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1 Introduction

In this paper we study a numerical method for the solutionystesms of
second-order differential equations

y"'=—-Ay+g(y), y(0) =yo, ¥'(0) =yp , 1)

whereA is a symmetric and positive semi-definite real matrix of @abily
large norm. We are interested in using step sizes that areesivicted by
the frequencies aofi, neither for stability nor for accuracy.
Garcia-Archilla, Sanz-Serna and Skeel [3] recently psgplcand ana-
lyzed a method for oscillatory differential equations, efhthey called the



2 Marlis Hochbruck, Christian Lubich

mollified impulse method hey obtained error bounds for numerical solu-
tions of (1) which do not deteriorate when the product of tiep size with
the frequencies becomes large or, what is potentially wssdose to mul-
tiples of . Their method is based on the splitting= — Au, v = ¢(v).

Here we study a method which is instead based on the requiteirat
it reduces to arexact solver for linear equationd) with constant inho-
mogeneityy. Such a method, which is simple to construct, can be traced
back to an old paper of Gautschi [5], cf. also Hersch [6]. Mareently,
in [8] we found methods of this type numerically promisingcimmbina-
tion with Krylov subspace techniques for approximatingphaduct of the
matrix exponential, or related matrix functions, with ateecOur positive
numerical experience called for a rigorous error analyssioh methods.

The error analysis developed here gives very detailedrimition about
the structure of the error. The error is of second order umifpin the fre-
guencies. It turns out to be largely determined by a scalaction of two
variables which accounts for the mixing of frequencies tgy tlumerical
method. As a practical consequence, this can be used foottsgraction
of a suitable filter function which appears in the scheme.&ar and sta-
bility analysis provides also new insight for the mollifiedpulse method.

The methods considered in this paper require, in every timeg, she
computation of the produgt(22 A)v of analytic functionsy of the matrix
A scaled by the square of the step sizavith a vector. This is easy if the
eigendecomposition of is available, most notably in pseudospectral meth-
ods for nonlinear wave equations. Otherwise (or possiblyoimbination
with a partial eigendecomposition), such matrix-functi@ctor products
can be computed with Krylov subspace methods [2,7]. A furdierna-
tive, which appears however less favourable in the presamiegt, is to
solve in every time step a linear initial value problem, whis associated
with the matrix function in question, by a standard numerintegrator
with smaller step sizes.

The paper is organized as follows: In Section 2 we presemtulreerical
method and some of its variants, and an extension to moreageugiations
y" = f(y)+g(y). Section 3 develops the error analysis for Eq. (1), with the
main result stated in Theorem 1. A major technical difficuttyhis paper
is to bound the Schur multiplier norm of matrices composedatties of
the error function. Such bounds are derived in Section 4y Tepart from
optimality only by logarithmic terms. Section 5 deals wikte tfixed-step-
size stability of the method for linear problems (1) witty) = — By for
positive semi-definites. Section 6 gives some suitable filter functions. In
Section 7 we discuss relationships and differences to thifiesdimpulse
method. Section 8 concludes the paper with numerical exgatis on the
sine-Gordon equation.
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For a recent survey article on existing numerical approathescilla-
tory differential equations we refer to [9].

2 The integration scheme

Our starting point is the variation-of-constants formwathe solution of

1),
y(t+7) =cosTR2-y(t) + 27 sin T2 -y (t) +
/T Q7 sin(r — )2 -g(y(t+s)) ds. (2)
0
Here and in the following we write
Q=AY

For an equation (1) witbonstaninhomogeneity;, (2) shows that

y(t+h) —2y(t) +y(t — h) = Ko (RPA) (~Ay(t) +9),  (3)

where the functiow is given by

s 1 2 _ 1
U@?):(Sl??x) zzlﬂzz/ e Usin(l—0)zdd. (4)
0

L 2
2$ T

In the general case of (1), formula (3) suggests to repldoet)) by a
suitable constant vectgr, over a time step, and to consider the numerical
integration scheme with step size

Ynt1 — 2Yn + Yno1 = h*o(h*A) (= Ay, + 94) | (5)

wherey,, is an approximation tg(t,,) at timet,, = nh. The obvious choice
would be to sey,, = ¢(y,,), in which case (5) can be considered as belong-
ing to a class of methods introduced by Gautschi [5, p. 39Bibjwever,
like in [3], it turns out to be favourable to take instead a ified argument
in g. We set

9n = g((b(th)yn) ) (6)

where thdilter functione is a suitably chosen real function whose purpose
is to filter out resonant frequencies. We assume

(b(O) =1, (b(kzﬂ-z) =0, k=1,23,... (7)

We assume throughout, without further mention, thand its first two
derivatives are bounded on the positive half-line. It isoeble to assume
also

é(x)) <1, x>0, (8)



4 Marlis Hochbruck, Christian Lubich

Examples for possible choices ofwill be given in Section 6.
To obtain a second starting value for the recursion (5), we se

y1 = cos h2 - yo + 27 sin h2 -y} + %hza(th) g0 - (9)
Like for the Stormer/Verlet/leapfrog method, there is a-@tep version
of the scheme (5):
Un-|—1/2 = v, + %ho‘(th) (_Ayn + gn)
Yn+1 = Un + h Un-l—l/? (10)
Ungl = Upyr/2 + %hg(hQA) (_Ayn-l-l + gn-l-l) .

