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Abstract

We investigate existing and novel methods to approximate matrix functions using
subspace methods. A two-sided harmonic Ritz approach is analyzed and applied
to the extraction from a subspace for matrix functions. We derive all methods in
various ways and provide a framework to fit in the techniques.
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1 Introduction: the standard Ritz approach to approximate matrix func-
tions

In the last two decades, there is a vast interest in approximating

f(A)b, (1.1)

where A € C™*" is typically a large sparse matrix and b € C", with Krylov subspace
techniques, see, e.g., [1-3,5,6,9,10,12,19,20]. The best known instance of f, apart
from f(z) = 1/z in the linear system context, is the matrix exponential, f(z) =
exp(z), which occurs frequently in the context of the numerical solution of ordinary
differential equations, for instance for the use of exponential integrators (see, e.g., [7]).
We assume without loss of generality that ||b|| = 1, where || - || denotes the two-norm.
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The Krylov relation for V;, = Ki(A,b) = span{vy, Avy, ..., A¥ v}, where v; = b
reads
AVy, = Vi Hy, + By vpy1 €y, (1.2)

where Vi, = [vy - -+ v is a basis for V, 0y is a short-hand for hy 1y and ey, is the kth
canonical basis vector. Often, but not always, the columns of V}, form an orthonormal
basis, which we will assume in this paper unless mentioned otherwise.

By far the most common approximation for x, which we will call the Ritz approzi-
mation, is (see, e.g., [12])

F(A) b~ V, f(Hy) er. (1.3)

We will now review three different derivations of this approximation:

e using a projection onto the search space Vg;

e approximating the shifted linear systems in the Dunford-Taylor integral represen-
tation; and

e interpolating the function in certain points.

The first derivation is via the orthogonal projection V,V;* onto the subspace V:

f(A)b = FAVVEb= VRV F(A)VEVED

Secondly, (1.3) can be derived via the Dunford-Taylor integral representation of
f(A): X
F(A) b = 7/ FOVA — Ao, (1.4)
2me Jr

where I' is the boundary curve of a piecewise smooth, bounded region R containing
the spectrum of A, assuming that f is analytic in R and continuous on the closure
of R; I is the identity matrix. When we solve the shifted linear systems

(A — A)z(\) = b, (1.5)

using Krylov subspace techniques, then, because of the shift-invariancy Kp(Al —
A, b) = K(A,b) for all A, A, and b, we can solve all systems simultaneously with the
same Krylov space Vj, = Kr(A,v1). The Galerkin condition

(A~ 2x(\) € Ve, b— (A — A)ap(A) LV,

yields

2e(N) = Vi M — Hy) Ley.
Approximating z(\) = (A — A)7'b by z,(A\) in (1.4) gives (1.3), if the spectrum of
Hj, is contained in the region R bounded by I', which is for instance the case if R
contains the field of values of A.

A third point of view was added by Saad [12]. We recall the following lemma. Let
P denote the space of all polynomials of degree < k. We call (1.2) an Arnoldi-like
decomposition if dim(Vy) = k and Hj, is upper Hessenberg; in particular, the columns
of Vi do not have to be orthonormal.



Lemma 1 (see, e.g., [12]) Let A have an Arnoldi-like decomposition AVy, = Vi Hy +
Brvkiier. For all s € Pr_y we have

s(A)b = Vi s(Hg)ey.

A matrix function f(A) can always be expressed as a matrix polynomial ps 4(A),
where py 4 interpolates f in the eigenvalues (in the Hermite sense). If, in the previous
lemma, we choose s = py g, to be the interpolating polynomial of f in the Ritz values
of Hy, then we have

Vi f(Hk) er =V; pf,Hk(Hk) €1 = Pf.H, (A) b.

Therefore, the approximation (1.3) can be seen as an interpolation of f in the Ritz
values of A with respect to Vy, that is, the eigenvalues of Hj; this explains the name
Ritz approximation. (We note that in the literature, the name Lanczos or Arnoldi
approzimation is often used. However, we feel that the name Ritz approximation
is more accurate since within the Lanczos or Arnoldi method we can still choose
different extraction methods which we will investigate in this paper.)

The rest of this paper is organized as follows. In Section 2 we review and extend the
harmonic Ritz extraction for matrix functions. We examine a two-sided harmonic
extraction method in Section 3 and use this for an extraction process for matrix
functions. In Section 4 we generalize Saad’s corrected scheme for all extraction meth-
ods and Section 5 provides a unifying framework for all eight derived approximation
methods. After some remarks for the Hermitian case in Section 6, we conclude with
some numerical illustrations and concluding remarks in Sections 7 and 8.

