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Abstract.

This paper deals with the construction of implicit symplectic partitioned Runge-
Kutta methods (PRKM) of high order for separable and general partitioned Hamilto-
nian systems. The main tool is a generalized W-transformation for PRKM based on
different quadrature formulas. Methods of high order and special properties can be
determined using the transformed coefficient matrices. Examples are given.
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1 Introduction.

Consider the partitioned system of ordinary differential equations

ṗ = f(p, q), q̇ = g(p, q),(1.1)

where p = (p1, ..., pd)
T , q = (q1, ..., qd)

T . Dots represent differentiation with
respect to time. This includes the important class of Hamiltonian systems of
differential equations, where f and g are given as

f = −∂H(p, q)

∂q
, g =

∂H(p, q)

∂p
(1.2)

with H(p, q) a sufficiently smooth function. A system is called separable, if

ṗ = f(q), q̇ = g(p),(1.3)

which means H(p, q) = T (p) + V (q) in the Hamiltonian case.

The most important feature of Hamiltonian systems is their symplecticity
property. Numerical integrators conserving this property for each step-size and
all Hamiltonian systems are called symplectic. Recently there is much interest
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in the numerical integration of Hamiltonian systems by symplectic methods (c.f.
Sanz-Serna [8]). These methods are especially suited for long-time integration.
In many applications separable systems appear. In this paper mainly partioned
Runge-Kutta methods which are symplectic for separable systems are investi-
gated.

To prepare the following sections the usual simplifying assumptions for Runge-
Kutta methods are extended to more general conditions in section 2. In an
analogous way to the Runge-Kutta case the order of partitioned Runge-Kutta
methods in association with the new simplifying assumptions is studied. By
use of these simplifying assumptions a generalization of the W-transformation
is stated in section 3. The W-transformation is very useful for characterization
and construction of A-stable Runge-Kutta methods (cf. Hairer and Wanner
[4]). The standard W-transformation is also practicable to construct symplectic
Runge-Kutta type methods (cf. Sun [9], [10]). In a similar way as the matrix W

for the W-transformation the two matrices W (1) and W (2) for the generalized
W-transformation are constructed. In section 4 the W-transformed matrices
X(1) and X(2) of the partitioned Runge-Kutta method are used to construct im-
plicit symplectic partitioned Runge-Kutta methods for separable and partitioned
systems. The statements are illustrated by several examples.

2 Simplifying assumptions

A partitioned Runge-Kutta method with s stages is specified by the tableau
(c(1), A(1), b(1); c(2), A(2), b(2)) and applied to system (1.1) reads

pn+1 = pn + h

s∑

i=1

b
(1)
i f(Pi, Qi),

qn+1 = qn + h

s∑

i=1

b
(2)
i g(Pi, Qi),

with

Pi = pn + h

s∑

j=1

a
(1)
ij f(Pj , Qj), i = 1, ..., s,

Qi = qn + h

s∑

j=1

a
(2)
ij g(Pj , Qj), i = 1, ..., s.

The basic quadrature formulas having s nodes and s weights are given by
(c(1), b(1)) and (c(2), b(2)). In the case of a separable system f depends only on
Qi and g depends only on Pi. Using the tableau (c(1), A(1), b(1); c(2), A(2), b(2))
the following simplifying assumptions are checked easily (cf. Görtz and Scherer
[2]).
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B̂(p) :

s∑

i=1

b
(1)
i (c

(2)
i )

ν−1
=

s∑

i=1

b
(2)
i (c

(1)
i )

ν−1
=

1

ν
, ν = 1, ..., p,

Ĉ(k) :

s∑

j=1

a
(1)
ij (c

(2)
j )

ν−1
=

1

ν
(c

(1)
i )

ν
, ν = 1, ..., k, i = 1, ..., s,

s∑

j=1

a
(2)
ij (c

(1)
j )

ν−1
=

1

ν
(c

(2)
i )

ν
, ν = 1, ..., k, i = 1, ..., s,

D̂(l) :
s∑

i=1

b
(1)
i (c

(2)
i )

ν−1
a
(2)
ij =

1

ν
b
(2)
j (1− (c

(1)
j )

ν
), ν = 1, ..., l, j = 1, ..., s,

s∑

i=1

b
(2)
i (c

(1)
i )

ν−1
a
(1)
ij =

1

ν
b
(1)
j (1− (c

(2)
j )

ν
), ν = 1, ..., l, j = 1, ..., s,

P : c
(1)
i = c

(2)
i , b

(1)
i = b

(2)
i , i = 1, ..., s,

S : b
(1)
i a

(2)
ij + b

(2)
j a

(1)
ji − b

(1)
i b

(2)
j = 0, i, j = 1, ..., s.