This scheme yields,, = (y,+1 — y.—1)/(2h), which can be interpreted as
an approximation to aaveragedrelocity

B(t) = %/_hhy’(t—l—r) dr .

The method (10) is mathematically equivalent to (5) withifQ), is taken
as

vo = $(h*A) (11)
wherey)(2%) = sin /2. The interpretation of this expression as an approx-
imated time average comes once more from (2). In case thedxdppations
to the velocities themselves are of interest, they can bairdd by post-
processing via

Yni1 = Yoy + 200 (RPA) (= Ay, + g5) - (12)

These values would again be exact wlgda constant. This can be seen by
differentiating (2) with respect to.

The above method can be viewed as a special casg(§or= — Ay, of
a method for more general differential equations

y' = fly) +9ly) .

Giveny, andy!, one computes a suitable averaged vaiyand the solu-
tion of

u' = fu)+9(F) . uw0) =y, W (0)=y, . (13)
Then,y,+, andy,, ,, are computed from
Ynt1 — 2Un + Y1 = u(h) - 2“(0) + u(_h) )
Ynt1 — Yn—y = W (h) —u'(=h),
or from the averaged-velocity version that correspondd®). \When (13)

is solved approximately by a numerical method with smalieetsteps,
then this becomes a symmetric multiple-time-steppingreehe

(14)
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3 Finite-time error analysis

We make no smoothness assumption about the (highly oscil}aolution
and impose instead, as in [3], a finite-energy condition:

WO )+ Sy Ay(1) < K. (15)

The following result shows second-order convergence,ofn the Eu-
clidean norm and first-order convergence in the energy ndime. Eu-
clidean norm and its induced matrix norm are both denotgf (pyhrough-
out the paper.

Theorem 1 In Eq. (1), let A be a symmetric and positive semi-definite
N x N matrix, and assume that g, ¢,, are bounded in the Euclidean
norm or its induced norms b¥{,, M, M;, respectively. Let the solution
satisfy the finite-energy conditiqa5) for 0 < ¢ < T. Then, the error of
the numerical method of Sectians bounded fob < nk < T by

lyn — y(t,)|| < h? - Celtn (M Kt, + My K% + My Mot?) ((n, N),

where(' is a constant which depends only on the filter funciforl, =
VM7, and{(n, N) < log(n + 1) log(N + 1) and alsol(n, N) < v/N. A
bound of the same type holds folt2(y, — y(t,))|| + hllv. — v(ts)|] +
hlly =o' (ta)ll-

The proof provides much more detailed information aboutstingcture of
the error. This will be made explicit at the end of this sattibhe logarith-
mic term {(n, N') comes from our technique of estimating the entrywise
product of the Jacobiag, with certain matrices depending on the numer-
ical scheme and the frequenciesAfWe conjecture that this logarithmic
term can be omitted in the estimate.

We note that condition (15) implies

12yl < K, Iy 0]l < K,

which are the conditions we will actually work with. In theseaof higher
regularity|| 2%y (t)|| < K,||2y'(t)]] < K, our analysis would yield second-
order bounds also fdfy,, — y'(t,)||-

The proof of Theorem 1 proceeds via a series of lemmas. Indhe f
lowing, C' always denotes a constant which depends only on the choice of
the filter functionp, and which takes on different values on different occur-
rences.
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Lemma 1 The truncation error

dy = Y(tng1)—=2y(tn)+y(tn1)—h2o (W2 A) (= Ay(t,)+9(o(h*A)y(t,)))

is of the form
d,=hL, Qy(t,) + htz, |

where the matrix.,,, given by(16) below, is bounded byL .|| < CM;,
and||z,|| < C(MyK? + MoMy).

Proof By the variation-of-constants formula (2) fg(t,, + ), we obtain

d, = [l Q1 sin(h —7)02-
(g(y(tn +7)) = 29(8(h*A)y(tn)) + gy (tn — T))) dr .

By assumption (15), we have

ly(tn £7) =yt < [/t £ 9l ds < K7
This gives us, withty,, = g, (y(t,)),
9y(tatT))=g(y(tn) = Guly(tatr)—y(ta))+ri o Il < MakP72
Since(1 — ¢(x?))/x is bounded for: > 0, we have
11 = &(h* A))y ()]l < RII(T = &(h*$2%)) (h2) || [[2y ()| < hCK
using again (15) in the last inequality. This yields

9(y(tn)) — g(o(R*A)y(t,)) = G (I — S(R*A))y(ts) + sn
l|sall < MaC*K2h* .