2 Harmonic Ritz approach

An alternative approximation to (1.3) was suggested in Van den Eshof et al. [17,18]
for Hermitian matrices in the context of the sign function in a QCD application. This
approximation was based on an interpolation in the harmonic Ritz values of A in the
target 7 = 0. We will now review and generalize this extraction for non-Hermitian A
and nonzero target.

The harmonic Ritz extraction was introduced in [11] as an attempt to approximate
interior eigenvalues near a target 7 € C. In practice, a Galerkin extraction often
works favorably for exterior eigenvalues but far less favorably for eigenvalues in the
interior of the spectrum. Assuming that 7 is not an eigenvalue, this suggests to look
at the spectrally transformed eigenproblem

(A—7D) o =(0\—71)""'o (2.1)

Given a search space Vy, we look for approximate eigenpairs (6,v), v € Vi, with a
(Petrov—)Galerkin condition of the form

(A—=7D)" 0 — (0 —71)"" LU



Here, U, is a k-dimensional test space which we want to choose such that we avoid
working with the inverse of a (presumably large) matrix. This can be done by the
test space Uy = (A—71I)*(A—71I) V). The harmonic Ritz pairs with respect to target
7 and search space Vy are defined as the pairs (6, v) satisfying the (Petrov—)Galerkin
condition
(A—7tD) - @ —7) L(A-7D*(A—71D)V,4

or, equivalently,

(A—1Dv—O@—7)v L (A—7I)Vy.
We see that the harmonic Ritz pairs (6, v) are of the form 6 = £ + 7, v = V¢, where
the (&, c) are the eigenpairs of the generalized eigenproblem

Vi(A=1D)*(A—1D)Vie = V(A —71)" Ve (2.2)
Left-multiplying by ¢* and using the Cauchy—Schwarz inequality, we get [16]
(A= 7I) ]| < [¢], (2.3)

which indicates that if there is a harmonic Ritz value 6 close to 7, the corresponding
harmonic Ritz vector has a small residual and hence is an approximate eigenvector
of good quality.

Assume that V*(A — 71)*V} is invertible. Then the harmonic Ritz values are eigen-
values of the matrix

Hy,=Vi(A—=7D)*Vi) " V(A= 7D)*(A— 1)V + 71
= (VHA—=1I)'Vi) ' VEA = 71)* AV

The harmonic extraction for matrix functions is now defined as the approximation
F(A) b~ Vi f(Hy) e1. (2.4)

The idea behind this approximation is that for some functions, a particular target
may be important. For instance for the sign function, or any analytic approximation
thereof, the target 7 = 0 naturally suggests itself. This extraction can, similarly to
the Ritz extraction (1.3), be derived in three ways. First, we can use the test space
(A —71) V) to form an oblique projection

Vi VHA—7D)*V) ' VE(A - 1I)*
onto V, along ((A — 71) V})* so that
f(A b=V (VA -7 V) P V(A - 7D F(A)Vi e

~ Vi f(VE(A=7D) Vi) V(A = 7I)" AV ) e
=Vif(Hy)er.

A second way to derive the harmonic extraction for matrix functions is via the
Dunford-Taylor integral (1.4), by approximately solving the associated linear sys-



tems (1.5) by the (Petrov—)Galerkin condition
() = xK(N) € Vi, b— (AN — A)xp(N) L (A—7I)Vy.

This implies that

V(A =71 (M — AV P VE(A = 71)* Ve
(Vi(A=7D)* Vi) VE(A = 1D (M = AV ey
A = (VE(A =D Vi) VE(A =TI AV ey
(M — Hy) Ve,

7x(A)

leading to (2.4). Here we have assumed that the region R contains the harmonic Ritz
values of A with respect to target 7 and search space Vj. (Since the harmonic Ritz
values can be infinite, this is not necessarily the case.)

Finally, to interpret (2.4) as an interpolation of f in harmonic Ritz values, we have
to use the Krylov relation (1.2):

H,= V(A —=7I)*Vy) ' VE(A = 71)* AV,
=(Hy, — 1) *[(H, — 7I)*Hy, + | B3| *exe]]
= Hy, + |Be|*(Hx — TI) exe}.

