth-
ods is discussed. Moreover, an interesting connection between exponential Adams
methods and a class of local time stepping schemes is established.

Numerical examples that illustrate the methods’ properties are included.
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1 Introduction

In this paper we are concerned with the construction, implementation and numeri-
cal analysis of exponential multistep methods for stiff initial value problems of the
general form

u′(t) = F
(
t,u(t)

)
, u(t0) = u0. (1.1)
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Our main interest lies in abstract evolution equations likeparabolic initial boundary
value problems or spatial discretizations thereof. As in all exponential integrators, the
formulation of the method relies on an appropriate linearization of the vector field and
employs the exponential and related function of this linearization. We will distinguish
two different cases throughout the paper, namely integrators for semilinear problems
and integrators that are based on a continuous linearization.

We start off with semilinear problems of the form

u′(t) =−Au(t)+g
(
t,u(t)

)
, u(t0) = u0 (1.2)

which arise from (1.1) by identifying a dominant stiff part.The nonlinear remainderg
is assumed to satisfy a local Lipschitz condition with a moderate Lipschitz constant.
In practise, the form (1.2) can be obtained from (1.1) by a (rough) linearization at
a certain state, e.g. at the initial state. For the numericalsolution of (1.2), we con-
sider the class of so-called exponential Adams methods, first introduced by Certaine
[2] and in a more systematic way by Nørsett [14]. The main contribution of our pa-
per is a rigorous error analysis for these methods. Note thatCalvo and Palencia [1]
constructed and analyzed a related class ofk-step methods, where the variation-of-
constants formula is taken over an interval of lengthkh instead ofh. In contrast to
exponential Adams methods, all parasitic roots of their methods are on the unit cir-
cle.

As a second class of methods, we consider exponential multistep methods which
are based on a continuous linearization of the vector field along the numerical tra-
jectory. These methods enjoy the property that the nonlinearity, which is integrated
explicitly in time, has a very small Lipschitz constant (actually being zero at the be-
ginning of each step). Therefore, these methods admit larger time steps, in general.
The first method of this type appeared in a paper by Pope [17], atwo-step scheme
was proposed more recently by Tokman [18]. She also raised the question about the
existence of higher-order methods of this type. We present here a general class of
linearized exponential multistep methods which is based oninterpolation with a Her-
mite node at the beginning of each step. For both kind of methods, we propose starting
procedures which are inspired by a construction in [1].

The error analysis for our methods is carried out in an abstract Banach space
framework of linear semigroups. We work under the assumption that−A generates an
analytic semigroup and that the nonlinear remainderg is locally Lipschitz continuous.
Such an assumption is typically fulfilled for parabolic initial boundary value problems
and their spatial discretizations. We note that our analysis can also be carried out for
strongly continuous semigroups. We show that thek-step exponential Adams method
converges with orderk, whereas the linearizedk-step exponential Adams method is
shown to converge with orderk+ 1. These high-order convergence properties are
illustrated by numerical experiments.

Exponential Adams method are a special case of exponential general linear meth-
ods, for which an error analysis based on order conditions can be found in [15]. The
analysis presented in the current paper is in the spirit of traditional convergence proofs
for multistep methods. This is conceptually simpler and caneasily be generalized to
linearized methods.
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For the implementation of exponential multistep methods, we consider multiple
time stepping techniques and Krylov subspace methods. For the latter purpose, it is
advisable to rewrite the (linearized) exponential Adams method as a perturbation of
the (linearized) exponential Euler method. The Krylov approximations then become
increasingly cheaper for each additional backward difference. We illustrate this prop-
erty by a numerical experiment.

We conclude our paper by establishing an interesting connection between explicit
local time stepping and exponential Adams methods. It turnsout that the explicit
local time stepping method of [5] can be interpreted as a particular implementation
of an exponential Adams method, where small time steps are used to approximate the
arising matrix functions.

2 Exponential Adams methods

Throughout this section we write the right-hand sideF of (1.1) as

F
(
t,u
)
=−Au+g(t,u) (2.1)

with a certain matrix (or linear operator)A. Such a representation can be achieved by
linearizing the function at a certain state, for instance atthe initial valueu0.

Formally, the exact solution of (1.1) then satisfies the variation-of-constants for-
mula

u(tn+m) = e−mhAu(tn)+
∫ mh

0
e−(mh−τ)Ag

(
tn+ τ ,u(tn+ τ)

)
dτ (2.2)

for m≥ 0. The derivation of the numerical method proceeds in the same way as for
explicit Adams methods. Given approximationsu j ≈ u(t j), we consider the interpo-
lation polynomialpn through the points

(
tn−k+1,g(tn−k+1,un−k+1)

)
, . . . ,

(
tn,g(tn,un)

)
,

given by

pn(tn+θh) = Gn+
k−1

∑
j=1

(−1) j
(−θ

j

)
∇ jGn, G j = g(t j ,u j). (2.3)

Here,∇ jGn denotes thejth backward difference, defined recursively by

∇0Gn = Gn, ∇ jGn = ∇ j−1Gn−∇ j−1Gn−1, j = 1,2, . . . .