These assumptions deliver simple criteria for the order of a partitioned Runge-
Kutta method by application to partitioned and to separable systems. The
known conditions concerning the coefficients of partitioned Runge-Kutta meth-
ods to be symplectic in the separable case (cf. Sanz-Serna [7], Suris [11]) and
in the general partitioned case (cf. Sanz-Serna [1], Sanz-Serna [10]) are taken
into consideration by the conditions P and S. The results are summarized in
the following theorem, which is the starting point for the generalization of the
W -Transformation.

Theorem 2.1. Assume that a partitioned Runge-Kutta method satisfies sim-
plifying assumptions:

1. If B̂(p), Ĉ(k) and D̂(l) with p ≤ k+ l+1 and p ≤ 2k+2, then the method
has at least order p by application on separable systems.

2. If B̂(p), Ĉ(k), D̂(l)and P with p ≤ k + l + 1 and p ≤ 2k + 2, then the
method has at least order p by application on general partitioned systems.

3. If S, then the method is symplectic by application on separable systems.

4. If S and P, then the method is symplectic by application on general parti-
tioned systems.

To prove the first and second statement graph theory is used in the usual way.
The effect of Ĉ(k) and D̂(l), respectively, on the order conditions represented
by trees is checked. The statements follow in the same way as the statement for
Runge-Kutta methods (cf. Butcher [5]). Under the given assumptions all trees
of order ≤ p are equivalent to “bush”-trees of order ≤ p. The order conditions
to these trees are satisfied because of B̂(p).
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3 Generalization of the W-transformation.

To construct symplectic partitioned Runge-Kutta methods the W-transfor-
mation is slightly generalized (cf. Hairer and Wanner [3], [4]). After some
definitions and lemmata the W-transformations

X(1) = W (1)TB(2)A(1)W (2), X(2) = W (2)TB(1)A(2)W (1)

are established. The standard W-transformation for Runge-Kutta methods is
a special case of the W-transformation investigated here. The generalized W-
transformation is useful to construct partitioned Runge-Kutta methods with
special properties for separable and general partitioned systems. The construc-
tion of symplectic Runge-Kutta methods (cf. Sun [9]) and partitioned Runge-
Kutta methods for general partitoned systems without proof of the order and
the same quadrature formula (cf. Sun [10]) are special cases of the generalized
W-transformation.

The definitions and the lemmata in the following refer to the usual notations
(cf. Hairer and Wanner [3],p. 82 ff.). The Pj(x) denote the Legendre polynomi-
als shifted to the interval [0, 1].

Definition 3.1. Let k, l ∈ {0, ..., s − 1}. The matrix W satisfies T (k, l) for
the quadrature formula (c,b) if and only if

i) W = (wij)i,j=1,...,s is nonsingular,

ii) wij = Pj−1(ci), i = 1, ..., s, j = 1, ...,max{k, l}+ 1,

iii) WTBW =

[
I 0
0 R

]

,

where I is the (l+1)× (l+1) identity matrix and R is an arbitrary (s− l− 1)×
(s− l − 1) matrix, are satisfied.
There are theorems about the existence of such a matrix W (cf. Hairer and