The harmonic extraction in Krylov context therefore becomes
f(A)b =V f(Hi + zey) ex, 2 = |G (Hy — 7I) ey (2.5)

This approximation is mentioned for Hermitian A (and hence Hermitian tridiago-
nal Hy) and zero target 7 in [18, Equation (21)]. The following lemma is a direct
generalization of [18, Lemma 3].

Lemma 2 For all s € Pi_1 and all z € C* we have

s(A) Vier = Vi s(Hy + ze}) e
Proof: The proof by induction on monomials of the form s(\) = M uses the fact
that ej(H, —7I)’e; = 0, for j = 1,...k—1, for the upper Hessenberg matrix Hy. O

Let p 2 be the Hermite interpolation polynomial of f in the harmonic Ritz values,

the eigenvalues of Hy. From Lemma 2, with zj, = |Bk|?(Hy — 7I) *ey, we have
Vi f(Hi)ex = Vip, i (Hy)er =,z (A)b.

However, we note that we can also reach this interpolation interpretation directly from
Lemma 1, if we build up an Arnoldi-like relation (1.2) with an (A — 77)-orthonormal
basis V}, that is,

AVk = Vkﬁk -+ 7lk+17kvk+1€z, Vk*(A — T[)*Vk =1.



3 Two-sided harmonic extraction

For non-Hermitian matrices, the main disadvantage of the Arnoldi process is formed
by the long recurrences, which means that the amount of work increases per step.
Eiermann and Ernst [4] attempt to address this problem by restarting the Arnoldi
process for matrix functions.

An attractive alternative to the Arnoldi method is formed by two-sided Lanczos (see,
e.g., [21]) because of the short three-term recurrences which read

Avi, = Brvg1 + Uk + Ye—1Vk—1,
* * * *
A wy, = YWk + apwi + B Wk—1.

Here we choose v; = b, and w; can be arbitrary such that wjv, = 1; the «;, 3;, and
~; are chosen such that the v; and w; are biorthonormal. The corresponding matrix
equations are

AV, = Vil + Brvgrey,, AWy = Wily + viwgsep, WiVi = I, (3.1)

where the columns of V, and W, form biorthonormal basis for V, and W, respec-
tively. (In fact, Vj and W} may also be biorthogonal instead of biorthonormal with
some appropriate modifications.)

These relations define approximate eigentriples of the form (0, v, w) = (0, Vi.c, Wid)
by the two Galerkin conditions

AVkC —0 VkC 1 Wk, A*Wkd -0 Wkd L Vk;

implying that the two-sided Ritz values 6 and left and right two-sided primitive Ritz
vectors ¢ and d are the eigentriples of Tj:

(We note that the s are sometimes also called Petrov values.) Although we assume
that there is no breakdown, the loss of orthogonality, which typically occurs in finite
precision arithmetic, is not something which needs to be feared, see [1] and the
numerical experiments in Section 7.

In this section, we first review the two-sided Ritz approximation to matrix functions
and give a new property, and then analyze a two-sided harmonic process, which was
mentioned in [21], and apply it to the approximation of (1.1).

3.1 Two-sided Ritz

The two-sided Ritz approximation



can be derived in three different ways, similar to Section 1. The first derivation is via
the oblique projection V, W} along the test space Wit onto the subspace Vj:

f(A) b= f(A VW b= VW fF(A)VE WD
Vi f (W7 AV b = Vi f(Th) 1.

The second option is to solve all shifted linear systems (1.5) with a two-sided method
using the same Krylov search space Vi, = Ki(A,v;) and Krylov test space Wy =
Kr(A*,wy) for all systems (“shifted BiICG”), and impose a (Petrov—)Galerkin condi-
tion
z(A) = zx(N) € Vi, b— (M — A)zp(N) L W,

If the region R contains both the spectra of A and T} and we insert the resulting
z(A) = Vie A\ — T,) "t ey for (M — A)~'b into (1.4), this yields (3.2). A difference
with the Ritz approximation is that the spectrum of T} is not necessarily contained
in the field of values of A because of the oblique projection.

Finally, in the same way as Lemma 1, we can show that for all polynomials s € Py,
s(A)b = Vi s(Ty) e;.

Therefore, the approximation (3.2) can be seen as an interpolation of f in the two-
sided Ritz values, the eigenvalues of Tj.