Using the variation-of-constants formula (2) fg(t,, + 7) and defining

1
L, = 2/ (hQ)‘1 sin(1—6)h$2-G,, - (cosOh$2 — ¢(h2!22))(h!2)‘1 de
’ (16)
we thus obtain the desired result. O

Lemma 2 The errorse,, = y,, — y(t,,) satisfy
€nt1 = —Wy_1€0 + Wyer + Z W,_;(R*Fje; — d;)
J=1

with W,, = (sin(n + 1)h$2) (sin ~$2) !, and with matriced”; bounded by
1F5][ < M.
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Proof By definition of the truncation error, we have

ent1 — 26p +€q_1 =
h?a(h*A)(—Ae, + g(¢(h*A)y,) — g(o(h*A)y(tn))) — dy -
Sinces (h2A)(g((h2A)y,) — g((h2A)y(t))) = Fien with the matrix

Fy = o(h?A) / Gy (S A) (y(ta) + Ben)) dB - G(R2A) |

which is bounded by/;, and since — k2o (h?A)A = 2 cos he2, the error
equation becomes

€nt1 — 2coshf2e, +e,_1 = h*F.e, —d, ,

or in one-step form,

€ntl ) €n h*F.e, —d,
(en)_R<en—1)+< 0 7

R <QCoshQ —I) ‘

with

I 0
Clearly then,

€nt1 \ _ pn [ €1 - i thjej—dj)
Cor)=r () e (M0 7Y).

The result now follows from verifying thatk”),; = W,, and (R")12 =
—-W,._1. For example, this can be done using the block Schur decampos

tion
(b x . L feh? T
R:U< 0 e—ih!))U ; UZ@( I e—ih!))
with X = —2e~** cos h{2, noting that

inh{2
R”:U(e 0 Ve‘f@;iQX)U*.

Lemma 3 We have

Hzn: Wy dj| < B2 - COMIKt, + My K 4 My Mot2) ((n, N)
7=1

with £(n, N) < min(log(n + 1) log(N + 1),V/N).
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Proof In view of Lemma 1 and the variation-of-constants formulaf(
t =0andr = t;, we write

> Wisjd; = h*(ay + by + c)
7=1
with
Uy, = hZ Wo—j Lj (cost; 2 - Qyo +sint;2 - yp)

i=1

n t
b, = hZWn—j L; / ’ sin(t; — s)82-g(y(s)) ds
0

7=1
¢, = h? ZW”—J Z .
7=1
We studya,,, b.,,, c,, in parts (a),(b),(c) of the proof, respectively.

(a) Letwy, be thekth eigenvalue of2, and let() be the orthogonal matrix
of eigenvectors, so tha}” 2Q) = diag(wy,). We write

Uy = tn(Un QyO + Vi yé)
and denote the matrix entries in the eigenbasis repregamtest

() =Q"U.Q, H=Q".Q, ()=Q"G.Q.
For fixedk, £, we omit the superscripts in the matrix entries and wiite
hwy, 8 = hwe. We have

pa) 1R (st =7
(1) =3 St s (7).
where
do

5 (e, f) =2 (cos 63 — ¢(ﬁ2))3- (17)

To estimate the above sum, we use partial summation. Let

sin(j + Do /1 sin(1-0)
0 o

sin av

1 n—1 i
enla, B) = ~ > 6i(a, By e 7. (18)
7=0

We then have
n—1

1 g :

.+ iy, = =5 =B P
f + 1V ]Z:;Jn](oe,ﬁ)e Yn—j - €

Jj+1

n

n—1
= (=nle )70+ 20 = 2ia1(0,B) (Yumj = Ymgmr) J €7
7=0
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Recall thaty; is the (k, ) component of@j = QTG,Q, whereG; =
9y(y(t;)). Letting 5, = (2, (hw;, hwy)) Ny @nd D, = diag(e™"+), we
thus have
n—1 -

J+1 = =
Z:% L1 0 (Gnej — Gn—j—l)) '

J

a, =1, ReQ(En o Clo +

DaQ" (240 — i) ,
wheree denotes the entrywise product of matrices. Since
IGiI < My, |G = Gl < MoK, (19)
Lemma 5 below gives us that
lan|| < t, Cl(n, N) (My + My Kt,) 2K .
(b) We set )
T, = /0 ! e_iSQg(y(s)) ds .

In terms of the eigencomponeritg) = Q7'b,, and(rf) = Q7r, we then
have

n—1
bE = hm 3365 (hwg, hewp) e B L pimber
j=0 ¢
Partial summation gives us (note tbrét: 0)

n—1

11
bi =t, Im ZZ ] . €j+1(hwk,hwg) .

=0 ¢

ke 4 k(¢ 1) inhwg
(Pyn—jrn—j - Pyn—j—lrn—j—l) € )

and with Lemma 5 we conclude

n—1
lonll < £ Cln, NY S (1Gej = Gyl eyl +

7=0
1Ggall - ey = gl -

From the variation-of-constants formula (2) and its défetrated version
we obtain with (15)|r;|| = ||e"*r;|| < 4K. Together with|r; —r;_,|| <
Myh and (19) we therefore obtain

|b,]] < 2 Cl(n, N) (4MoK? 4 My M) .
(c) Finally, Lemma 1 and the bounidV,,|| < n + 1 give us
llen|| < CMaK?t2 . |
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Proof of Theorem 1For the errors in the starting values we haye= 0
and by (9)

h
leall = [ 2" sinth = )2+ (9 y(7)) - g6 (h22*)0)) i
< CM K h?.

