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ON THE EXISTENCE THEOREMS OF KANTOROVICH, MIRANDA AND
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Abstract. The theorems of Kantorovich, Miranda and Borsuk all give conditions on the existence of a zero of a
nonlinear mapping. In this paper we are concerned with relations between these theorems in terms of generality in
the case that the mapping is finite-dimensional. To this purpose we formulate a generalization of Miranda’s theorem,
holding for arbitrary norms instead of just the loc-norm. As our main results we then prove that the Kantorovich
theorem reduces to a special case of this generalized Miranda theorem as well as to a special case of Borsuk's
theorem. Moreover, it turns out that, essentially, the Miranda theorems are themselves special cases of Borsuk’s
theorem.
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1. Introduction. In this paper we are concerned with two well-known classical theo-
rems, both of which guarantee the existence of a zero of a nonlinear mapping f from a norm
ball in R to R". These theorems are Kantorovich’s theorem and Borsuk’s theorem. Mi-
randa’s theorem, which we also consider, is essentially a special version of Borsuk’s theorem
in the case that the norm ball is a box, i.e. the norm is the maximum norm. Kantorovich’s
theorem and Borsuk’s theorem apparently are very different in nature: Kantorovich’s theo-
rem is motivated by the analysis of Newton'’s iteration to approximate a zero of f and it gives
an a priori criterion for the convergence of this iteration, in this manner proving that there
is a zero of f within a certain ball centered at the initial guess for Newton’s method. The
major ingredients in its hypotheses are the Lipschitz-continuity of the derivative of f in a suf-
ficiently large neighbourhood of the starting point and the assumption that the function value
at the starting point is sufficiently small. On the other hand, Borsuk’s theorem only requires
the mapping f to be continuous on the ball and to fulfill a non-colinearity condition for the
function values at all pairs of antipodal points on the boundary of the ball.

The purpose of this paper is to prove the remarkable fact that the Kantorovich theorem is
(essentially) a special case of Borsuk’s theorem in the sense that the hypotheses of the Kan-
torovich theorem imply those of Borsuk. For the case that the norm is the /.- norm this
result was essentially already obtained in [1], where it was shown that the hypotheses of Kan-
torovich’s theorem imply those of Miranda’s theorem. In the present paper we formulate a
version of Miranda’s theorem holding for arbitrary norms, which is then proven to be ‘in be-
tween’ Kantorovich and Borsuk, i.e. more general than Kantorovich’s but (essentially) more
special than Borsuk’s theorem.

Let us remark here that our results heavily rely on the finite dimension of the underlying vec-
tor space. While the Kantorovich theorem immediately extends to general Banach spaces,
Borsuk’s theorem does so only if one substantially restricts the class of mappings to be con-
sidered, for example to compact modifications of the identity or generalizations thereof.

The rest of this paper is organized as follows: In the next section we give precise formulations
of Kantorovich’s theorem, of Miranda’s theorem and of Borsuk’s theorem. In section 3 we
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formulate and prove our generalization of Miranda’s theorem for arbitrary norms. In section 4
we then come to the major result of this paper establishing the hierarchy of the theorems with
respect to generality. Some conclusions are formulated in section 5.

2. The theorems of Kantorovich, Miranda and Borsuk. We start with Kantorovich’s
theorem. It can be stated in its ‘standard’ form and in an ‘affine invariant’ form. Although
the latter is the more general one, the standard form is the one that can usually be found in
textbooks. We therefore give both versions.

Here, as in the sequel, || - || denotes some arbitrary norm in R™ and its corresponding operator
norm. The closed ball with radius p > 0, centered at z°, is

B(z%p) = {z €R" : [|lz - 2°|| < p}.

B(z°, p) and B(z°, p) denote the topological interior and boundary of B(z°, p), respec-
tively.