Replacing the nonlinearitygn in (2.2) withm= 1 by the interpolation polynomialpn

defines the numerical method

un+1 = e−hAun+

∫ h

0
e−(h−τ)Apn(tn+ τ)dτ . (2.4)

By inserting the interpolation polynomial into (2.4), we get the scheme

un+1 = un+hϕ1(−hA)F(tn,un)+h
k−1

∑
j=1

γ j(−hA)∇ jGn (2.5a)



4 Marlis Hochbruck, Alexander Ostermann

with weightsϕ1(z) = γ0(z) and

γ j(z) = (−1) j
∫ 1

0
e(1−θ)z

(−θ
j

)
dθ , j ≥ 0. (2.5b)

We call (2.5) henceforth(explicit) exponential Adams methods. Note that the meth-
ods make explicit use of (matrix) functions ofA. For A = 0 the exponential Adams
methods reduce to the well-known classical explicit Adams methods, see, e.g., [8,
Chapter III]. Exponential multistep methods were first introduced in [2] and then
generalized in [14]. The same class of methods was rediscovered much later in [3].
In all of theses papers, a rigorous error analysis for stiff problems is missing. Related
methods using rational approximation of the arising matrixfunctions are presented
in [13] and [19].

In terms ofϕ-functions

ϕ j(z) =
∫ 1

0
e(1−θ)z θ j−1

( j−1)!
dθ , j ≥ 1,

the weights of exponential Adams methods are given by

γ1 = ϕ2,

γ2 = ϕ3+
1
2

ϕ2,

γ3 = ϕ4+ϕ3+
1
3

ϕ2,

γ4 = ϕ5+
3
2

ϕ4+
11
12

ϕ3+
1
4

ϕ2,

γ5 = ϕ6+2ϕ5+
7
4

ϕ4+
5
6

ϕ3+
1
5

ϕ2.

Example 2.1For k= 1 we obtain the exponential Euler method

un+1 = un+hϕ1(−hA)F(tn,un), (2.6)

while for k= 2 we have

un+1 = un+hϕ1(−hA)F(tn,un)+hϕ2(−hA)(Gn−Gn−1), (2.7)

which will be seen to be second-order convergent.

Note that (2.5a) can be interpreted as a corrected exponential Euler step. If the
implementation of the products of the weightsγ j(−hA) and the backward differences
∇ jGn is done with Krylov subspace methods, then the Euler step turns out to be the
most expensive part. Our error analysis below shows that

∥∥∇ jGn
∥∥=O(h j) for suffi-

ciently smooth solutions, so it can be expected that Krylov approximations become
cheaper with increasingj; see also [18].

It was proposed in [1] to define starting approximationsu1, . . . ,uk−1 by replacing
the nonlinearity in (2.2) by the polynomial

p(t0+θh) = G0+
k−1

∑
ℓ=1

(
θ
ℓ

)
∆ ℓG0
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interpolating in
(
t0,g(t0,u0)

)
, . . . ,

(
tk−1,g(tk−1,uk−1)

)
. Here ∆ jG0 denotes thejth

forward difference defined recursively by

∆ 0Gn = Gn, ∆ jGn = ∆ j−1Gn+1−∆ j−1Gn, j = 1,2, . . . .

Approximationsu1, . . . ,uk−1 of appropriate order are obtained by solving the nonlin-
ear system

um = u0+mhϕ1(−mhA)F(t0,u0)+h
k−1

∑
ℓ=1

σm,ℓ(−hA)∆ ℓG0, m= 1, . . . ,k−1,

(2.8)
where

σm,ℓ(z) =
∫ m

0
e(m−θ)z

(
θ
ℓ

)
dθ .

A comparison with (2.5b) yields

σm,1(z) = m2ϕ2(mz),

σm,2(z) = m3ϕ3(mz)− 1
2
m2ϕ2(mz),

σm,3(z) = m4ϕ4(mz)−m3ϕ3(mz)+ 1
3
m2ϕ2(mz),

σm,4(z) = m5ϕ5(mz)− 3
2
m4ϕ4(mz)+ 11

12
m3ϕ3(mz)− 1

4
m2ϕ2(mz),

σm,5(z) = m6ϕ6(mz)−2m5ϕ5(mz)+ 7
4
m4ϕ4(mz)− 5

6
m3ϕ3(mz)+ 1

5
m2ϕ2(mz).

Note that, up to the alternating sign, the coefficients ofσ1, j coincide with those for
γ j(z). This can be easily verified from the definition of these functions.

Under appropriate assumptions (see Section 4 below), the nonlinear system (2.8)
has a unique solution(u1, . . . ,uk−1) for h sufficiently small. The solution can be com-
puted by fixed point iteration, cf. [1, Section 4].

