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Abstract.

We consider ordinary differential equations (ODEs) with a known Lyapunov function
V . To ensure that a numerical integrator reflects the correct dynamical behaviour of
the system, the numerical integrator should have V as a discrete Lyapunov function.
Only second-order geometric integrators of this type are known for arbitrary Lyapunov
functions. In this paper we describe projection-based methods of arbitrary order that
preserve any given Lyapunov function.
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1 Introduction

In recent years there has been tremendous interest in geometric integration,
i.e. the numerical integration of differential equations while preserving some (ge-
ometric) property of the system exactly (that is, to machine precision). Some
examples of geometric properties that can be preserved exactly are: first in-
tegrals, symmetries and reversing symmetries, phase-space volume, symplectic
structure, contact structure, foliations, Lie group structure, etc. Surveys of ge-
ometric integration are given in Budd & Iserles [2], Budd & Piggott [3], Hairer,
Lubich & Wanner [9], Iserles, Munthe-Kaas, Nørsett & Zanna [11], Leimkuhler
& Reich [13], McLachlan & Quispel [17], [18] and Sanz-Serna & Calvo [19].

In this paper we consider integrators that exactly preserve a given Lyapunov
function. The system of ordinary differential equations

ẏ = f(y), y(t0) = y0(1.1)

is said to have the Lyapunov function V in a region B ⊂ IRN , if V̇ ≤ 0, i.e. if

α(y) := ∇V (y) · f(y) ≤ 0,
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holds in this region and V is bounded from below. The Lyapunov function is
called strict if < holds outside the set of equilibrium points

E := {y | f(y) = 0}.

The numerical method
yn+1 = Φh(yn),(1.2)

is said to have the Lyapunov function V , if

V (yn+1) ≤ V (yn).

The Lyapunov function is called strict if < holds outside the set of fixed points

Eh := {y |Φh(y) = y}.

A geometric integrator for a system of ordinary differential equations with a
Lyapunov function V should preserve V as a Lyapunov function for the discrete
system. The Lyapunov function V describes regions of stability, given by the
contour lines of V , that can be entered but not left by solutions of the ODE
(see e.g. [21]). To ensure that the numerical method has the same regions of
stability, V should be a discrete Lyapunov function for the numerical method.

As far as we are aware, the order of accuracy of currently known methods that
have this property for general Lyapunov functions (cf. [15],[16]) or for special
cases like gradient systems (cf. [4], [21]) is at most two. In fact, in Section 6 of
[18] the development of effective methods of order higher than 2 for systems that
evolve in a semigroup (of which systems with Lyapunov functions are one case)
is given as open problem number 10. This is because composition methods of
higher order than two necessarily involve negative time-steps and hence cannot
be used for semigroups.

In this paper, we present new projection-based methods of arbitrarily high or-
der, that can preserve an arbitrary (smooth) Lyapunov function. This approach
is quite flexible and can easily be extended to ODEs with more than one Lya-
punov function. Multiple Lyapunov functions arise frequently in control theory
(cf. [12], [14]). Our main results, presented in Section 2, concern Runge-Kutta
methods, which form a large and well understood class of methods that can be
used efficiently with projection. These methods preserve the nonlinear regions of
stability given by the Lyapunov function. It is sometimes favourable to preserve
additional structures. A symmetrised projection is presented in Section 3 and
it is shown that the symmetric projection methods can preserve linear revers-
ing symmetries in contrast to the non-symmetric projection methods in Section
2. The numerical experiments in Section 4 indicate a very good behaviour of
the Lyapunov-preserving methods. It is remarkable that the preservation of
the Lyapunov function not only guarantees the expected nonlinear stability, but
also improves the trajectories far from equilibrium points. Finally, we give a
conclusion in Section 5.
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2 Projection methods

Our main idea for obtaining a Lyapunov-preserving method of higher order
is to approximate V (y(tn+1)) by Vn+1 ≤ V (y(tn)) and to project the computed
value ỹn+1 onto the manifold V (y) = Vn+1.

We describe the approach in more detail by using what we call “the projected
Euler method” as a simple example. Besides the usual approximation

ỹn+1 = yn + hf(yn)

we compute an approximation to V (y(tn+1)) here by using

Vn+1 = V (yn) + hα(yn).