Wanner [3]). We repeat the most important for theoretical and practical use.
Lemma 3.1. Let the quadrature formula (c, b) be of order p. Then there exists

a matrix W satisfying T (k, l) if and only if

p ≥ k + l + 1, p ≥ 2l + 1,(3.1)

and at least max{k, l}+ 1 nodes ci are distinct.
Lemma 3.2. If the quadrature formula (c, b) has s distinct nodes ci and is of

order p ≥ s+ l, then

W = (Pj−1(ci))i,j=1,...,s(3.2)

satisfies T (k, l) with arbitrary k ∈ {0, ..., s− 1}.
Now the generalized W -transformation for partitioned Runge-Kutta methods

is stated.
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Theorem 3.3. Assume that W (1) and W (2) satisfy T (k, l), k ≤ l, for the
quadrature formula (c(1), b(2)) and (c(2), b(1)), respectively, with nonvanishing

weights b
(1)
i and b

(2)
i . Then for the s-stage partitioned Runge-Kutta methods

(c(1), A(1), b(1); c(2), A(2), b(2)) with

X(1) = W (1)TB(2)A(1)W (2) and X(2) = W (2)TB(1)A(2)W (1)

it holds

a) Ĉ(k) equivalent to

{
X(1)Ik = XGIk
X(2)Ik = XGIk

,(3.3)

b) D̂(l) equivalent to

{
IlX

(1) = IlXG

IlX
(2) = IlXG

,(3.4)

c) S equivalent to X(1) +X(2)T − e1e
T
1 = 0,(3.5)

where

Ik = diag(1, ..., 1
︸ ︷︷ ︸

k

, 0, .., 0), ξk =
1

2
√
4k2 − 1

, k = 1, ..., s− 1, and

XG =











1
2 −ξ1 0
ξ1 0 −ξ2

ξ2 0
. . .

. . .
. . . −ξs−1

0 ξs−1 0











.

The conditions X(1)Il = XGIl and IlX
(2) = IlXG, respectively, state that the

first k columns or rows of X(i) are those from XG.

Proof of Theorem 3.3. Ĉ(k) can be written in terms of quadrature formulas

s∑

j=1

a
(q)
ij p(c

(3−q)
j ) =

∫ c
(q)
i

0

p(x)dx, i = 1, ..., s, q = 1, 2, p ∈ Pk−1,(3.6)

where Pk−1 denotes the space of all polynomials with degree ≤ k − 1. Inserting
the Legendre polynomials Pν for ν = 0, 1, ..., k−1 instead of p ∈ Pk−1 and using
the known integral relations (cf. Hairer and Wanner [3], p.78), it follows

s∑

j=1

a
(q)
ij P0(c

(3−q)
j ) = ξ1P1(c

(q)
i ) +

1

2
P0(c

(q)
i ), i = 1, ..., s, q = 1, 2,

s∑

j=1

a
(q)
ij Pν(c

(3−q)
j ) = ξν+1Pν+1(c

(q)
i )− ξνPν−1(c

(q)
i ), ν = 1, ..., k − 1.

Using T (k, l) the previous conditions are given in matrix notation

A(q)W (3−q)Ik = W (q)XGIk, q = 1, 2.
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Multiplication with W (1)TB(2) or W (2)TB(1), respectively, yields

W (q)TB(3−q)W (q)W (q)−1
A(q)W (3−q)Ik = W (q)TB(3−q)W (q)XGIk, q = 1, 2.

Because of
W (q)TB(3−q)W (q)XGIk = XGIk, q = 1, 2,

statement a) follows.

D̂(l) can be written as (q = 1, 2)

s∑

i=1

b
(q)
i a

(3−q)
ij Pν(c

(3−q)
i ) = b

(3−q)
j

∫ 1

c
(q)
j

Pν(x)dx, ν = 1, ..., l − 1, j = 1, ..., s.

Using the integral relations it follows (q = 1, 2)

s∑

i=1

b
(q)
i a

(3−q)
ij P0(c

(3−q)
i ) = b

(3−q)
j (

1

2
P0(c

(q)
j )− ξ1P1(c

(q)
j )), ν = 1, ..., l − 1,

s∑

i=1

b
(q)
i a

(3−q)
ij Pν(c

(3−q)
i ) = b

(3−q)
j (ξνPν−1(c

(q)
j )− ξν+1Pν+1(c

(q)
j )), j = 1, ..., s,

or in matrix notation using T (k, l)

IlW
(3−q)TB(q)A(3−q) = IlXGW (q)TB(3−q), q = 1, 2.

Statement b) follows from multiplication from the right with W (1) or W (2), re-
spectively.