3 Linearized exponential multistep methods

The numerical schemes considered so far are based on a singlelinearization of the
right-hand sideF . Next we construct methods based on a continuous linearization
of (1.1) along the numerical solution. For a given pointun approximatingu(tn), we
define

Jn =
∂F
∂u

(tn,un), dn =
∂F
∂ t

(tn,un), gn(t,u) = F(t,u)−Jnu−dnt. (3.1)

The numerical schemes given below will makeexplicit use of these quantities. In the
above notation, (1.1) takes the form

u′(t) = Jnu(t)+dnt +gn
(
t,u(t)

)
. (3.2)

The variation-of-constants formula thus yields the following representation of the
exact solution form≥ 0

u(tn+m) = emhJnu(tn)+
∫ mh

0
e(mh−τ)Jn

(
(tn+ τ)dn+gn

(
tn+ τ ,u(tn+ τ)

))
dτ . (3.3)



6 Marlis Hochbruck, Alexander Ostermann

In contrast to exponential Adams methods, we can now exploitthe relations

∂gn

∂u
(tn,un) = 0,

∂gn

∂ t
(tn,un) = 0 (3.4)

by approximatinggn in (3.3) by a Hermite interpolation polynomial̂pn of degreek
satisfyingp̂n

′(tn) = 0 and interpolating in the points
(
tn−k+1,gn(tn−k+1,un−k+1)

)
, . . . ,

(
tn,gn(tn,un)

)
.

This polynomial is given by

p̂n(tn+θh) = Gn,n+
k−1

∑
j=1

(−1) j+1θ
(−θ

j

) j

∑
ℓ=1

1
ℓ
∇ℓGn,n, (3.5)

whereGn,m = gn(tm,um) and ∇ jGn,m denotes thejth backward difference defined
recursively by

∇0Gn,m = Gn,m, ∇ jGn,m = ∇ j−1Gn,m−∇ j−1Gn,m−1, j = 1,2, . . . . (3.6)

Replacinggn in (3.3) by this polynomial defines the numerical scheme

un+1 = ehJnun+h
∫ 1

0
eh(1−θ)Jn

(
(tn+θh)dn+ p̂n(tn+θh)

)
dθ (3.7a)

= un+hϕ1(hJn)F(tn,un)+h2ϕ2(hJn)dn+h
k−1

∑
j=1

γ̂ j+1(hJn)
j

∑
ℓ=1

1
ℓ
∇ℓGn,n

which we calllinearized exponential Adams methodhenceforth. Its weights

γ̂ j+1(z) = (−1) j+1
∫ 1

0
e(1−θ)zθ

(−θ
j

)
dθ (3.7b)

expressed in terms ofϕ-functions are

γ̂2 =−2ϕ3,

γ̂3 =−3ϕ4−ϕ3,

γ̂4 =−4ϕ5−3ϕ4− 2
3

ϕ3,

γ̂5 =−5ϕ6−6ϕ5− 11
4

ϕ4− 1
2

ϕ3.

Example 3.1For k = 1 we obtain thelinearized exponential Euler method(also
calledexponential Rosenbrock–Euler method)

un+1 = un+hϕ1(hJn)F(tn,un)+h2ϕ2(hJn)dn, (3.8)

which is second-order convergent. Fork= 2 we get third-order scheme

un+1 = un+hϕ1(hJn)F(tn,un)+h2ϕ2(hJn)dn−2hϕ3(hJn)(Gn,n−Gn,n−1) (3.9)

which was first presented in [11].
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Motivated by the approach in [1], we suggest to construct starting values by re-
placing the nonlinearitygn in (3.3) by the interpolation polynomial

p̂(t0+θh) = G0,0+
k−1

∑
j=1

(−1) jθ
(

θ
j

) j

∑
ℓ=1

(−1)ℓ 1
ℓ
∆ ℓG0,0

satisfyingp̂ ′(t0) = 0 and interpolating in
(
t0,g0(t0,u0)

)
, . . . ,

(
tk−1,g0(tk−1,uk−1)

)
.

Here, the forward differences are defined analogously to (3.6). The approximations
u1, . . . ,uk−1 are obtained by solving the nonlinear system

um = u0+(mh)ϕ1(mhJ0)F(t0,u0)+(mh)2ϕ2(mhJ0)d0

+h
k−1

∑
j=1

σ̂m, j(hJ0)
j

∑
ℓ=1

(−1)ℓ

ℓ
∆ ℓG0,0, m= 1, . . . ,k−1,

(3.10)

where

σ̂m, j(z) = (−1) j
∫ m

0
e(m−θ)zθ

(
θ
j

)
dθ .

A straightforward calculation shows that

σ̂m,1(z) =−2m3ϕ3(mz),

σ̂m,2(z) = 3m4ϕ4(mz)−m3ϕ3(mz),

σ̂m,3(z) =−4m5ϕ5(mz)+3m4ϕ4(mz)− 2
3
m3ϕ3(mz),

σ̂m,4(z) = 5m6ϕ6(mz)−6m5ϕ5(mz)+ 11
4

m4ϕ4(mz)− 1
2
m3ϕ3(mz).

Note that, up to the alternating sign, the coefficients ofσ̂1, j coincide with those for
γ̂ j(z). This can be easily verified from the definition of these functions.

For h sufficiently small, the nonlinear system (3.10) has a uniquesolution which
can be approximated by fixed point iteration.

4 Error analysis

So far, we have considered a finite dimensional setting withA being a square matrix.
The main ingredients for the construction of our schemes where the variation-of-
constants formula and the possibility to define appropriatematrix functions.