Next, we present a generalization of Saad’s theorem [13, Th. 3.6] for two-sided Ritz
vectors. Suppose that (0,v,w) is a two-sided Ritz triple with respect to the search
spaces Vi and W, and assume that w*v # 0 such that we can scale w*v = 1. Then
there exist biorthonormal bases [v V] and [w W] for V), and W, which we can expand
to biorthonormal bases [v V' V|| and [w W W] for C". For fixed chosen bases, we
have a decomposition

r=v(wez)+VW)+ V. (W)

If the search and test space are identical (V = W) and [v V V|| = [w W W] is an
orthonormal basis, the quantities

c(v,x) = |w'zl, s(v,x) = ||[[W W_]"z|, s(V,x) == ||W]z|

are cos(v, z), sin(v, z), and sin(V, x), respectively. The projection [w W]*A[v V] of A
is of the form

00
[w WT*Alv V] = =: diag(¢, G), (3.3)

0G
where the eigenvalues of GG are exactly the two-sided Ritz values with exception of
0. We have the following generalization of Saad’s theorem, bounding s(v, z) in terms

of s(V, x).

Theorem 3 Let (0,v,w) be a two-sided Ritz triple, [v V V|| and [w W W] be



biorthonormal bases, and (A, z,y) be an eigentriple. Then

s(v,z) < s(V,x) 1+112 s(w,y) < s(W,y) 1+l22
Y — ) 527 7y — 7y 527

where

n=|[w WJ* (A= ADVL],
Y2 =W (A=A V]|,
d=sep(A, G) = omin(G — M) < g};% 16; — Al

and G is defined as in (3.3) and the 0; range over the two-sided Ritz values.

Proof: Introduce a new variable z = [2T 21 2I|T = [w W W ]*z. From Az = \z
we get

w 21 21

W+ A [U V VL] Z9 = A Z9 | s

Wji Z3 z3
which we can write as
21 21
C C
Zo | — )\ Z9 |
Cy Cs
Z3 zZ3

where C' = diag(f, G) and C; = [w W]|*AV, . Therefore we get

21

(C' =\ = —Cyz. (3.4)

22
For the right-hand side of (3.4) we have
[Crzs]| < [[fw WIH(A = ADVL| ||z

while the left-hand side of (3.4) can be bounded from below by

NN

Combining these two bounds, we have

> (G = AD)za|| = sep(A, G) || 22|

4!
ool < 2 )]

Since (s(v,z))? = ||[W W [*z||* = ||22]|* + ||23]|* and ||z3]| = s(V, z) the result now
follows. The “left” version of this theorem is proven similarly. O



The meaning of this theorem is the following. If V. “converges towards z” (i.e.,
$(Vk, z) is small), and if § stays away from zero (for this it is sufficient that 0 is a
simple two-sided Ritz value), then there exists a two-sided Ritz triple (namely, the
one with minimal associated |§ — A|) with small s(v, x) (i.e., v converges to x). Two
critical remarks: first, the s does not correspond to a sine in the non-Hermitian case;
second, the quantities ;2 are not, in contrast to the Hermitian case, bounded by
| A|| because of the oblique projections.

3.2  Two-sided harmonic Ritz

Suppose we are interested in eigenvalues of A near a target 7. Again, we consider
the transformed eigenproblem (2.1). In view of the two-sided process, we are equally
interested in the complex conjugated problem A*y = \*y, or

(A—=71)y=A—-17)""y.
We look for an approximate eigentriple
((9,1),’(1]) ~ (Aax>y)a vE Vk> w e Wka

and we would like to use an extraction process that avoids working with the inverse
of a matrix and, in addition, extracts approximations to the right and left eigenvector
simultaneously.

It turns out that this can be done in the following way. Since v € V,, and w € Wy, we
can write v = Vic and w = Wyd. The following four characterizations are equivalent:

(i) (A-1D)w—(0 -7 L ((A=7D)*)2W,,
(A—1D)7w—(0—7)7w L (A—=7I)?V.
(ii) A=1D =0 —=7)"0 L Wp=(A=7I)*Wy, 0= (A—71I)v
A-1D0—O@—7)*0 L Vi=(A—7DWV, w=(A-7I)w
(iii) (A—7DVice— (0 —7T)Vic L (A—=7I)* Wy,
(A= 7I)'Wid— (0 —7)*Wied L (A—7I) V4
(iv) Wi(A=1D)*Vie = (0—-7) Wi(A—-1)Vic,
WA =TV, = (0—7)d* Wi (A—71I)V;.