Moreover, for the matrices in Lemma 2 we ha#,|| < »n + 1. With the
estimate of Lemma 3, the stated bound fey|| now follows from a discrete
Gronwall inequality [3, Lemma 2] applied to the recursiorLefnma 2.

The error bound foh(v,, — v(t,,)) = e, — e,—1 is then immediate, and
the bound fori.(2 e,, follows with Lemma 2, since alsph2F;|| < 2M;
and||hf2e;]| < CMKh®, and because we gty W,_;h82d;|| =
O(h?) as in Lemma 3. Finally, to obtain the bound &§r= v/, — 4/ (t,,) we
note that (12) implies

ey =€y —202sinh2-e, +O(R) .

Since||sin h{2 - W,|| < 1 and||e,|| = O(h?), we see from Lemma 2 that,
on a fixed time interval,

sin h$2 - e,q1 = h¥sin 2 (a, + b,) + O(h%) (20)

wherea,, andb,, are those of the proof of Lemma 3, and h¢h>) re-
mainder terms,, say, is such tha®s,, = O(h?). Inserting this formula in
the recursion foe!, it can be shown as in the proof of Lemma 3 that this
implies|le! || = O(h), where the constant in th@-symbol is of the same
type as before. We omit the details for this last estimate. O

Formula (20) makes explicit the dominant error term for tigeeecom-
ponents corresponding to those frequencies for whighis bounded away
from an integer multiple of. Recall that:,, andb,, are determined by the
error functiore,, («v, 3), which is studied in Section 4.

4 Properties of the error function

Lemma 4 The error functions,, («, 3) defined by(17), (18) are uniformly
bounded for alkv, 5 > 0 andn > 0, andlim,, .. ¢, (o, 8) = 0if a £ 3 #
2km anda # kx with integerk.

Proof The tools of this proof are trigonometric identities andaaedly the
mean value theorem. It is in this proof that condition (7) esnmto play.
Let )

emﬁen(a, g) = w

Snle, B) (e, B)



Oscillatory differential equations 11

where
Sn( =9 Z Sln(] + 1) z(n—])ﬁ

sin av
7=0

and
o) = [0 o5 — o) a0
(cosﬂ —cosw 1 Lo(a?) (b(ﬂz)) _

_ 042
With the boundsin (1 — #)a/a < 1 — ¢ and (8) we have

[ (e, 3

Fromcos 83 — ¢(5%) = O(B* ), when g tends to zero, we conclude that
there is a constart; such that

)
)| < forall o, 5 > 0. (21)

%|I(o¢,ﬁ)| <Cy3,  forall g >o0. (22)

Next we consider the real part 6f, («, 5), which by trigonometric iden-
tities turns out to be
1 1

cos  — cos o sin «

Re S, (a, 8) =

(= sin navcos a (cos f — cos )

—sin a (sin nfsin § — sin nasin «)
+ sin awcos § (cos nf — cos na)).
(23)
Re 9, (a, f) is a continuous7-periodic function inx, 5, hence we set

o =2kt + a, b =2mnr + b, 0<lal,lb| <.

By continuity, it is sufficient to considet, 5 with 0 < ||, [b|] < = and
|a| # |b]. Moreover,Re S,, («, ) = Re S,,(a, b) is an even function i, b.
Hence we can restrict ourselves to the cage> 0.

We consider the three terms in (23) separately. The firstigbounded
by n. For the second term, by the generalized mean-value thefmean
fraction of differentiable functions, there igdbetweer: andb such that

sin nbsin b — sin nasin a sin né

= — Cos -
cosb —cosa sin 6

— ncosnd,

and hence this expression is bounded2byfor all a«,b > 0. From the
above bounds we conclude that the product @f, 5)/(n/3) with the first
two terms in (23) is uniformly bounded for all, 5 > 0 andn > 0.

For the lasttermin (23), things are more complicated, bee#uis term
grows likeO(n?) for « — p and3 — kx. However, we will show that the
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product of the third term with the integrél«, 3)/(n/) is bounded. The
mean-value theorem guarantees the existeneehstweens: andb such
that

cosnb — cosna sin nd
=n — .
cosb — cosa sin 6
Hence, there is a constari¢} such that fo) < § < %77
1 b— C
‘ Wﬂ)‘ cosnbzcosna) L2 o5 cqh<ns,
ng cosb —cosa |~ - -

We now consider the cage= b — 0. From| cos nb — cos na| < n|b — a|
andcosb — cosa = 3(a — b)(a+ b)(1 + O(a? + b?)) we obtain

cosnb — cosna 4dn 1
< for0<bo<gm, 0<a<m.
cosbh — cosa at+b
For 5 — 0 we therefore conclude with (22)
I(O@ﬂ)‘ Cosnﬂ—cosna‘§4cl foro<fg<ln, a>0.
ng cos 3 — cos

For 3 > ix, we have for the product with the first term bffw, 3)
1 Jcosnf — cosna 1 4
— < <
np | a2 | B(B+a) - n

Next we consider the product with the second term(im, 5) for 5 nearr.
Here we have similarly to the above

forﬂ>%ﬂ', a>0.