THEOREM 2.1. (Kantorovich, standard form [8]) Let f : D C R™ — R" be differentiable in
the open convex set D. Assume that for some point z° € D the Jacobian f'(z°) is invertible
with

1@ < 8, I (=)~ f )N < .
Let there be a Lipschitz constant & > 0 for f' such that
If'(w) = F'@)Il < & - |lu = || forall u,v € D.
Ifh=nBkr < L and B(z°,p_) C D, where

1-+v1-2h

p- = P

then f has a zero x* in B(z°, p_). Moreover; this zero is the unique zero of f in (B(z°, p_)U
B(z°, p4)) N D where py. = bﬁl;E and the Newton iterates =* with

Ml =gk — f*) ()

are well-defined, remain in B(z°, p_) and converge to z*.

The following affine invariant form of the Kantorovich theorem is a generalization of the
standard form as can be seen immediately by setting w = Sk.

THEOREM 2.2. (Kantorovich, affine invariant form [4, 5]) Let f : D C R* — R" be
differentiable in the open convex set D. Assume that for some point z° € D the Jacobian
f'(z°) is invertible with

1)~ F =)l < n.
Let there be a Lipschitz constant w > 0 for f'(z°) ™' f' such that
1£'(=%) " (f'(w) = f'())I| £ w-|lu— || forallu,v € D.

Ifh=nw < L and B(z°,p_) C D, where
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then f has a zero =* in B(z°, p_). Moreover, this zero is the unique zero of f in (B(z°, p-)U
B(2°,p1)) N D where py = m@ and the Newton iterates =* with

$k+] s .',Ck _ f:(xk)—lf(xk)

are well-defined, remain in B(z°, p_) and converge to z*.

Note that in this theorem one may leave the values of n and w unchanged after transformations
f — A- f for any non-singular matrix A € R"*™. Therefore, the theorem holds irrespective
of linear transformations whence the name ‘affine invariant form’.

Note also that w will often be much smaller than Sk. It is therefore not difficult to construct
examples where for a given differentiable mapping f and a given point z°, the main assump-
tion Bk < % of the standard theorem is not fulfilled, whereas the assumption nw < % in the
affine invariant theorem is met. In this sense, Theorem 2.2 is more general than Theorem 2. 1.
We now turn to formulate Borsuk’s theorem. Let us say that a set B C R" is symmetric with
respect to z° € R”, if forally € R* wehave2° +y€ B =2 —y € B.

Then Borsuk’s theorem can be stated as follows.

THEOREM 2.3. (Borsuk [2, 3]) Let B C R™ be open, bounded, convex and symmetric with
respect to 2° € B. Let f : B — R™ be a continuous mapping, assume that f(z) # 0 on OB
and that

2.1) f(@® +y) #Mf(z° —y) forall A > 0and all 2° + y € OB.

Then f has a zero in B.
Often, this theorem is stated in terms of the mapping h defined by h(y) = f(z° + y) on
B'=B-12"={yeR":y=z-2° z € B}. Condition (2.1) then reads

h(y) # Ah(—y) forall A > Oand ally € 8B’,

where B’ is open, bounded, convex and symmetric with respect to the origin 0 € B’'.

Very interestingly, Borsuk’s theorem is ‘naturally’ affine invariant: If f satisfies (2.1), then
A - f satisfies (2.1), too, for any non-singular matrix A € R**".

In our comparisons to the Kantorovich theorem, it will be useful to consider Borsuk’s the-
orem on balls B = B(z°,p), p > 0, with respect to a given norm || - ||. This is just an
apparent restriction, since in our finite-dimensional setting, any set B satisfying the assump-
tions of Borsuk’s theorem, Theorem 2.3, is in fact a norm ball with respect to the Minkowski
functional corresponding to B (and its center z°).

If, in addition, we do not want to exclude a zero on the boundary of B, we arrive at the
following immediate corollary to Theorem 2.3.

COROLLARY 2.4. Let f : B(z°, p) = R™ be a continuous mapping. Assume that

22) fz° +9y) # (2 —y) forall X > 0 and all 2° + y € OB(2°, p).