The purpose of this section is to give an error analysis for stiff problems. We
will derive uniform error bounds on bounded time intervals.The bounds are of the
form Chp, where the constantC is independent of the stiffness of the problem and
the employed time step sizeh. Throughout this section,C > 0 will denote a generic
constant.

An appropriate framework for carrying out this analysis aresemigroups of linear
operators. We will therefore make the following assumptions, for more details, we
refer to [4,9,16].
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Assumption 4.1 Let X be a Banach space with norm‖·‖. We assume that A is a
linear operator on X and that(−A) is the infinitesimal generator of an analytic semi-
groupe−tA on X. ◦
Without loss of generality, we assume that the sector containing the spectrum ofA
is bounded away from the origin. In this case, the fractionalpowers ofA are well
defined. For a fixedα with 0≤ α < 1, let

V = {v∈ X | Aαv∈ X} ⊂ X.

Then V is a Banach space with norm‖v‖V = ‖Aαv‖ which is equivalent to the
graph norm ofAα . Recall that under the above assumptions, the following parabolic
smoothing property holds:

‖e−tA‖X←X +‖tγAγe−tA‖X←X ≤Cγ , γ , t ≥ 0. (4.1)

Our main assumption on the nonlinearity will be the following.

Assumption 4.2 We assume that g: [0,T]×V → X is locally Lipschitz-continuous
in a strip along the exact solution u. ◦
Recall that this framework covers semilinear parabolic equations, such as reaction-
diffusion equations, and their spatial discretizations. For more details, we refer to [9,
Chapter 3].

4.1 Convergence of exponential Adams methods

We are now in the position to state our main convergence result for exponential
Adams methods.

Theorem 4.3 Let the initial value problem(1.2)satisfy Assumptions 4.1 and 4.2, and
consider for its numerical solution the k-step exponentialAdams method(2.5) with
step size h satisfying0 < h≤ H with H sufficiently small. Let f(t) = g

(
t,u(t)

)
and

assume that f∈Ck([0,T],X). Then, for
∥∥u j −u(t j)

∥∥
V ≤ c0hk, j = 1, . . . ,k−1, (4.2)

the error bound
‖un−u(tn)‖V ≤C ·hk sup

0≤t≤tn
‖ f (k)(t)‖

holds uniformly in0≤ nh≤ T. The constant C depends on T, but it is independent of
n and h.

The error bound given in this theorem can in principle be deduced by verifying the
order conditions (2.7) for exponential general linear methods given in [15]. Here we
present a simpler proof based on interpolation errors. Moreover, our proof can easily
be generalized to linearized exponential Adams methods, cf. Section 4.2 below.
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Proof Let p̃n denote the interpolation polynomial through the exact data

(
tn−k+1, f (tn−k+1)

)
, . . . ,

(
tn, f (tn)

)
,

where f (t) = g
(
t,u(t)

)
. This polynomial has the form

p̃n
(
tn+θh

)
=

k−1

∑
j=0

(−1) j
(−θ

j

)
∇ j f (tn),

where the backward differences are defined by

∇0 f (tm) = f (tm), ∇ j f (tm) = ∇ j−1 f (tm)−∇ j−1 f (tm−1), j = 1,2, . . . .

Its interpolation error is given by

f (tn+θh)− p̃n(tn+θh) = hk(−1)k
(−θ

k

)
f (k)
(
ζ (θ)

)
(4.3)

for certain intermediate timesζ (θ) ∈ [tn−k+1, tn+1]. The variation-of-constants for-
mula allows us to write the solution of (1.1) in the form

u(tn+1) = e−hAu(tn)+h
∫ 1

0
e−h(1−θ)Ap̃n(tn+θh)dθ +δn+1 (4.4)

with defect

δn+1 = h
∫ 1

0
e−h(1−θ)A( f (tn+θh)− p̃n(tn+θh)

)
dθ .

Due to (4.3) and (4.1) this defect is bounded by

‖δn+1‖ ≤Chk+1M, ‖δn+1‖V ≤Chk+1−αM, M = sup
0≤t≤tn+1

‖ f (k)(t)‖.

Let en = un− u(tn) denote the error at timetn with e0 = 0. Taking the difference
between (2.4) and (4.4) yields the error recursion

en+1 = e−hAen+h
∫ 1

0
e−h(1−θ)A(pn(tn+θh)− p̃n(tn+θh)

)
dθ −δn+1. (4.5)

We solve this recursion to get

en = h
n−1

∑
j=0

e−(n− j−1)hA
(∫ 1

0
e−h(1−θ)A(p j(t j +θh)− p̃ j(t j +θh)

)
dθ − 1

h
δ j+1

)
.