Item (iv) indicates a practical procedure: the left and right two-sided harmonic Ritz
vectors are left and right eigenvectors of one and the same projected generalized
eigenproblem. Assume that W) (A — 71)V} is invertible. We see that the two-sided
harmonic Ritz values are the eigenvalues of

Hy,:= (Wi (A—7D)Vi) " "Wi(A =712V, + 71
= (W (A —7DV,) "W (A — 1) AV,



A justification of this approach is the fact that an extract eigentriple (A, z,y) is also
a two-sided harmonic Ritz triple, as may be easily checked.

Proposition 4 Let (A, z,y) be an eigentriple of A, then it is also a two-sided har-
monic Ritz triple of A with respect to the subspaces V = span(x) and W = span(y).

The quality of the resulting harmonic Ritz vectors is important and forms the original
motivation of introducing harmonic extraction methods. If we select the two-sided
harmonic Ritz triple (6, v, w) of which the value is closest to 7, we may hope that
|0 — 7| is small. Taking absolute values on both sides of

dWEA =1 *Vic = (0 — 1) d* Wi (A — 71)Vic

we get
(A —7I)v|| 19— cos(v, (A — 71)*w)
vl cos((A—7D)v,(A—7I)*w)|’
(A —7I)*wl|| 19— cos((A—1I)v,w) ‘
|w]| cos((A—7l)v,(A—7I)*w)|

As in (2.3), we have a relation between the residual norms and the quantity [0 — 7.
This gives good hope that if there is a two-sided harmonic Ritz value 8 ~ 7, the
corresponding two-sided harmonic Ritz vectors have small residual norm and hence
are good approximate eigenvectors for an eigenvalue close to 7; unless (A —71)v and
(A — 7I)*w are almost orthogonal. However, asymptotically, that is, when v and w
converge to the left and right eigenvector, respectively, we know that both fractions
involving the cosines tend to one so this extraction is asymptotically “safe”.

If v and w are right and left two-sided harmonic Ritz vectors, and if w*v # 0, then
we can scale v and w such that w*v = 1. With biorthonormal bases [v V] and [w W]
for Vi, and W, we write

C=[wW"(A—rI?p V], B:=[wW}A-rDV] (3.6)

where we assume that B is invertible. From characterization (iv) we have that C'e; =
(0 — T)Bey, so B~'C' is of the form

*

0—1g

B™C = (3.7)

~ 9

0 G

the eigenvalues of G are exactly the two-sided harmonic Ritz values except for 6,
with 7 subtracted. Similarly, we know that C*e; = (6 — 7)*B*ey, so B~*C* is of the
form

0—71) g*
po— | (3.8)
0o G
the eigenvalues of G are the same as those of G. We have the following counterpart
of Theorem 3.

10



Theorem 5 Let (0,v,w) be a two-sided harmonic Ritz triple, [v V V|| and [w W W]
be biorthonormal bases, and (X, z,y) be an eigentriple. Then

2 2
s(v,z) < s(V, :IJ)J 1+ %HB*HQ, s(w,y) < s(W,y) J 1+ %HB“H%
2 3

where

78 = [lfw W] (A = 7I)(A = ADVL,
7= [[WL(A=7I)(A = AD V]|
(52286p<)\ - T, G) = Umin(G - <)\ - T)I> < Ien;élel'ej - )\”

d3 =sep(A — T, @) = Umin(é —(A=7)I) < g_l;% 105 — Al

B, G, and G are defined as in (3.6), (3.7), and (3.8) and the 6, range over the

two-sided harmonic Ritz values.

Proof: With the same notation as in the proof of Theorem 3 we have

w Z1 w 21
W | (A—rD2V Vi s =0 =) | W | (A—7D [ V Vi | 2
WI zZ3 WI z3

which we write in the form

21 21
C O B B

2| =A-71) 29
Cy Cs By Bs

23 Z3

where Cy = [w W]* (A —71)*V, and By = [w W]*(A — 71)V,. Then we get

21

(B7'C — (A —1)I) { =B (A= 1)B; — C})zs. (3.9)

zZ2
The right-hand side of (3.9) is bounded above by

1B (llw W (A = 71)(A = ADVL] ||
while the left-hand side of (3.9) can be bounded from below using (3.7):

06—\ * Z1 ~ ~
{ 7 ] { > (G = (A =7)1)zll = sep(A = 7,G) || 2.
0 G—A—7)| |2

11



Combining these two bounds, we have
Y3 ) o=
=2l < = 1B ([l
2

The rest of the proof is similar to that of Theorem 3. O
3.3 Application to matriz functions

The two-sided harmonic Ritz approximation for matrix function can now be defined
as

~ Vi (H) s, (3.10)
with Hj, as in (3.5). This approach has the familiar three justifications. The first is
seen by (obliquely) projecting

FAY b=V (WA =TV "WHA — 71 f(A)Vi e
~Vif(WHA = 7DV T'TWE(A = 71)AVL) ey
=Vif(Hy) er.