Since α(y) ≤ 0 for all y, it follows that Vn+1 ≤ V (yn). After that, we project
ỹn+1 orthogonally onto the manifold V (y) = Vn+1, hence the projected value
yn+1 satisfies V (yn+1) = Vn+1 = V (yn)+hα(yn) ≤ V (yn). This means V is also
a Lyapunov function for our method. The approximations ỹn+1 and Vn+1 are of
first order as well as the overall method.

This procedure can be done for fairly general types of methods but we will
describe only “projected Runge-Kutta methods”. Without loss of generality,
here we describe only the first step (i.e. from y0 to y1). The approach for an
arbitrary Runge-Kutta method of order p given by the tableau

c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

with non-negative weights bi (i.e. bi ≥ 0), i = 1, . . . , s, where s is the number
of stages, is as follows:

Step 1 Compute the Runge-Kutta approximation

gi = y0 + h

s∑

j=1

aijf(gj), i = 1 . . . s,

ỹ1 = y0 + h

s∑

i=1

bif(gi).

Step 2 Compute the approximation for the Lyapunov function

V1 = V (y0) + h

s∑

i=1

biα(gi).

Step 3 To get y1, project ỹ1 orthogonally onto the manifold

r(y) := V (y) − V1 = 0.
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If ∇V (y0) = 0, the projection steps 2 and 3 are omitted. In addition, set
y1 = y0 and stop the numerical calculation in the case of a strict Lyapunov
function. If ∇V (y0) 6= 0, the projection is computed as suggested in [9], page 107.
This idea is simple enough in order to be combined with any step size selection
strategy for Runge-Kutta methods. The property of the projected methods to
stay in the stability regions and eventually approach equilibrium points is not
destroyed by step size selection (in contrast to some other geometric properties).
Furthermore, it is easy to include a check for the solvability of the system (4.5)
in [9], page 107, which has to be solved for the projection, and to reduce the
step size further, if necessary. In the case of a non-strict Lyapunov function, the
situation ∇V (y0) = 0, but f(y0) 6= 0 might occur. In this case, steps 2 and 3
are omitted and we suggest to solve the minimization problem

‖y1 − ỹ1‖ → min subject to V (y1) ≤ V (y0).

This problem always has a solution that is O(hp+1)-close to the exact solution,
where p is the order of the underlying Runge-Kutta method. This way neither
the order of the method nor the property, that V is a discrete Lyapunov function
for the numerical method, is affected. But to simplify the proofs, we will only
discuss strict Lyapunov functions in the remainder of this paper. The basic
properties of the projected methods are described in the following Theorems 2.1
and 2.2.

Theorem 2.1. For a projected Runge-Kutta method the local error satisfies

‖V1 − V (y(t0 + h))‖ = O(hp+1), ‖y1 − y(t0 + h)‖ = O(hp+1),(2.1)

where p is the order of the underlying Runge-Kutta method. If V is a strict Lya-
punov function and the weights bi of the Runge-Kutta method are non-negative
(positive) then V is a discrete (strict) Lyapunov function for the numerical
method.

Proof. Applying the Runge-Kutta method of order p to the augmented
system

ẏ = f(y)

V̇ = α(y)
(2.2)

shows, that
‖V (y(t0 + h)) − V1‖ = O(hp+1).(2.3)

If ∇V (y0) = 0 and there is no projection, the second statement in (2.1) is
obvious. If we project, then the distance of ỹ1 to the manifold V (y) = V (y(t0 +
h)) is the size of the local error. This observation and (2.3) imply that the
convergence does not deteriorate under projection. Hence

‖y1 − y(t0 + h)‖ = O(hp+1).

If all weights bi are non-negative, we have

V (y1) − V (y0) = V1 − V (y0) = h

s∑

i=1

bi α(gi)
︸ ︷︷ ︸

≤0

≤ 0.
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Hence V is a discrete Lyapunov function. If the weights are positive and we have
V (y1) = V (y0), it follows that α(gi) = 0 for all i and hence that f(gi) = 0, since
V is strict. This implies ỹ1 = y0. Now there are two cases. Either ∇V (y0) = 0
and there is no projection step or ∇V (y0) 6= 0. In the second case, the projection
step has the unique solution λ = 0 and y1 = ỹ1 = y0. In both cases y1 = y0 and
hence V is a strict Lyapunov function for the numerical method.

There are Runge-Kutta methods of arbitrary order with positive weights. The
s-stage Gauss methods are of order 2s and the weights are positive. A more
detailed study about Runge-Kutta methods based on quadrature formulas with
positive weights can be found in [7], chap. IV.13.