4n
“|r—al+ |7 — b

cosnb — cosna

cosb —cosa

for ir < b < 27,0 < a < 2r. By condition (7), we havés(3?)| <

Cs|m — | for g nearr, and hence

a(a?) $(5?)
nps

for %77 < fp< %77, a > 0. The same argument applies fémnear arbitrary
integer multiples ofr.

Combining these estimates, we see fat"’z, («, 3) is bounded in-
dependently ofv, 3 and n. Similarly, we can show that such a uniform
bound exists for the imaginary part, and hengéx, ) is bounded uni-
formly.

In the nonresonance case, where: 5 —2kx| > § > 0 and|a— k7| >
o for all integersk, we have|S,,(«, 5)| < C/§, which by (21) and (22)
implies

cosnf} — cos no < 4C5

cosf —cosa | T im

C

This proves the second assertion of the lemma. O
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The logarithmic term in Theorem 1 results from the followbaund.

Lemma5 Let E, = (c,(oj, ax))™,_;, where then; are arbitrary non-
negative real numbers. In the matrix norm induced by theiBeah norm,
the entrywise product of’,, with an arbitrary N x N matrix G is then
bounded by

1B, G|l < C log(n + 1) log(N +1) |G| .
The constant’ depends only on the choice of the filter function
RemarkWe have immediately
[En e G| < Col |G| || < CoVN |G|
with Co = sup; , 5 |€; (e, B)[, which is finite by Lemma 4.

Proof The proof proceeds by splitting the mat#, into a sum of matrices
and estimating them separately. We may assame a, < ... < ay.

(a) Consider first the triangle : 0 < o < § < 7 and letE? be the
submatrix ofF’,, defined by

E2 = (e;1) with e, = {gn(&jyﬂk) gléglj‘,ﬁk) €A (25)

Here we writed;,, = «4, in the second argument for notational clarity. We
split £2 further into a part!” whose entry arguments are near the vertical
edgea = 0 of A, into a partZ? near the diagonal edge= 3, and a part
E¢ close to the cornefo, 0). For this, lety be a smooth cutting function
with o(z) = 1 for x < %, andyp(x) = 0 for 2 > 2. Further, lety,, be the
characteristic function of the intervil, 1/»]. We have

ES=E) +FEP+ EY
with
EY = (efi) = (p(aj/Br) (1 = xa(Br) €1)
EP = (eh) = (1= ¢(a;/B)) (1 = xn(Br)) €j)
ES = (€5) = (xa(Br) €j) -
(b) We now show for the part near the vertical edge that
1E, o G| < Clog(n + 1) ||G]| - (26)

Let G = (g;x) and consider for arbitrary vectors= (z;), y = (yx)

v (E) ¢ Gy =Y T, gixely Yk -
7.k
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. . . o vy v
Partial summation in horizontal direction gives, with, = €Y, | , — e,

e (EY oGy Z(Z%gm) Yok == > (i licsy) gik (dyn)
T ik

gk i<

wherel <,y = 1if i < j, and zero else. This implies

o= (£ @ Gyl < D Nl - G| gl - maxc |

J

and hence
HEVoGH<ZmaXId |- 1G]] - (27)

We have

dJk - e]-l—l kT ;/k
= (@1 /Be) (1= Xn (Br)) (En (@1, Br) — €nle, Br)) +
(Plejer/Br) = @la;/Br)) (1 = xn (Br))en (@), Br) -

By Lemma 4 we havé:,, (o, 3)| < C, and from the formulas in the proof
of Lemma 4 one obtains also

Oe,,
Ja
i.e., for those(a, #) for which c,o(a/ﬁ) # 0. Note thaty(a;11/6%) —

(Oéy/ﬁk) £ 0onlyif a;11/8, > L anda;/8 < %, thatis, only if
By € [2aj,3a;41]. Then we have

%n o ﬂ)‘ < C'min(n, 1/a) for (a, 8) € Awitha/3 < 2/3, (28)

lo(ajr1/Br) — wla/Br)| < C %

it — s
< ' min (7”31 ],1)
Q;

2
~ 3 41

On the other hand, we hayg > 1/» for all £ which give non-vanishing
entries in&z"". Combining these estimates gives

|4} < Cmin(n, 1/aj) - (i1 — o)

and hence
Zmax|d]k|<0/ C(1+logn).

Therefore, (27) implies (26).
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(c) For the part near the diagonal we show
|7 o G|l < Clog(n+ 1) log(N + 1) ||G]| - (29)
We proceed similarly to part (b), but now use anti-diagormatipl summa-
tion. With 5, = €%, | , — e}, we have for arbitrary vectors y
e(EY @Gy =Y T ik Yk = D Tk Gtk € s Yk
5k 5k

> D
== 2D Tirkliici itk iy p Y
7 4,k

== > > T (Limksiygin) (d7g 10n) -
7 4,k

(Here we may think ofz” and¢ as being embedded in higher-dimensional
matrices by extending them by zero, so that we need not canat dhe
range of summations above.)