Secondly, one may check that (3.10) arises if we approximate the shifted linear sys-
tems (1.5) by the (Petrov—)Galerkin condition

2\ ~a(\) € Ve, b— (M — A)ap(\) L (A—7DW,

and the region R contains the eigenvalues and two-sided harmonic Ritz values. For the
third derivation, we need the two-sided Krylov relations (3.1). A simple computation
learns that

Hy= (Wi (A—1DV) 'Wi(A - 71) AV,
= (T, — 71)"Y[(T}, — 1) T}, + Bryeerer
=Ty + Biye(Ti — 7I) eges;

note in particular that Hj is a tridiagonal matrix with an extra kth column. We
invoke Lemma 2 with 2z, = By (Tp — 71 )_lek to conclude that the approximation
(3.10) interpolates f on the two-sided harmonic Ritz values. Alternatively, we use an
Arnoldi-like decomposition (1.2) with (A — 71)-biorthonormal bases:

AVy = ViHy, + Brvpsrer, AWy = WioH; + viwpgrer, Wi(A—71)Ve=1.

and directly use Lemma 1.

4 Corrected schemes

Saad [12] proposed a variant on the Ritz approximation using the “extra” available
vector vg4q in the Arnoldi-like decomposition (1.2) for the matrix exponential. We

12



will formulate this variant for general analytic f, and will show that corrected schemes
can also be given for the harmonic and two-sided Ritz approaches. The function

is analytic in the region R and we have
f(A)b = f(0)b+ Ap(A)b.

Now we can approximate ¢(A)b with any of the four techniques (Ritz, harmonic
Ritz, two-sided Ritz, two-sided harmonic Ritz) we have discussed. Let Gy be any
of the matrices Hy, Hk, Ty, or Hk for the Ritz, harmonic Ritz, two-sided Ritz, and
two-sided harmonic Ritz approximation, respectively. We may then approximate:

f(A) b= f(0) b+ AVip(Gy) e
= Vi (f(0) e1 + Gi. p(Gr) e1) + Br vrr1 €, 0(Gr) €1
= Vi f(Gr) ex + Br vis1 €, 0(Gr) eq,

We get Saad’s corrected scheme if we correct the Ritz approach (G = Hy), cf. [12,
Equation (11)], but we can also “correct” the other three methods, i.e., use the extra
available Krylov vector.

As a generalization of [12, Prop. 2.1], we can practically compute these corrected
approximations as follows. If we define

Gr 0
Go=1| " (4.1)
ﬁkez 0

then one may easily check by a Taylor series expansion then one may easily check
(e.g., by Taylor series expansion or by using the Dunford integral representation

(1.4))
G, = f(Ge) 0
Brere(Gr) f(0)

cf. [12, Eq. (13)]. Therefore, we can compute these corrected approximations by

Vi1 f(Gy) ex

We will derive these methods in the three ways mentioned in the introduction. We
consider here the corrected Ritz approximation; the other corrected approximation
can be derived in a similar way. First, in terms of the orthogonal projector Vi1V,
onto Vi4+1 we have

f(A) b= Vi Vi f(A) Vi en = Vi f (Vi AVien) e
~ Vit f (Vi A Vi 0]) er = Vi f(Hy,) e,

13



with H; as in (4.1). The inequality on the second line can be seen as an extra
approximation step.

Alternatively, we get the corrected Ritz approach when we solve the shifted linear
systems (1.5) with the Galerkin condition

b— (M —A) yrr1(N) L Vi, Y1 € Vit1,

perform an extra approximation step

Yhr1(N) = Vigr M = Vi AVien) e
~ Vit (M = Vi AV 0) 7 er = Vi (AT — Hy) Fen

and use this approximation in (1.4), assuming that the region R contains the spectra
of both A and H,,.

Finally, Saad [12] shows that this corrected Ritz approach, which approximates f(A)
by f(0)I+Ass m, (A), where s g, interpolates ¢(z) on the eigenvalues of Hy, is in fact
equivalent with interpolating f(A) in the Ritz values and the additional point zero.
This result can be generalized for the other approaches, for instance with G, = H,,
we interpolate in the harmonic Ritz values plus the point zero.