Theorem 2.2. If V is a strict Lyapunov function for the ODE (1.1) and the
weights of the projected Runge-Kutta method are positive then E = Eh, i.e. the
equilibrium points of the system coincide with the fixed points of the numerical
method.

Proof. Let y0 ∈ E. We have to consider the two cases ∇V (y0) = 0 and
∇V (y0) 6= 0. In the first case, projection is avoided and y1 is set to y0, hence
y1 = y0 = Φh(y0) and y0 ∈ Eh. If ∇V (y0) 6= 0, gi = y0 is a solution of
the Runge-Kutta system, ỹ1 = y0 and V1 = V (y0). Hence λ = 0, y1 = y0 is
a solution after the projection, or y1 = Φh(y0) = y0. Hence y0 ∈ Eh. Now
assume y0 ∈ Eh. Then V (y0) = V (Φh(y0)) = V (y0) + h

∑s

i=1 biα(gi). Hence
∑s

i=1 biα(gi) = 0 and since bi > 0 and α(gi) ≤ 0 we have α(gi) = 0. Since V is
a strict Lyapunov function for the system this can only hold if f(gi) = 0. But
then gi = y0 and f(y0) = f(gi) = 0. Hence y0 ∈ E.

Remark: If f(y) = −∇V (y), V (y) ≥ 0 and V (y) → ∞ for ‖y‖ → ∞, the
system (1.1) is called a gradient system. Gradient systems form an important
class of systems with a strict Lyapunov function V .

The projected methods are of arbitrarily high order and preserve the global
stability given by the Lyapunov function. It is well known that Runge-Kutta
methods can have spurious fixed points and that E = Eh does not hold in
general (cf. [6]). Theorem 2.2 shows that this cannot happen for the projected
Runge-Kutta methods. Every fixed point of Φh is an equilibrium point of (1.1),
even if the Runge-Kutta method without projection has a spurious fixed point.

3 Symmetric projection methods

The exact flow, φt, of the differential equation (1.1) satisfies φt ◦ φ−t(y0) = y0

for all values y0. The preservation of this structural property is in some cases
beneficial for the qualitative correctness of the numerical solution. Numerical
methods Φh that preserve this property, that is Φh ◦ Φ−h(y0) = y0, are called
symmetric or self-adjoint. There is a strong connection between the symmetry of
a method and the preservation of reversing symmetries. A reversing symmetry
of the phase flow φt of (1.1) is an invertible map R that satisfies

d R(f(y)) = −f(R(y)),
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where dR denotes the derivative (linearization) of R. Hence the exact flow
satisfies

R ◦ φt = φ−1
t ◦ R.(3.1)

We show that the symmetric projected Runge-Kutta methods can preserve linear
reversing symmetries, that is

R ◦ Φh = Φ−1
h ◦ R,(3.2)

in the special case where R is an invertible linear transformation R(y) = Ry and
V (Ry) = rV (y) (r 6= 0) holds, where V is a strict Lyapunov function. Without
loss of generality, r can be set to ±1.

It is possible to obtain symmetric projection methods by combining an ap-
proach used by Ascher and Reich to enforce conservation of energy (cf. [1])
and in more general contexts by Hairer (cf. [8]), with the observation that a
symmetric method would give a symmetric discretisation of the scalar equation
V̇ = α(y(t)).

The projection method based on a symmetric s-stage Runge-Kutta method
reads:

ỹ0 = y0 + ∇V (y0)
T λ

gi = ỹ0 + h
∑s

j=1 aijf(gj)

ỹ1 = ỹ0 + h
∑s

i=1 bif(gi)

y1 = ỹ1 + ∇V (y1)
T λ

V (y1) = V (y0) + h
∑s

i=1 biα(gi).

(3.3)

If ∇V (y0) = 0, λ is set to 0. If V is a strict Lyapunov function, set y1 = y0,
additionally. The overall method is symmetric and shares the properties stated
in Section 2 for the nonsymmetric projection methods. This is summarized in
Proposition 3.1.

Proposition 3.1. For a symmetric projected Runge-Kutta method (3.3) the
local error satisfies (2.1), where p is the order of the underlying Runge-Kutta
method. The overall method is symmetric. If V is a strict Lyapunov-function
and the weights bi of the Runge-Kutta method are positive, then V is a discrete
strict Lyapunov function for the numerical method. Furthermore E = Eh.