The matrixG\¥) = (1;;_z<;19ir)i . iS Obtained fromG by truncating
a triangular part. Theorem 1 in [1] (see also referencesthéor related
earlier work) shows that

|G| < Clog(N + 1) |G| (30)

which explains how the factdog (/N + 1) comes about. This implies

1E7 o Gl < 32 max[dfyy 4] - C log(N + 1) |G (31)
j

In place of (28) we now have

den

Jda

In the same way as in part (b), this bound together with (3&ldgi (29).
(d) For the part near the corner we have

IS o G| < Clog(N + 1) |G| -

(a,ﬂ)‘ < Cmin(n,1/(f—a)) for (o, B) € Awitha /5 > 1/3.

This follows as above using partial summation, (30), andithend

Oe,,

Ja
(e) The same arguments apply also to the complementargleian<

8 < a < = (with vertical edgenr = =, diagonale = 3, and corner

(7, 7)), and in fact to every triangle whose corners have successieger

multiples ofr as coordinates and whose diagonal or anti-diagonal edge lie

on one of the lines &+ 5 = 2kx with integerk.

(a,ﬂ)‘gCn for (o, 5) € A
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Using the decay properties of the error functions for langgiments,
see the formulas in the beginning of the proof of Lemma 4, weialfor
every squarg,, = [({—1)7, (7)) x[(m—1)7m,mr)withl,m =1,2,3,...
(each of which is composed of two of the above triangles) thend

1 1
e <o o)

(L+ |12 =m?)m  1?m?
log(n + 1) log(N + 1) [|G7]| ,
where EL™ is defined likeE2 in (25), but witho, ,,, in place of A. For
every integek, the block-diagonal matrix

EF =" phtmm

m

then satisfies the bound

C
|5 o Gl < max [ 0 G| < 1 log(n-+ 1) log(N + 1) G

and consequently

|En oGl < S IIEE 0 GI| < € log(n+ 1) log(N + 1) ||/ .
k

which was to be proved. O

5 Linear stability

To gain a better understanding of the behaviour of the mathddhe influ-
ence of the filter functio, we study the long-time error propagation for
the linear system

y" = —-Ay - By (32)

where bothA and B are assumed symmetric and positive semi-definite.
The method applied to this equation reads

Ynt+1 — Qyn + Yn—1 = _hzg(th) (A + B(b(th))yn . (33)

It turns out favourable for stability to have a filter fungtithat is non-
negative:
¢(z) >0 for z>0. (34)

In the following we assume that squares of integer multipfes are the
only zeros ofp, and that no eigenvalue &f? is precisely an integer multi-
ple of x. Then, the matrices

S=o(h?A)Y?, F=¢(h?A)/?
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are non-singular. We introduce transformed variables
¢ =FS"Yy,, p,=FS"1u,. (35)

By (7), we have for all eigencomponenig| < C|y*|, and if the squares
of integer multiples ofr are the only zeros, of multiplicity exactly 2, then
we have also an inverse inequality for those components fictwiew,, is
bounded away from an odd multiple of SinceA, I, andS commute, the
recursion forg, has a symmetric matrix:

Goi1 — 2qn + ¢u1 = —h*(SAS + SFBFS)q, . (36)
Let
2y _ 0(2?) o(2?)
= . 37
l'[/(x ) (COS %$)2 ( )

Note thati(0) = 1, and

lu(h* A)ll = max p((heox)*) < sup p(a®) < oo

for filter functionsey with (7) and (34), becausgthen has at least a double
zero at the square of every integer multiplerofWe have the following
stability criterion.

Theorem 2 In the above situation, if
lu(R* A)|| - 1IR*B|| < 4, (38)
then the recursion is stable in the sense that

lgnll < 7 (llgoll + Nlall) » n> 1.

Proof By diagonalization of the matrix in (36), it is seen that tleeur-
sion is stable if and only if the eigenvalues/of(SAS + SFBFS) lie

in the interval[0, 4]. It is clear that these eigenvalues are non-negative, so
it remains to find the upper bound. L&t = cos %h!), so thath?SAS =
4(sin 1h$2)? = 4T — 4C?. We then have

R*(SAS 4+ SFBFS) =4I — C(41 — R*C™'SFBFSC™hHC .
Under condition (38)(C'(41 — h*C~'SFBFSC~1)C is positive semi-

definite, and the eigenvalues bf(SAS + SFBFS) are then bounded
by 4. O
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The proof also shows that the condition (38)é&cessarif the recursion
is to be stable for all positive semi-definite matridesf a fixed norm. This
necessity is already obvious in the scalar case.