Condition S reads in matrix notation

B(1)A(2) +A(1)TB(2) − b(1)b(2)
T
= 0.

Because of T (k, l) it holds

W (q)TB(3−q)W (q)e1 = e1 = W (q)TB(3−q)e, q = 1, 2

with e1 = (1, 0, ..., 0)T and e = (1, ..., 1)T . Then using

W (2)TB(1)A(2)W (1) +W (2)TA(1)TB(2)W (1) −W (2)TB(1)e(W (1)TB(2)e)T = 0,

statement c) follows. 2
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4 Partitioned Runge-Kutta methods

The following theorem immediately offers the tool for constructing symplec-
tic partitioned Runge-Kutta methods of high order for separable and general
partitioned systems.

Theorem 4.1. Assume that W (1) and W (2) satisfy T (k, k) for the quadrature
formula (c(1), b(2)) and (c(2), b(1)) of order p1 and p2, respectively, with nonvan-

ishing weights b
(1)
i and b

(2)
i . Choose

X(i) =












1
2 −ξ1

ξ1
. . .

. . . −ξk

ξk Q(i)












, i = 1, 2,

with Q(1) + Q(2)T = 0. Then the partitioned Runge-Kutta method specified by
the tableau

(c(1), B(2)−1
W (1)−TX(1)W (2)−1

, b(1); c(2), B(1)−1
W (2)−TX(2)W (1)−1

, b(2))

is of order p = min{2k + 1, p1, p2} and is symplectic for separable systems.
Further, if b(1) = b(2) and c(1) = c(2), then the method is of order p and is sym-
plectic for general partitioned systems.

In the following examples the construction of methods using Theorem 4.1 is
demonstrated.

Example 4.1. With the polynomial M (cf. Hairer and Wanner [3])

M(x) = P2(x) +

√

5

3
αiP1(x), i = 1, 2.

Consider the quadrature formulas

(c(1), b(2)) =

( 3−a1−α1

6
a1−α1

2a1
3+a1−α1

6
a1+α1

2a1

)

, (c(2), b(1)) =

( 3−a2−α2

6
a2−α2

2a2
3+a2−α2

6
a2+α2

2a2

)

,

where α1, α2 ∈ IR and ai =
√

3 + α2
i , i = 1, 2. The W -matrices are

W (1) =

[

1 −a1+α1√

3

1 a1−α1√

3

]

, W (2) =

[

1 −a2+α2√

3

1 a2−α2√

3

]

.

Setting

A(q) = B(3−q)−1
W (q)−TX(q)W (3−q)−1

= W (q)X(q)W (3−q)TB(q), q = 1, 2
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with

X(1) =

[
1
2 − 1

2
√

3
1

2
√

3
w

]

, X(2) =

[
1
2 − 1

2
√

3
1

2
√

3
−w

]

, ω ∈ IR

and using Theorem 4.1 we get symplectic partitioned Runge-Kutta methods at
least of order 3. The coefficients are computed to

A(1) =
1

2a2

[
(3−d4)d1

6 + 1
2 + wd4

(3−d4)d2

6 − 1
2 − wd4

(3+d3)d1

6 + 1
2 − wd3

(3+d3)d2

6 − 1
2 + wd3

]

,

A(2) =
1

2a1

[
(3−d2)d3

6 + 1
2 − wd2

(3−d2)d4

6 − 1
2 + wd2

(3+d1)d3

6 + 1
2 + wd1

(3+d1)d4

6 − 1
2 − wd1

]

,

where d1 = a2 − α2, d2 = a2 + α2, d3 = a1 − α1 and d4 = a1 + α1.
Sometimes the order of dispersion is more important than the classical order

(cf. van der Houwen and Sommeijer [6]). The dispersion order is the largest p

satisfying

Φ(z) = z − arccos

(
1

2

Ψ1(z
2) + Ψ2(z

2)

Ψ(z2)

)

= O(zp+1) (z → 0+)

with

Ψq(z) = det(I + zA(3−q)A(q) − zc(3−q)b(q)
T
),

Ψ(z) = det(I + zA(3−q)A(q)), q = 1, 2.