Proof. The existence of a numerical solution is shown first. Let z :=
(h, y1, λ, g1, · · · , gs). Then the system to be solved for λ, the approximation
y1 and the intermediate stages gi reads F (z) = 0 with

F (z) =







gi − y0 −∇V (y0)
T λ − h

∑s

j=1 aijf(gj), i = 1, · · · , s

y1 − y0 −∇V (y0)
T λ −∇V (y1)

T λ − h
∑s

i=1 bif(gi)

V (y1) − V (y0) − h
∑s

i=1 biα(gi)

This system has to be solved for y1, λ, g1, · · · , gs in dependence of h if ∇V (y0) 6=
0. To show that a solution exists, we show that the assumptions of the implicit
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function theorem are satisfied. For z0 := (0, y0, 0, y0, · · · , y0) it is true that
F (z0) = 0 and

∂F

∂(y1, λ, gT
1 , · · · , gT

s )
(z0) =










−∇V (y0)
T I

...
. . .

−∇V (y0)
T I

I −2∇V (y0)
T

∇V (y0)










,

where I is the N × N identity matrix and N is the dimension of the system of
ordinary differential equations. This matrix of size (N(s+1)+1)×(N(s+1)+1)
is regular if ∇V (y0) 6= 0. Therefore the implicit function theorem guarantees a
solution around (0, y0, 0, y0, · · · , y0) with respect to h.

Now we study the local error. We omit the trivial case ∇V (y0) = 0. If the
underlying Runge-Kutta method is of order p, the system (2.2) is solved up to
O(hp+1) exactly. Hence we have F (h, y(t0 + h), 0, g̃1(h), · · · , g̃s(h)) = O(hp+1),
where the g̃i are the intermediate steps for the method without projection. Com-
pared to

F (h, y1(h), λ(h), g1(h), · · · , gs(h)) = 0,

the implicit function theorem implies λ = O(hp+1), and (2.1).
The symmetry of the algorithm can be seen as follows. Exchanging h ↔ −h

and y0 ↔ y1 in (3.3) gives

ˆ̃y0 = y1 + ∇V (y1)
T λ̂

ĝi = ˆ̃y0 − h
∑s

j=1 aijf(ĝj)

ˆ̃y1 = ˆ̃y0 − h
∑s

i=1 bif(ĝi)

y0 = ˆ̃y1 + ∇V (y0)
T λ̂

V (y0) = V (y1) − h
∑s

i=1 biα(ĝi).

The variables λ̂, ˆ̃y0, ˆ̃y1, ĝi can be arbitrarily renamed. If they are replaced by

λ̂ = −λ, ˆ̃y0 = ỹ1, ˆ̃y1 = ỹ0 and ĝi = gs+1−i, where s is the number of stages in
the Runge-Kutta method, we find the formulas

ỹ0 = y0 + ∇V (y0)
T λ

gi = ỹ0 + h
∑s

j=1(bs+1−j − as+1−i,s+1−j)f(gj)

ỹ1 = ỹ0 + h
∑s

i=1 bs+1−if(gi)

y1 = ỹ1 + ∇V (y1)
T λ

V (y1) = V (y0) + h
∑s

i=1 bs+1−iα(gi).

Since the underlying Runge-Kutta method is symmetric and therefore its coef-
ficients satisfy (cf. [20], [22]):

ai,j = bs+1−j − as+1−i, s+1−j , bs+1−i = bi,
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we end up with the formulas of the original system (3.3). This proves the sym-
metry of the projected method. The statement that V is a discrete Lyapunov
function for the numerical method is proved along the same lines as in Theorem
2.1, and the statement E = Eh along the same lines as in the proof of Theorem
2.2.

The symmetric projection methods can preserve some linear reversing sym-
metries in contrast to the projection methods in Section 2. In many interesting
situations, where the preservation of these symmetries is important, symmetric
methods have to be used. Without loss of generality, r can be set to ±1 in the
following proposition.

Proposition 3.2. If system (1.1) has the linear reversing symmetry R(y) =
Ry, with an invertible matrix R, that satisfies RRT = I, and V (R(y)) = rV (y),
with r 6= 0, where V is a strict Lyapunov function, then the symmetric projected
Runge-Kutta methods preserve the reversing symmetry, that is (3.2) holds.