Then f has a zero in B(z°, p).
We finally formulate Miranda’s theorem. This theorem works with the [ -norm and looks at
components of f on the faces of an l,.-ball which is a hypercube. We write B, (z°, p) to
denote such a ball centered at z° with its faces given as

By (2% p) = {z € R" : |lz — 2°||oo = p,zi — 27 = p}

%

Biy (2°,0) = {z € R : &~ 2loo = py i — 29 = —p)



ETNA
Kent State University
etna@mcs.kent.edu

On the existence theorems of Kantorovich, Miranda and Borsuk 105

Then Miranda’s theorem can be stated as _follows.
THEOREM 2.5. (Miranda [7]) Let f : Boo (2%, p) C R* — R™ be a continuous mapping.
Assume that

)

i+ (0
>0 forallz € B (xolz) Jor i =Rycohs

(2.3) fi(z) { <0 forallz € Bi (2P,

Then f has at least one zero z* in By, (z°, p).
In [12] it is shown that Miranda’s theorem is equivalent to Brouwer’s fixed point theorem (for
lo-balls).

3. Generalization of Miranda’s Theorem. Miranda’s original theorem has been gen-
eralized in several different directions before, see e.g. [11], [14] and [6]. For any of these
generalizations, however, it has not been shown that it contains Kantorovich’s theorem as a
special case, i.e. that whenever Kantorovich’s theorem guarantees the existence of a zero then
the respective generalization would guarantee the existence of such a zero, too. Indeed, there
are examples which show that this is not always the case.

In Theorem 3.2 we present a new generalization of Miranda’s theorem which does contain
Kantorovich’s theorem: As we will show in Theorem 4.1, whenever Kantorovich’s theorem
guarantees the existence of a zero, our generalization of Miranda’s theorem does so, too.
Observe that (2.3) can be interpreted as saying that at each point z on the boundary of
B (2%, p) the image f(z) points in an ‘outside’ direction. This interpretation is the basis
for our generalization of Miranda’s theorem to balls with respect to an arbitrary norm formu-
lated as Theorem 3.2 below.
This generalization uses the concept of normal vectors. Let (-, -) denote the usual inner prod-
uct on R". We say that the vector a € R"™ is normal to the open convex set C C R" at
z € OC iff {(a,z — y) > Oforall y € C, i.e. if a is a nonzero vector normal to C at x in the
sense of [10]. By the Hahn-Banach-Theorem, there exists at least one vector normal to C' at
each z € 8C. If C is aball B(z°, p), p > 0, with respect to some norm || - || and || - ||4 its
dual norm
G.D lylla = max (z,y) = max |(z,y)|,

[lz]l=1 [lzll=1
then the vectors normal to C' at = can be characterized as follows:
LEMMA 3.1. Forany p > 0, the vector a € R" is normal to B(z°, p) at z € 8B(2°, p) iffa
is a positive multiple of some a' € R" for which

lle'lla=1 and (a', z—2z°) =p.

Proof. a is normal to B(z°, p) at z € 8B(z°, p) iff there is a A > 0 such thata € X - dyp(z),
where Jp(z) denotes the subdifferential of the convex function

1
¢ :R" 5 R,y ;Ilyvmf’ll,
see e.g. [10, Cor. 23.7.1]. We therefore show
o) = = {a' € K" : [|a/]la = 1 and (d', z — 2°) = p} .
p

To this purpose we first observe that if a € dp(z), i.e. p(y) > ¢(z) + (a, y — z) for all
y € R", then

1 1
a, Wy < =||lz—-2°+h||-1< =||h
(a, h) p!l | p[l I
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holds for all h € R™. Hence ||a||ls < (1/p) and (a, z° — z) < —1. But this implies ||a||s =
(1/p) and {a, x — 2°) = 1since 1 < (a, = — 2°) < ||a|l4|lz — 2°|| < 1. Consequently, for
a' = pa we have ||a'||g = 1 and (@', z — 2°) = p.