We next use the Lipschitz condition (with constantL) from Assumption 4.2 and the
stability bound (4.1) to estimate terms of the form

∥∥∥e−(n− j)hA
(

g(t j ,u j)−g
(
t j ,u(t j)

))∥∥∥
V
≤CγLt−α

n− j

∥∥ej
∥∥

V .
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Note that this bound is uniform as long as the numerical solution remains sufficiently
close to the exact solution. This is the case forH sufficiently small as the present
proof shows. Since

t−α
j ≤Ct−α

j+m, 0≤m≤ k−1,

we have
∥∥∥e−(n− j)hA(p j(t j +θh)− p̃ j(t j +θh)

)∥∥∥
V

≤C
j

∑
ℓ= j−k+1

∥∥∥e−(n− j)hA
(

g(tℓ,uℓ)−g
(
tℓ,u(tℓ)

))∥∥∥
V

≤C
j

∑
ℓ= j−k+1

t−α
n−ℓ ‖eℓ‖V .

From this we finally infer the estimate

‖en‖V ≤C max
j=1,...,k−1

∥∥ej
∥∥

V +Ch
n−1

∑
j=0

1
tα
n− j

(∥∥ej
∥∥

V +hk
)
+C‖δn‖V .

The stated error bound then follows from a discrete Gronwalllemma (Lemma 2.15
in [11]). ⊓⊔

Remark 4.4 (a) The above proof shows that exponential Adams methods converge
with full order for linear problems

u′(t)+Au(t) = f (t), u0 = u(0),

if the right-hand sidef is sufficiently smooth. In contrast to standard integrators, no
compatibility conditions att = 0 are required for abstract parabolic problems.

(b) Under the assumptions of the theorem, the starting procedure (2.8) yields starting
values(u1, . . . ,uk−1) which satisfy (4.2).

(c) Forα = 0, Assumption 4.1 can obviously be relaxed to the requirement that(−A)
is the infinitesimal generator of a strongly continuous semigroup e−tA onX.

We illustrate our convergence result with a numerical example. Consider the
semilinear parabolic problem

∂U
∂ t

(x, t)− ∂ 2U
∂x2 (x, t) =

1
1+U(x, t)2 +Φ(x, t) (4.6)

with x∈ [0,1] andt ∈ [0,1], subject to homogeneous Dirichlet boundary conditions.
The source functionΦ is chosen in such a way that the exact solution of the problem
is U(x, t) = x(1−x)et . Discretizing (4.6) in space by standard finite differenceswith
200 grid points yields a stiff initial value problem of the form (1.2). We integrate this
system in time with exponentialk-step Adams methods fork= 1, . . . ,6 and compute
the errors in a discreteL2 norm. The results which are displayed in Fig. 4.1 in a
double-logarithmic diagram are in perfect agreement with Theorem 4.3.
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Fig. 4.1 Order plot for the exponentialk-step Adams methods (k= 1, . . . ,6) applied to example (4.6). The
problem is discretized in space with 200 grid points and integrated in time with constant step sizes. The
dashed lines are straight lines of slopek. They are added for purpose of comparison

4.2 Convergence of linearized exponential multistep methods

For simplicity, we restrict our error analysis to semilinear problems fulfilling (2.1).
In this case, (3.1) takes the form

Jn =−A+
∂g
∂u

(tn,un), dn =
∂g
∂ t

(tn,un),

gn(t,u) = g(t,u)− ∂g
∂u

(tn,un)u−dnt.
(4.7)

Our main hypothesis on the nonlinearityg is the following.

Assumption 4.5 We assume that the initial value problem(1.2) possesses a suffi-
ciently smooth solution u: [0,T]→V with derivatives in V , and that g: [0,T]×V→X
is Fréchet-differentiable in a strip along the exact solution. All occurring derivatives
are assumed to be uniformly bounded. ◦
We are now in the position to prove our convergence theorem.

Theorem 4.6 Let the initial value problem(1.2)satisfy Assumptions4.1 and4.5, and
consider for its numerical solution the k-step linearized exponential Adams method
(3.7)with step size h satisfying0< h≤H for H sufficiently small. Let f(t)= g

(
t,u(t)

)

and assume that f∈Ck+1([0,T],X). Then, for
∥∥u j −u(t j)

∥∥
V ≤ c0hk+1, j = 1, . . . ,k−1, (4.8)

the error bound

‖un−u(tn)‖V ≤C ·hk+1 sup
0≤t≤tn

(
‖ f (k+1)(t)‖+‖u(k+1)(t)‖V

)

holds uniformly in0≤ nh≤ T. The constant C depends on T, but it is independent of
n and h.
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Proof The proof of this theorem is very close to that of Theorem 4.3.This time, we
consider the Hermite interpolation polynomialp̃n through the exact data

(
tn−k+1, fn(tn−k+1)

)
, . . . ,

(
tn, fn(tn)

)
,

satisfying p̃′n(tn) = f ′n(tn). Here we denotedfn(t) = gn
(
t,u(t)

)
. This interpolation

polynomial is given by

p̃n
(
tn+θh

)
= fn

(
tn)+θh f ′n(tn)+

k−1

∑
j=1

(−1) jθ
(−θ

j

)(
h f ′n(tn)−

j

∑
ℓ=1

1
ℓ
∇ℓ fn(tn)

)
.

The backward differences are defined by

∇0 fn(tm) = fn(tm), ∇ j fn(tm) = ∇ j−1 fn(tm)−∇ j−1 fn(tm−1), j = 1,2, . . . .