The stability bound for;,, can be further used to obtain a bound #§gr
also for those eigencomponents where the invers€$f! is not reason-
ably bounded. As in Lemma 2, we have

Yn+1 = —Wn—-1Y0 + Wnyl - ZWn—]SQhZBFQy] .
=1
Noting thatF?y; = FSq;, we obtain, withc = || F'S],

[yl < nllyoll + (0 + Dllyall + |IR*BI| Y (n = 5+ 1)llg;1l -

i=1

6 Choice of the filter function

A first possible choice of a filter function satisfying (7) is
p(z?) =sinz/z . (39)

The absolute value of its complex error function«, 3) defined by (18)
is plotted in Figure 1. The figure was computed with= 50, but nearly
identical graphs are obtained for all sufficiently largén > 10 or 20,
say). A considerably reduced error function is obtained for

sin @

P(2?) = " (14 :(1—cosz)). (40)

This filter function is chosen such that the integral termhia ¢rror func-
tion, see (17), becomes small for small3. This requiresp(z?) = 1 —
22/12 4+ O(a*) for = — 0. The absolute value of the error function for
(40) is plotted in Figure 2. Unfortunately, the filter furati(40) becomes
negative on intervals between the squares of odd and evedipleslof =
and hence does not satisfy condition (34) required for lis&bility in the
sense of Section 4. A filter function which satisfies (7) art) ¢€d whose
error function becomes small for small 3, is given by

sin

o) = (125) (14 30— cosa) (a1)

X

Its stability threshold functiop, given by (37), satisfieg(z2) < 1.04 for
all z > 0. The absolute value of its error function is plotted in FigGr
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0.08
0.06

Figure 3. Error function for the filter (41).

7 Application to the mollified impulse method

We now show how the above analysis gives new insight into tbiifrad
impulse method of Garcia-Archilla, Sanz-Serna and Skedl][When ap-
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plied to Eqg. (1), their method reads

vi = vy + 5ho(h*A) g(6(h*A)y,)

Yni1 \ cos h{? Q7 sin h{2 Yn (42)
Uiy T\ —=2sin k2 cos hi2 oF
Unyl = Upyy + %th(hZA) 9(S(h*A)yntr)

with a filter function¢ that vanishes at the squares of even multiples.of
They show second-order error bounds which are independeahedre-
guencies and of the dimension of the system.

Upon eliminating the (non-averaged) velocities, the sahéd?) be-
comes

Ynt+1 — Qyn + Yn—1 = hzg(th)(_Ayn + gn) + hz(s(th) 9n (43)

wheres = ¢ — o, with ¢)(2%) = sin /2. With minor modifications, the
error analysis of Section 3 applies also to (43) and consehyut® (42).
The role of the error function is now taken by

Ssin(G+ Do, s i
enM(q, B) = 2, (a, B) — Z e P —eminly

sin o

=0

: (44)
Figure 4 shows the absolute value of this error function«{fer 50) for the
filter ¢ = +, which is a favoured choice in [3] (the long-average method)
In contrast to the situation in Section 6, it is now not pokesib construct
a filter function such that the error function (44) becomédstearily small
near(0,0).

Figure 4. Error function (44) fop(2?) = sin z/x.
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The error bounds of [3] applied to the equatidn= — Ay+eG(y—1yo),
with ¢ — 0 and an arbitrary matrixi, can be shown to imply for the
entrywise product ofsY™ = (MM (hw;, hewy)) N, with G the bound
|EMIM o || < |||, without the logarithms that we did not succeed to
eliminate in Lemma 5.

In addition to the error terms that were present also in 88@&;j there is
now an additional term in the error of the mollified impulsethoe which
results from not solving equations with a constant inhomegg exactly.
Consider the method (42) applied to a linear problem (1) wathstant in-
homogeneity . Then, the error after the first stepiis= h26(h*A)g, and
the defect in (43) isl,, = —h?5(h?A)g. By Lemma 2 and a trigonometric
identity, we thus have for the error in tle 4 1)st step

enp1 = Woer — > Wiy d; = 3h*(1 — cos(n + 1)h82) e(h*A)g

i=1

with ¢(z?) = §(2%)/(1 — cosz). For ¢ = 4 this function is bounded
in modulus byi, so that|le,4]| < £h?||g||. Interestingly, the two-step
scheme (43) with exact starting valueg (= ¢; = 0) does not give an
O(h*) error bound uniformly in the frequencies. It produces(afn/?)
error term if, for some frequenciesy;, is close to an odd multiple of.

The stability result of Theorem 2 does not extend unchangeithe
mollified impulse method (42). In fact, the analysis of 2-dimeional lin-
ear systems in [3] shows that there exists no positive cohstsuch that
IIk?B|| < ¢ implies stability without restrictions oh%A, unlessg(z?)
vanishes for all: wherey)(z22) is negative. A straightforward adaptation of
the proof of Theorem 2 shows that this latter condition onfillber func-
tion is also sufficient for the stability of (42) for equat®(B2) in arbi-
trary dimensions whenevélp (7% A)|| - ||h2B]| < 4, where nowu(z?) =
B(a?)6(2%)?/ (cos ).