5 A unifying framework

Summarizing, a unifying framework for the extraction methods treated so far is
the following. Let Vj, contain a basis for the search space Vi and let ), be a k-
dimensional test space with basis Y. If Y*V} is invertible, then Z; := (Y;V;) 'Yy
satisfies Z; V), = I, while V,Z; is an oblique projection onto V, along Vi

The Ritz, harmonic Ritz, two-sided Ritz, and two-sided harmonic Ritz approxima-
tions can be derived by

o projecting f(A)b = F(AWViZib ~ ViZi f(AWViZib ~ Vi f (ZEAV) Z7b;
e approximating b — (A — A) xx(\) L YV, within the Dunford integral (1.4); or
e interpolating f on the eigenvalues of (Y;V;) 'Y AV,.

Note that only for the interpolation argument we need a Krylov context. Different
choices for Y}, lead to different extraction methods, see Table 1.

As we have seen in the previous section, Saad’s corrected schemes also fit within this
framework, with four small comments:

the search space is a Krylov space;

the approximation is sought in Vi, instead of Vy;

we employ an extra approximation V5,  AVi = Vi AV} 0];

the points of interpolation are the (two-sided) (harmonic) Ritz values and the point
zZero.
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Table 1
Choice of test space for different extraction methods; the search space is Vj in all cases.

Method Test space  Approximation
Ritz Vi (1.3)
Harmonic Ritz (A—71D)V (2.4)
Two-sided Ritz Wi (3.2)
Two-sided harmonic Ritz (A — 71)*Wj (3.10)

6 The Hermitian case

For Hermitian A, with real eigenvalues \; < --- < \,, we can add a different view-
point as follows, inspired by, for instance, [18]. Let s interpolate f in the nodes
01, ...,0;. For every eigenvalue \; € R we have the expression

k) (g k
fo0 -0 = g g =110

where the & € [Amin, Amax)- Let Gy, be any of the Hy (Ritz), Hy, (harmonic Ritz), Tj,
(two-sided Ritz), or Hj, (two-sided harmonic Ritz) approach. Then for any s € Py,
we have

FA)b = Vif(Gr) er = (F(A) = s(A)) b+ Vi (s(Gr) = f(GR)) ea

Since we can bound [18]

N gy < ) — seansl < max PO gy,

EEP\L)\ ] . §€[>\1 Ar ]

one strategy is to minimize ¢(A) b over all monic polynomials in Pj_;. This is done
by the so-called Ritz polynomial that satisfies

q(A)b L V.
Since the Ritz pairs (6, v) we have
(A—=01)v L Vy,
we know that the Ritz values are the zeros of this polynomial.

The harmonic Ritz extraction can be interpreted in a similar way: here we require
that
q(A)b L (A—7I) V.

Since for the harmonic Ritz pairs (6, v) satisfy

(A=00)v L (A—71I)Vy,
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the harmonic Ritz values are the zeros of this harmonic Ritz polynomial. If we define
the (indefinite) inner product [z, y|a_.; by

[1‘7 y]A—TI = ?J*(A - T])ZL',

then the harmonic Ritz approach minimizes the associated “norm” |q(A)b|la—rr-
These is a true inner product and norm only if A — 71 is positive definite, or, alter-
natively, if \y > 7.

7 Numerical examples

We give some typical numerical illustrations. In Figure 1(a) we take a random
1000 x 1000 upper triangular matrix with —999, ..., 0 as diagonal elements and com-
pute exp(A) b, where all elements of b are equal. We test the Ritz (solid), harmonic
Ritz (7 = 0, dash), two-sided Ritz (dot) and two-sided harmonic Ritz (dash-dot)
methods. The initial left vector w; for the two-sided process is random. The Ritz
extraction curve is the smoothest, while the other approaches sometimes have very
large intermediate peaks because of the oblique projections that cause (two-sided)
(harmonic) Ritz values with positive real part. These peaks do not influence the final
accuracy of the harmonic approach. We use no reorthogonalization in the two-sided
methods; the results with reorthogonalization were similar. The accuracy after 200
steps of the two-sided methods is somewhat less, but if we take the amount of work
into account, the two-sided methods, in particular the standard two-sided extraction,
are attractive.