Proof. Due to the symmetry of the methods proved in Proposition 3.1, we
have Φ−h = Φ−1

h and hence (3.2) is proved if

R ◦ Φh = Φ−h ◦ R

can be shown. The statements

1

r
∇V (R(y))T = R∇V (y)T , rα(y) = −α(R(y)),(3.4)

follow by differentiation. After writing down the algorithm (3.3) to compute
y1 = Φh(y0), multiplying the last line of (3.3) with r, and all other lines with R

and using (3.4) and the R-reversibility of the exact flow, we find

Rỹ0 = Ry0 + ∇V (Ry0)
T λ

r

Rgi = Rỹ0 − h
∑s

j=1 aijf(Rgj)

Rỹ1 = Rỹ0 − h
∑s

i=1 bif(Rgi)

Ry1 = Rỹ1 + ∇V (Ry1)
T λ

r

V (Ry1) = V (Ry0) − h
∑s

i=1 biα(Rgi).

At this point, we see that also the Lyapunov function V preserves the reversing
symmetry R. Setting λ̂ = r−1λ, ˆ̃y0 = Rỹ0, ˆ̃y1 = Rỹ1, ĝi = Rgi and ŷ1 = Ry1,
the system reads

ˆ̃y0 = Ry0 + ∇V (Ry0)
T λ̂

ĝi = ˆ̃y0 − h
∑s

j=1 aijf(ĝj)

ˆ̃y1 = ˆ̃y0 − h
∑s

i=1 bif(ĝi)

ŷ1 = ˆ̃y1 + ∇V (ŷ1)
T λ̂

V (ŷ1) = V (Ry0) − h
∑s

i=1 biα(ĝi).

By comparing this with (3.3), we see

Φ−h ◦ R(y0) = ŷ1 = Ry1 = R ◦ Φh(y0).
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Adaptive step size selection has to be done more carefully for the symmetric
projection methods. Fortunately, it is known how to preserve symmetry and
reversibility including step size selection ([9], chap. VIII.2). The symmetric pro-
jection methods preserve the nonlinear stability regions given by the Lyapunov
function and, in addition, preserve linear reversing symmetries, which satisfy the
assumptions in Proposition 3.2.

4 Numerical experiments

In the first experiment, we use the Duffing equation without forcing as a test
problem (cf. [5]):

ẋ = y

ẏ = x − x3 − ay

(a ≥ 0) with the Lyapunov function

V (x, y) =
1

2
y2 −

1

2
x2 +

1

4
x4.

The constant a is 0.01 in our experiments. On the left-hand side, Figure 4.1
shows the solution of the Euler method. The step-size is h = 0.01 and the phase
portrait is completely incorrect for the chosen starting value (1.6, 0). The solu-
tion is turning outwards instead of inwards. In contrast, Figure 4.1 shows the
projected Euler method using a larger step-size on the right-hand side. This
behaviour for the projected Euler method is to be expected according to Theo-
rem 2.1.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
exact
Eul

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
exact
ProjEul

Figure 4.1: Euler method (h = 0.01) and projected Euler method (h = 0.08)

Besides the projected Euler method we used a third-order Heun method with
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the Runge-Kutta tableau (cf. [10])

0 0
1
3

1
3

2
3

0 2
3

1
4

0 3
4

That is, the first two steps of the projected method read

Step 1 g1 = yn

g2 = yn + h 1
3
f(g1)

g3 = yn + h 2
3
f(g2)

ỹn+1 = yn + h 1
4
f(g1) + h 3

4
f(g3)

Step 2 Vn+1 = V (yn) + h 1
4
α(g1) + h 3

4
α(g3)

Figure 4.2 shows the solution of the Heun method on the left-hand side. The
solution turns inwards but ends up at the wrong equilibrium point. In contrast to
this, the projected Heun method (plotted on the right-hand side) with the same
step-size already gives the correct solution. This shows that the preservation of
the Lyapunov function has a positive effect on the global error. But this is just
an observation. An improvement of the global error for the Lyapunov-preserving
methods has not been proved in this paper and it is an interesting question for
further research.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5
exact
Heun

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5
exact
ProjHeun

Figure 4.2: Heun method (h = 0.25), projected Heun method (h = 0.25)

We also tested the symmetric projection methods numerically. Figure 4.3
shows the result for the symmetric projected 2-stage Gauss method.

Figure 4.4 shows that the methods are of the expected order. We use the same
starting value as above and numerically compute the solution for a time-span
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−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5
exact
SymProjGauss

Figure 4.3: Symmetric projected 2-stage Gauss method (h = 0.25)

of 1 and different step sizes shown on the x-axis. The result at the endpoint is
compared to a standard integrator with step size selection set to high accuracy
by using the Euclidean norm. In the logarithmic plot the error is plotted versus
the step size. The slopes in this plot indicates the order of the method.