Conversely, if ||a’||la = 1, {a’, z — 2°) = pand a = (1/p)a’, then for any y € R" we have

1
(P(x)‘l‘(aay—ﬂ?)=1+;(a',y—x°+x°——m)

1 1,,
= B(ﬂ',y~r°) < ;I[a lally = 2°ll = o(v),

showing a € d¢(z). O

THEOREM 3.2. Let B(z°, p), p > 0, be an open ball with respect to an arbitrary norm || - ||.
Let f : B(z°, p) — R" be continuous and assume that for all z € dB(z°, p) there exists a
vector a normal to B(z°, p) at = such that

(3.2) (f(z),a) 0.

Then

a) the relation (3.2) actually holds for all vectors a normal to B(z°, p) at z,

b) f has a zero in B(z°, p).
Proof. To prove part a), we first note that [10, Cor. 23.7.1], which we already used in the proof
of Lemma 3.1, implies that it is sufficient to show that for the function ¢ : y = (1/p)|ly—2°||
we have

(f(z), a) > 0forall z € dB(z°, p) and all a € dyp(z).
Secondly, we remark that it is known (see e.g. [10, Th. 25.6]) that
d¢(z) = convS(z)

where a € S(z) iff there is a sequence z* in R™ such that for all i the convex func-
tion ¢ is differentiable in zt, i.e. dp(z') = {¢'(z?)}, and such that lim; ,o, z° = z and
lim; 00 ¢'(z*) = a.

For z € 8B(a°, p) let z* denote such a sequence. W.l.o.g. we can assume z* # z° for all
i. Due to the homogeneity of || - ||, the function ¢ is differentiable not only in z* but also in
# = 204+ (1/p(z?)) (' —2°) € OB(z°, p) with ' (%) = ¢'(z*). Hence lim;_, o, ¢' (%) = a
and obviously also lim; ,o, Z° = z. At &' every vector normal to B(z?, p) is a positive
multiple of ¢’ (%%), so by assumption we have (f(%') , ¢'(#')) > 0 and since f is continuous
in z we can conclude (f(z), a) > 0. We therefore have (f(z), a) > 0 foralla € S(z), and
since (-, -) is linear and continuous in its second argument we even have (f(z), a) > 0 for
all @ € conv S(z).

Part b) is now easily proved via Borsuk’s theorem. Let £ > 0 and take

fe(2) = f(2) + (2 - 2°).

By a) we know that (f(z),a) > 0 for all vectors a normal to B(z°,p) at z, and thus
(fe(x),a) > 0 for all such a. By Corollary 2.4 and Lemma 3.3 below the mapping f.
has a zero in B(z, p). So any limit point of the sequence of these zeros for e = %, n € Nis
azeroof f.00

The proof above makes use of the following auxiliary result which we will need again in
section 4.

LEMMA 3.3. Let B(z°,p), p > 0, be an open ball with respect to an arbitrary norm || - ||.
Let f : B(z° p) — R" be continuous and assume that for all z € 8B(z°, p) and for all
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vectors a normal to B(z°, p) at x we have

(f(z),a) >0.
Then for all z = z° + y € 8B(z°, p) and for all X > 0 we have

FE@®+y) #Af(=-y).

Proof. If a is normal to B(z°, p) at z = z° + y, its negative —a is normal to B(z?, p) at
2% — y. So, if we had f(z° + y) = Af(2° — y) for some A > 0, we would arrive at

0 <(f(z°+y),a) = (M(z° —y),a) = =X f(z° - 9), —a),

which is impossible since { f(z° — y),—a) > 0.0

Just in passing, let us note that Theorem 3.2 remains valid if we replace B(z?, p) by an
arbitrary non-empty open bounded convex set. Part a) can then be proved by replacing ¢(x)
by p(z — z°) where z° is an arbitrary point of C' and p is the Minkowski functional of
C — z°. A proof for b) can easily be derived from the following proposition, which is just
the application of the Leray-Schauder-Theorem [8, 6.3.3] to the mapping g with g(z) =
z— f(a*+1x),z€C—2°.

PROPOSITION 3.4. Let C be a non-empty open bounded subset of R and f : C — R" a
continuous mapping. Assume that there is an ° € C such that for all x € C

fz) g€ {\M(z-2°):2<0}.
Then f has a zero in C.