Its interpolation error is given by

fn(tn+θh)− p̃n(tn+θh) = hk+1(−1)kθ
(−θ

k

)
f (k+1)
n

(
ζ (θ)

)

k+1

for certain intermediate timesζ (θ) ∈ [tn−k+1, tn+1]. The variation-of-constants for-
mula (3.3) allows us then to write the solution of (1.1) as

u(tn+1) = ehJnu(tn)+h
∫ 1

0
eh(1−θ)Jn

(
(tn+θh)dn+ p̃n(tn+θh)

)
+δn+1 (4.9)

with defect

δn+1 = h
∫ 1

0
eh(1−θ)Jn

(
fn(tn+θh)− p̃n(tn+θh)

)
dθ .

Due to (4.1) and the smoothness offn, the defect is bounded by

‖δn+1‖ ≤Chk+2M, ‖δn+1‖V ≤Chk+2−αM,

M = sup
0≤t≤tn+1

(
‖ f (k+1)(t)‖+C‖u(k+1)(t)‖V

)
.

Taking the difference between (3.7a) and (4.9) yields the error recursion

en+1 = ehJnen+h
∫ 1

0
eh(1−θ)Jn

(
p̂n(tn+θh)− p̃n(tn+θh)

)
dθ −δn+1.

We solve this error recursion and use the differentiabilityof g (cf. Assumption 4.5)
to bound the difference of the interpolation polynomials ina similar way as in the
proof of the previous theorem. In particular, applying the stability result of [12, Ap-
pendix A] (which might introduce an additional step size restriction) yields

∥∥∥ehJn−1 · · ·ehJj+1

(
g j
(
t j ,u(t j)

)
−g j(t j ,u j)

)∥∥∥
V
≤Ct−α

n− j

∥∥ej
∥∥

V .

In order to bound the additional term

f ′n(tn) =
∂gn

∂ t

(
tn,u(tn)

)
+

∂gn

∂u

(
tn,u(tn)

)
u′(tn),
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Fig. 4.2 Order plot for the linearized exponentialk-step Adams methods (diamonds,k= 1, . . . ,5) applied
to example (4.6). The problem is discretized in space with 200grid points and integrated in time with
constant step sizes. The results obtained with the exponential k-step Adams methods (circles) fork =
1, . . . ,6 are drawn for comparison. The dashed lines are straight lines of slopek. They are added for
purpose of comparison

we make use of the relations (3.4). Note that the numerical solution remains suffi-
ciently close to the exact solution forH sufficiently small. This guarantees the uni-
form boundedness of the arising Lipschitz constants. Employing all these bounds
finally shows that

‖en‖V ≤C max
j=1,...,k−1

∥∥ej
∥∥

V +Ch
n−1

∑
j=0

1
tα
n− j

(∥∥ej
∥∥

V +hk+1
)
+C‖δn‖V .

The application of a discrete Gronwall lemma (Lemma 2.15 in [11]) thus concludes
the proof. ⊓⊔

Remark 4.7 Under the assumptions of the theorem, the starting values computed
from (3.10) satisfy (4.8).

In order to illustrate the convergence result of Theorem 4.6, we take up example
(4.6) and integrate it this time with the linearized exponential k-step Adams methods
for k = 1, . . . ,5. The results, together with the results of the previous experiment are
displayed in Fig. 4.2. The linearized methods obviously have smaller error constants.

5 Implementation issues

In this section, we comment on possible implementations of the matrix functions
arising in (linearized) exponential multistep methods. Further issues like variable step
sizes and variable order implementations will be discussedelsewhere.
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5.1 Diagonalization

If the dimension of the problem is small enough or if the diagonalization of the matrix
A can be computed efficiently (by fast Fourier transformation, e.g.), then the initial
value problem (1.2) should be transformed into the basis of eigenvectors. The matrix
functions can be precomputed on the eigenvalues ofA and used for all time steps.
Clearly, for an implementation using diagonalization, exponential Adams methods
are much more attractive than linearized multistep methods, since the latter require a
new diagonalization ofJn in each time step.

5.2 (Rational) Krylov subspace methods

For large scale problems, (rational) Krylov subspace methods can be applied to ap-
proximate the products of matrix functions with vectors. Since this approximation
does not reuse computations from previous time steps, it does not matter that the ma-
trix Jn is different in each of the time steps (except that the evaluation of Jn itself
might be expensive). Since Krylov subspace methods benefit from properties of the
vector which multiplies the matrix function, one should exploit that the backward dif-
ferences used in (3.7a) satisfy∇Gn,n = O(h2) due to (3.4) and∇ℓGn,n = O(hℓ), ℓ≥ 2
if the assumptions of Theorem 4.6 are satisfied. We thus rewrite the scheme (3.7) as

un+1 = un+hϕ1(hJn)F(tn,un)+h2ϕ2(hJn)dn+h
k−1

∑
ℓ=1

βk,ℓ(hJn)∇ℓGn,n, (5.1a)

where

βk,ℓ =
1
ℓ

k−1

∑
j=ℓ

γ̂ j+1. (5.1b)

Table 5.1 shows these coefficients in terms ofϕ-functions.
For purpose of illustration, we consider the following two-dimensional parabolic

problem
∂U
∂ t

(x1,x2, t)−∆U(x1,x2, t) =
1

1+U(x1,x2, t)2 (5.2)

with (x1,x2) ∈ [0,1]2 andt ∈ [0,0.2], subject to homogenous Dirichlet boundary con-
ditions. We discretized (5.2) by standard finite differences with N = 75 grid points
in each direction and integrated the resulting semidiscrete problem with the lin-
earized exponential 5-step method using Krylov subspace methods. The left picture
of Fig. 5.1 shows the norms of the backward differences∇mGn,n, m= 1, . . . ,4. For
this example, the first differences are even smaller than thesecond differences. The
different behavior of the differences within the first time steps is due to the fact that
the initial data does not satisfy the compatibility conditions att = 0.