Using the generalized W-transformation this transforms into:

Ψq(z) = det(I + zX(3−q)X(q) − z










1
2
ξ1
0
...
0










eT1 ),

Ψ(z) = det(I + zX(3−q)X(q)), q = 1, 2.

Now the symplectic methods of highest order of dispersion can easily be derived.
This will be done in more detail in a forthcoming paper. The family above is a
two parameter family of methods of the highest dispersion order 6 by choosing
w = ± 1

30

√
15. The two-stage Gauss-Runge-Kutta method does not reach order

of dispersion 6.

Example 4.2. Using the Radau quadrature formulas

(c(1), b(2)) =






0 1
9

6−
√

6
10

16+
√

6
36

6+
√

6
10

16−
√

6
36




 , (c(2), b(1)) =






4−
√

6
10

16−
√

6
36

4+
√

6
10

16+
√

6
36

1 1
9




 ,
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we get the W-matrices

W (1) =





1 −
√
3
√
5

1 a1 a3

1 a2 a4



 , W (2) =





1 −a2 a4

1 −a1 a3

1
√
3

√
5



 ,

where a1 =
√

3(1−
√

6)
5 , a2 =

√

3(1+
√

6)
5 , a3 = −

√

5(2+3
√

6)
25 and a4 = −

√

5(2−3
√

6)
25 .

Setting

A(q) = B(3−q)−1
W (q)−TX(q)W (3−q)−1

= W (q)X(q)W (3−q)TB(q), q = 1, 2

with

X(1) =






1
2 − 1

2
√

3
1

2
√

3
−1

2
√

15
1

2
√

15
w




 , X(2) =






1
2 − 1

2
√

3
1

2
√

3
−1

2
√

15
1

2
√

15
−w




 .

Using Theorem 4.1 a symplectic partitioned Runge-Kutta method of order at
least 5 for separable systems is deduced. The coefficients are computed to A(1) =

(a
(1)
ij )i,j=1,...,s and A(2) = (a

(2)
ij )i,j=1,...,s with

a
(1)
11 = 1

36 (1 + 10w)(−1 +
√
6), a

(1)
12 = − 1

36 (1 + 10w)(1 +
√
6), a

(1)
13 = 1+10w

18 ,

a
(1)
21 = 1

1800 (−16 +
√
6)(−43 + 20w), a

(1)
22 = 1

360 (4 +
√
6)(47 − 18

√
6 + 20w),

a
(1)
23 = − 1

450 (2 + 3
√
6)(1 + 10w), a

(1)
31 = − 1

360 (
√
6 − 4)(47 + 18

√
6 + 20w),

a
(1)
32 = − 1

1800 (16 +
√
6)(−43 + 20w), a

(1)
33 = 1

450 (−2 + 3
√
6)(1 + 10w).

and

a
(2)
11 = − 1

450 (−2 + 3
√
6)(−3

√
6 − 1 + 10w), a

(2)
12 = 1

1800 (16 +
√
6)(7 + 20w),

a
(2)
13 = 1

360 (−4 +
√
6)(6

√
6 − 11 + 20w), a

(2)
21 = 1

450 (2 + 3
√
6)(3

√
6 − 1 + 10w),

a
(2)
22 = − 1

360 (4 +
√
6)(−6

√
6 − 11 + 20w), a

(2)
23 = − 1

1800 (−16 +
√
6)(7 + 20w),

a
(2)
31 = 1

18 (1 − 10w), a
(2)
32 = 1

36 (1 +
√
6)(−1 + 3

√
6 + 10w), a

(2)
33 = − 1

36 (−1 +√
6)(−1− 3

√
6 + 10w).

Conclusion. The generalized W-transformation is especially suitable to con-
struct partitioned Runge-Kutta methods for separable Hamiltonian systems. It
will be a useful tool for improving methods like we show in the small example
for the order of dispersion. The same can be done to identify the methods that
are P-stable or the methods that are not symplectic but are of an higher order
of dispersion. Further theorems can be given to construct methods that are not
symplectic but are of higher order based on the same transformation for sep-
arable systems. The known results for Runge-Kutta methods and partitioned
Runge-Kutta methods for general systems with the same quadrature formula
are included.
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