10° 10° |

10 107

|lerror]|
||error]||

107 107

—Ritz —Ritz
- - -Harmonic - - -Harmonic
““““ 2 Ritz - Ritz corr.
JRE | et 2 Haernic ‘ ‘ JpRE - Harmonjc corr. ‘ ‘
0 50 100 150 200 0 50 100 150 200
Iterations Iterations

(a) (b)

Fig. 1. (a): Converge curves of the Ritz (solid), harmonic Ritz (dashed), two-sided Ritz
(dot) and two-sided harmonic Ritz (dash-dot) methods for f = exp and a 1000 x 1000
upper triangular matrix with eigenvalues —999,...,0. (b): The uncorrected and corrected
standard and harmonic Ritz approach for f = exp and a 1000 x 1000 diagonal matrix with
eigenvalues —1000,...,—1.

In Figure 1(b) we again take the matrix exponential of A = diag(—1000,...,—1) and

compare the Ritz and harmonic Ritz approach with their “corrected” counterparts.
We see that the corrected schemes are similar or slightly worse than the uncorrected
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ones; this corresponds to the fact that the error estimate

Brerd(Hy)er

is often not very accurate, since—in particular in the initial phase of the processes—the
Ritz values are not yet accurate approximations to the eigenvalues; cf. also [19].

In Figure 2(a) we take a 1000 x 1000 diagonal matrix with 500 equidistant eigenvalues
in [—10, —1] and 500 in [1/2,5] and the (non-analytic) function f = sign, which is
defined by taking the sign of the eigenvalues. Here, the harmonic extraction with
target 7 = 0 is more monotonic than the Ritz extraction (see [18] for a heuristic
explanation of this phenomenon). Both methods use no reorthogonalization.

10°

10°

||error||
|lerror||

10*10

| |—Ritz
- - -Harmonic

0 50 100 150 200 C
Iterations Iterations

(a) (b)

Fig. 2. (a) Convergence curves of the Ritz (solid) and harmonic Ritz (dashed) for f = sign
for a 1000 x 1000 diagonal matrix with eigenvalues between [—10,—1] and [1/2,5]. (b)
Convergence curves of the two-sided Ritz (solid) and to-sided harmonic Ritz (dashed) for
f(z) = 1/z for a 1000 x 1000 upper triangular matrix with eigenvalues between [—50, —5]
and [2,20].

We conclude with the well-known function f(z) = 1/z corresponding to a linear
system. We take for A a random upper triangular 1000 x 1000 matrix with 500
equidistant eigenvalues between [—50, —5] and 500 between [2,20]. We compare the
standard two-sided method (“BiCG”) and the harmonic two-sided method, for which
the approximation v = V¢ is determined by the Galerkin condition

r=b—AVe L A*W;

see Figure 2(b). The two-sided harmonic method has the smallest error in the ma-
jority of the iteration steps (about 60%).

8 Discussion and conclusions

In this paper, we investigated existing and novel extraction methods for matrix func-
tions. We analyzed a two-sided harmonic extraction which may also be a useful
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tool in two-sided methods as two-sided Lanczos (see, e.g., [21]) or two-sided Jacobi-
Davidson [8,15].

We have seen that the extraction from a subspace for matrix functions is relatively
well understood in the Hermitian case (see Section 6); for the non-Hermitian case
the situation is more subtle. Also in several unreported numerical experiments the
convergence of two-sided methods and of one-sided methods was roughly comparable,
also without reorthogonalization. This makes the two-sided methods attractive for
non-Hermitian matrices. The harmonic approaches may be sensible especially for
functions whose interpolation on interior eigenvalues is important. The corrected
schemes seem to be less effective in practice.

In the context of eigenvalue problems, it is frequently observed that the harmonic Ritz
vectors may be of good quality, but the harmonic Ritz values may be disappointing.
Therefore, it has been suggested to take an extra Rayleigh quotient of the harmonic
Ritz vectors as new approximate eigenvalues [14]. This is relatively cheap in the
sense that in a practical implementation it requires no extra matrix-vector products.
This gives the idea of interpolating a matrix function on the Rayleigh quotients of
harmonic Ritz vectors, but it is still an open question if this can be done efficiently
and effectively.

If the subspace is not a Krylov space we still have the projection and integral inter-
pretation, but we lose the interpolation interpretation, since this required a Krylov
relation (1.2). Indeed, from p(A)v; = Vip(Hy)e; for all polynomials with degree
< k — 1, it follows that for all j < k — 1, A’b must be in span(V},), so if the vectors
vy, ..., AF" 1y, are independent, then span(V},) must be the Krylov space Ky(A4,b).

While this paper dealt with the subspace extraction, it is not yet clear how to expand
a non-Krylov space. We leave this for future work.
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