The right picture of Fig. 5.1 shows the number of Krylov stepsrequired to achieve
the desired accuracy ofO(hk+2). As expected, most of the Krylov steps are required
to approximateϕ1(hJn)F(tn,un), while the products of the coefficients with the back-
ward differences can be approximated in low dimensional Krylov subspaces.
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k m βk,ℓ

2 1 −2ϕ3

3 1 −3ϕ4−3ϕ3

2 −3
2

ϕ4− 1
2

ϕ3

4 1 −4ϕ5−6ϕ4− 11
3

ϕ3

2 −2ϕ5−3ϕ4− 5
6

ϕ3

3 −4
3

ϕ5−ϕ4− 2
9

ϕ3

5 1 −5ϕ6−10ϕ5− 35
4

ϕ4− 25
6

ϕ3

2 −5
2

ϕ6−5ϕ5− 35
8

ϕ4− 13
12

ϕ3

3 −5
3

ϕ6− 10
3

ϕ5− 23
12

ϕ4− 7
18

ϕ3

4 −5
4

ϕ6− 3
2

ϕ5− 11
16

ϕ4− 1
8

ϕ3

Table 5.1 The coefficientsβk,ℓ of method (5.1)
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Fig. 5.1 Norms of backward differences and employed Krylov dimensions.The curves represent function
values (squares), first differences (circles), second differences (stars), third differences (pluses), fourth
differences (diamonds)

Analogously, we rewrite the starting procedure (3.10) by defining

β̂k,m,ℓ(z) =
(−1)ℓ

ℓ

k−1

∑
j=ℓ

σ̂m, j(z).

This yields the nonlinear system of equations

um = u0+(mh)ϕ1(mhJ0)F(t0,u0)+(mh)2ϕ2(mhJ0)d0+h
k−1

∑
ℓ=1

β̂k,m,ℓ(hJ0)∆ ℓG0,0,

which can be solved by fixed point iteration ifh is sufficiently small.
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Fig. 5.2 Error versus cpu time for the exponential(k+ 1)-step Adams methods (dashed lines) and the
linearized exponentialk-step Adams methods (lines) for the Brusselator problem from [10, Section 7.1]
with α = 0.02. The casesk= 1 (squares),k= 2 (circles),k= 3 (stars) andk= 4 (pluses) are shown

To illustrate the efficiency of the linearized exponential Adams methods for par-
ticular examples, we consider the Brusselator problem fromSection 7.1 in [10] with
α = 0.02. In our experiment, the products of the matrix functions with vectors are
approximated by the Arnoldi method. Figure 5.2 shows the error of different meth-
ods as a function of the cpu time. As expected, the linearizedexponential methods
clearly outperform the exponential Adams methods in this example. The reasons for
this behavior are that the evaluation of the Jacobian is relatively cheap and that the
vectors multiplying the matrix functions have smaller norm, which results in smaller
Krylov subspaces. Moreover, the linearized methods have smaller error constants.

5.3 Multiple time stepping

The construction of exponential Adams methods was based on replacing the nonlin-
earity g in the variation-of-constants formula (2.2) by the local interpolation poly-
nomial pn defined in (2.3). Thus the method can also be interpreted as solving the
differential equation

y′n(τ) =−Ayn(τ)+ pn(tn+ τ), yn(0) = un, (5.3)

on the time interval[0,h] exactly and settingun+1 = yn(h). For an approximation one
could also solve (5.3) by an explicit scheme using smaller time steps. The method can
then be interpreted as a multiple time stepping procedure using a macro time steph
for sampling the nonlinearityg and a micro time step for the solution of (5.3). Since
the method requires only one evaluation ofg per macro time step, such a multiple
time stepping implementation is attractive if the evaluation of the nonlinearityg is
much more expensive than a few matrix vector multiplications withA.

For the linearized exponential multistep methods we haveun+1 = ŷn(h), where
ŷn(h) is the exact solution of

ŷ ′n(τ) = Jnŷn(τ)+(tn+ τ)dn+ p̂n(tn+ τ), ŷn(0) = un, (5.4)
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over the interval[0,h]. The polynomial̂pn was defined in (3.5). Hence a multiple time
stepping implementation is possible for these methods as well.