10−2 10−110−10

10−8

10−6

10−4

10−2

100

PrEuler
Heun
PrHeun
symPrGauss

Figure 4.4: Order plot of the projected Euler, Heun, projected Heun and symmetric
projected 2-stage Gauss method for the Duffing equation

Finally, we checked the rate of dissipation, that is the approximation of V (y(t)).
Figure 4.5 shows that the projected Heun method already produces the correct
rate of dissipation at a large step size of 0.5, whereas the Heun method without
projection indicates a much faster decay.

As a second test equation we used

ẋ = −y − x(1 −
√

x2 + y2)2
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0 50 100 150
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
exact
Heun
ProjHeun

Figure 4.5: Rate of dissipation of the Heun and projected Heun method for the Duffing
equation. Step size h = 0.5, starting value (1.6, 0) and time=[0, 150].

ẏ = x − y(1 −
√

x2 + y2)2

with the Lyapunov function

V (x, y) = x2 + y2.

The solutions outside the circle are attracted to the circle with radius one and
stay there in the exact ordinary differential equation. They are repelled from the
circle, if the initial value is within the circle and stay on the circle, if the initial
value is on the circle. The starting value (1.6, 0) is chosen in our experiments
and we integrated numerically for the time-span [0, 150]. Figure 4.6 shows the
results for the Heun method and for the projected Heun method. The Heun
method does not properly reflect the expected behaviour. The projected Heun
method does a better job in recognising the circle with α(y) = 0. Finally, that is
by continuing the numerical integration for a longer time, the projected method
will also turn in due to round-off error. If a numerical approximation entered
the circle once, the correct behaviour of attraction to the origin is observed. The
discrete Lyapunov function only guarantees the preservation of stability regions,
but the improvement over the unprojected method at the circle with α(y) = 0
is significant.

A last experiment concerns the reversing symmetries. We use the gradient
system ẏ = −∇V (y) with the strict Lyapunov function

V (x, y) =
1

(√

(x + 1)2 + y2 + 1
) +

−1
(√

(x − 1)2 + y2 + 1
)
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Figure 4.6: Heun method (h = 0.25), projected Heun method (h = 0.25)

as a test equation. This ODE has the reversing symmetry

R

(
x

y

)

=

(
−x

y

)

.

This symmetry has the reflection symmetry of the phase portrait with respect
to the y-axis as a consequence. To check the preservation of the symmetry,
we perform the following experiment. We choose (x0, y0) = (0, 10) on the y-
axis as initial condition. Then we compute the solution from time t0 = 0 to
time t1 = 3100 with step size h = 0.5. Then we take the final value y6200 and
apply the reversing symmetry to get Ry6200. Then we integrate again for a
time-span of 3100. According to (3.1), the exact solution arrives at our start-
ing value (x0, y0) = (0, 10), due to the reversing symmetry. The result of the
numerical integration with the third-order projected Heun method is compared
to the result of the second-order symmetric projected one-stage Gauss method
in Figure 4.7. The symmetric method that preserves the reversing symmetry is
symmetric with respect to the y-axis and returns to the starting value as does
the exact solution. The projected Heun method does not preserve the symmetry.
The good behaviour of the symmetric projected method is to be expected due
to Proposition 3.2.

5 Conclusion

We considered new projection-based methods that preserve an ODE’s Lya-
punov function as a Lyapunov function for the discrete map given by the nu-
merical method. The approach is flexible enough to be useful in various problems
where a Lyapunov function is known. In this article, we only described the ba-
sic concepts. The methods can be refined and further adapted to the problem
at hand. The symmetric projection methods, which in addition preserve some
linear reversing symmetries, are an interesting example for that. Projection has
been used to conserve integrals of an ODE. Our approach is a unification in
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Figure 4.7: Projected Heun method (h = 0.5), symmetric projected one-stage Gauss
method (h = 0.5)

the sense that our methods reduce to integral-preserving methods if V is a first
integral. The theoretical results ensure that a nonlinear stability region, given
by the Lyapunov function, persists in the numerical methods. The numerical
experiments confirm this behaviour but, even more, suggest an overall improve-
ment of the numerical simulation. This occurs especially in regions where α(y)
is close to zero as in our second numerical experiment. Hence the theoretical
as well as the numerical results are promising and encourage the use of these
methods.
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