Both methods (10) and (42) are obviously time-reversible.ikter-
esting property of (42) is itsymplecticnesghat is, the magdy,,, v,) —
(Yn+1, vny1) IS symplectic when the method (42) is applied to (1) with
g(y) = —VU(y) [3]. For the method (10), the one-step map is not sym-
plectic in the variablegy, v), but by comparison with the Stormer/Verlet
method it is easily verified that it is symplectic in the trimmened vari-
ables(q, p) of (35). At present it is not clear, however, what is the digni
icance of symplecticness of either method for the long-tirkaviour of
numerical solutions. There is no backward error analysid@ve which
would, for example, guarantee long-time near-consemaifaenergy, un-
less||h?A|| < 1 which is not what these methods are meant for.
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8 Numerical experiments

In this section we report on some numerical experiments wighsine-
Gordon equation

U = Ugpyp — SIN U,

which we consider for: € [—1, 1] with periodic boundary conditions.
Pseudospectral discretization in space Witkquidistant collocation points
x; yields an approximatioly (t) = (U]‘(t))é\;l with U; () ~ u(z;,t). Its
discrete Fourier transform

y(t) = FnU(1)

satisfies
y'=—Ay — Fy sin(]—'ﬁ,ly) ,
whereA = diagw?) with

_ [kr k=0,...,N/2—1
“ETVN—k)r k=N/2,... ,N—1.

We choseN = 128 and the initial positior/; (0) = = for all j, and we
considered two choices of initial velocities, correspagdio non-smooth
and smooth solutions.

In the first case we chod€ (0) as a vector of normally distributed ran-
dom numbers scaled to Euclidean nogfv. (This is reproduced by the
following Matlab 5 sequence:andn(’ state’, 0); v=randn(N, 1) ;
v=v/ norm(v)*sqrt (N).)Figure5 shows the evolution of potential and
kinetic energy in the time intervgd, 10].

In the second case we choé#(0) as a scalar multiple of0.01 +
sin(27j/N))%_,, again scaled to Euclidean norN. Potential and ki-
netic energy in the intervé), 10] are shown in Figure 6.

3 3

SAvAY,

Epol

25
2t
1.5¢

1.5¢

1t 1t

AN
0 2 2 6 8 10 % 2 2 6 8 10
Figures 5 and 6. Kinetic and potential energies for twoahitates.

0.5r




Oscillatory differential equations 23

For these two cases, Figures 7 and 8 plot the Euclidean naaets
by 1/4/N) of the error in the position& at¢ = 10 versus the step size.
(Reference values were obtained by applying the methodwssaiall step
sizes.) The methods used are the mollified impulse methddthé ‘long-
average’ filter¢(z?) = sin z/x (shown with markers), and the method
(10) with the same filter (markess) and with the filters (40) and (41) (with
markersx andx, respectively). Taking no filter at alb(= 1) in (10), which
is not shown in the figures, gave errors more than an order ghinale
larger than for the most accurate filter (40) and a more ergatior curve
in the nonsmooth example, and about the same errors as tigedlerage’
filter (+) in the smooth example.

Very similar figures were obtained also for the errors in telegities.

107 1 107¢
10 1 10
107 1 107
107 | 107
-6 -6
10 : : 10 : :
107 10" 107 10"

Figures 7 and 8. Errors versus step size.
o : mollified impulse method with long-average filter (39)
+, X, * : Gautschi-type method with filters (39), (40), (41)

In experiments with different data, we did not always obsesuch a
clear difference between the methods. For example, withalingositions
U;(0) = 1= and the same initial velocities as before, the error curifes d
fered by less than a factor 2. The filters (40) and (less sQ)y#te found
advantageous throughout.

We tested also energy conservation on the intéfval000]. We did not
observe an energy drift for the methods and step sizes amesidbove.

AcknowledgementsWe are grateful to Gerhard Wanner for helpful com-
ments on the presentation.

References

1. J. R. Angelos, C. C. Cowen, and S. K. Narayan. Triangular truncation and finding
the norm of a Hadamard multiplier. Linear Algebra Appl., 170:117-135, 1992.



24

2.

Marlis Hochbruck, Christian Lubich

V. L. Druskin and L. A. Knizhnerman. Krylov subspace approximations of eigenpairs
and matrix functions in exact and computer arithmetic. Numer. Lin. Alg. Appl.,

2:205-217, 1995.

. B. Garcia-Archilla, J. M. Sanz-Serna, and R. Skeel. Long-time-step methods for

oscillatory differential equations. Applied Mathematics and Computation Reports
1996/7, Universidad de Valladolid, 1996. To appear in SIAM J. Sci. Comput.

. B. Garcia-Archilla, J. M. Sanz-Serna, and R. Skeel. Long-time-step methods for os-

cillatory differential equations. Numerical Analysis 1997, D.F. Griffiths, D.J. Higham
and G.A. Watson eds., Addison Wesley Longman, Harlow (Essex), 111-123, 1998.

. W. Gautschi. Numerical integration of ordinary differential equations based on

trigonometric polynomials. Numer. Math., 3:381-397, 1961.

. J. Hersch. Contribution & la méthode des équations aux différences. ZAMP, 9a:129—

180, 1958.
M. Hochbruck and Ch. Lubich. On Krylov subspace approximations to the matrix
exponential operator. SIAM J. Numer. Anal., 34:1911-1925, 1997.

. M. Hochbruck, Ch. Lubich, and H. Selhofer. Exponential integrators for large systems

of differential equations. SIAM J. Sci. Comput., 19:1552—-1574, 1998.

. L. R. Petzold, L. O. Jay, and J. Yen. Numerical solution of highly oscillatory ordinary

differential equations. Acta Numerica, 7:437-483, 1997.