6 Application to partitioned problems

As a further application of exponential multistep methods,we consider problems
where the stiff and the nonstiff components can be distinguished:

[
v
w

]′
=

[
L Z
Y B

][
v
w

]
+

[
a(t,v,w)
b(t,v,w)

]
=: J

[
v
w

]
+

[
a(t,v,w)
b(t,v,w)

]
. (6.1)

Here, the stiff components are denoted byv and the nonstiff components byw, re-
spectively. Let

P=

[
I 0
0 0

]

be the projector onto the stiff components. In this situation we can apply an exponen-
tial Adams method (2.5) with

−A= JP=

[
L 0
Y 0

]
, g(t,v,w) =

[
0 Z
0 B

][
v
w

]
+

[
a(t,v,w)
b(t,v,w)

]
. (6.2)

For an error analysis of exponential Adams methods applied to this partitioning, we
have to verify the assumptions of Theorem 4.3. For this purpose, we assume that the
spectrum ofL is bounded away from the origin, thatL fulfills Assumption 4.1 on a
Banach spaceXL, and thatB is a bounded operator on a Banach spaceXB. We then
consider the Banach spacesX = XL×XB andV =VL×XB, where

VL = {v∈ XL | Lαv∈ XL} ⊂ XL.

Assumption 4.1 is obviously fulfilled for the operatorA defined in (6.2), ifYL−1 :
XL→ XB is bounded. Assumption 4.2 is fulfilled, ifZ : XB→ XL is bounded and ifa :
[0,T]×VL×XB→ XL andb : [0,T]×VL×XB→ XB are locally Lipschitz continuous
in a strip along the exact solution.

For an analytic functionφ it is easily verified that

φ(−hA) =

[
φ(hL) 0

hYφ [1](hL) φ(0)I

]
, (6.3)

where

φ [1](z) =
φ(z)−φ(0)

z
. (6.4)



18 Marlis Hochbruck, Alexander Ostermann

10
−1

10
−5

10
−4

10
−3

10
−2

step size

error

p=2

10
−1

10
−5

10
−4

10
−3

10
−2

step size

error

p=6

10
−1

10
−5

10
−4

10
−3

10
−2

step size

error

p=10

Fig. 6.1 Order plots for different refinement factorsp. The results were obtained with the exponential
4-step Adams method applied to (6.6) and clearly show order four (which is the slope of the dashed line)

The block structure ofA can thus be exploited in the implementation. Using (6.3), the
exponential Adams method (2.5a), applied to (6.1), (6.2) reads

vn+1 = vn+hϕ1(hL)
(
Lvn+Zwn+an

)
+h

k−1

∑
j=1

γ j(hL)∇ j(Zwn+an
)
,

wn+1 = wn+hY

(
ϕ1(hL)vn+hϕ2(hL)(Zwn+an)+h

k−1

∑
j=1

γ [1]j (hL)∇ j(Zwn+an)

)

+h
k−1

∑
j=0

γ j(0)∇ j(Bwn+bn).

Alternatively, if in addition to the assumptions posed above, the operatorY : XL→
XB is bounded, then Assumption 4.1 and 4.2 are fulfilled for

−A=

[
L 0
0 0

]
, g(t,v,w) =

[
0 Z
Y B

][
v
w

]
+

[
a(t,v,w)
b(t,v,w)

]
. (6.5)

In this case, the exponential Adams method reads

vn+1 = vn+hϕ1(hL)
(
Lvn+Zwn+an

)
+h

k−1

∑
j=1

γ j(hL)∇ j(Zwn+an
)
,

wn+1 = wn+h
k−1

∑
j=0

γ j(0)∇ j(Yvn+Bwn+bn).

Note that the update of the stiff components is the same as before. However, the
nonstiff components can be computed more efficiently since no matrix functions are
required.

As an application we consider a discretization of the dampedwave equation

∂ 2U
∂ t2 (x, t)+σ

∂U
∂ t

(x, t) =
∂ 2U
∂x2 U(x, t) (6.6)
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which was also presented in [5]. We equip this problem with homogeneous Dirichlet
boundary conditions on the interval[0,6]. Its exact solution is

U(x, t) =
2e−

σt
2

√
4π2−σ2

sin(πx)sin
( t

2

√
4π2−σ2

)
. (6.7)

We discretized (6.6) with fourth-order finite differences in space and locally re-
fined the grid in the subinterval[2,4], where we reduced the grid size by a factor of
p= 2,6,10, respectively. Fig. 6.1 shows the errors of the exponential 4-step Adams
method withh = ∆xc/6 for coarse grid sizes∆xc = 0.2,0.1,0.05,0.025 which are
used in[0,2)∪ (4,6]. The matrixA was chosen as in (6.2) with the blocksL,Y corre-
sponding to the refined grid points anda= b= 0. For this example, it turns out that
even the exponential 3-step Adams method is accurate enoughto give fourth-order
convergence in the coarse grid size. We omit the graphs sincethe curves cannot be
distinguished from those of the 4-step method.

As an alternative that avoids matrix functions, the resulting fine-grid equations
can also be solved by an explicit time stepping scheme. Such an approach requires
small time steps on the time interval[tn, tn+1] and leads to a multiple time stepping
method as described in Section 5.3. For the considered problem, it gives the explicit
local-time stepping method proposed in [5]. For related methods and ideas, we refer
to [6,7].
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