4. The hierarchy with respect to generality. In this section we prove our central re-
sults. We show that the Kantorovich theorem for an arbitrary norm is a special case of the
generalized Miranda theorem, Theorem 3.2. In addition we show that the Kantorovich the-
orem for an arbitrary norm is also a special case of Borsuk’s theorem. This hierarchy is
illustrated in Figure 1.

We will use the numbers p_, p; which have been defined in Theorem 2.2.
THEOREM 4.1. Let f satisfy all assumptions of the affine invariant form of the Kantorovich
theorem (Theorem 2.2). Put

g:Da R,z f'(z%)7 f(2)

and consider any positive p € [p—, p+] such that B(z°, p) C D. Then for all z € 8B(z°, p)
and for all normals a to B(z°, p) at = we have

4.1) (9(z) , a) 20,

which is the hypothesis of the generalized Miranda theorem (Theorem 3.2) for the mapping g
and the ball B(z°, p) .

Proof. Let z € OB(z°, p) and a a normal to B(z?, p) at z. Because of Lemma 3.1, we can
assume ||al|s = 1 and {a, z — 2°) = p. We first prove

w
42) [(9(2) - 9(c°), a) = p| < 5P*.
In order to do so, we define the continuously differentiable function ¢ : [0,1] = R as

o(t) = (g(z° + t(z — 2°)) — tg'(z°)(z - 2°) , @) .
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The hypotheses of Kantorovich’s theorem
(Theorem 2.2)

Theorem 4.1

Y

The hypotheses of
Miranda’s theorem Theorem 4.3
(Theorem 3.2)

Lemma 3.3

Y Y

The hypotheses of Borsuk’s theorem
(Corollary 2.4)

FIG. 4.1, The hierarchy with respect to generality

Then

¢'t) = (=" +t(z - 2") - ¢'(2")) (z - 2°), a)

ﬂlﬂﬂa|

1
s£|wmwt

and

lp(1) - ¢(0)] =

= /0 1{ (¢'(a® + t(z — 2°)) — ¢'(z")) (z — 2°), a)| dt
< [ (6@ +tla - %) - ) (e = 2] - llaat
< [ g+ tla = a) = /@)l o~ 2"l

1
5] w-t- ||z — 2°|dt
0

=5 le-=2
_*.a

0”2

On the other hand

o(1) — ¢(0) = {g(z) — ¢'(2°)(z — 2°), a) — (g(2°), a)
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and g'(z°) = id as well as (z — 2°, a) = p, which shows (4.2).
(From (4.2) we conclude

(9(z),a)> —%pz +p+(g(z",a)

w
> =" +p =g - llall,
w
= =50+ llg(=°)l
w >0 ifpep-,py]
>=—=p*+p- -
Z =P tp "{ >0 ifp€(p-,p4)

0

In the proof of Theorem 4.1 we have actually shown that (4.1) holds with strict inequality as
soon as p € (p—, p+). Using Lemma 3.3 we thus arrive at the following result.

THEOREM 4.2. Let f satisfy all assumptions of the affine invariant form of the Kantorovich
theorem. Then f satisfies (2.2) for all balls B(z°, p) C D with p € (p_, p4).

Proof. The discussion above already showed that g = f'(z°)~!f satisfies (2.2). But (2.2)
remains invariant under affine transformations, so f satisfies (2.2), too. [

Of course, it would be more satisfying if in the above theorem one could take the closed
interval [p_, p4] for p instead of just the open interval. As we will show now, this is indeed
so, as soon as ) > 0, i.e. if f(z°) # 0. This result is proved in our final theorem, where we
have to go a direct way without using the generalized Miranda Theorem.

THEOREM 4.3. Let f satisfy all assumptions of the affine invariant form of the Kantorovich
theorem (Theorem 2.2) and exclude the case n = 0. Then f satisfies (2.2) forall p € [p_, p+]
such that B(zq, p) C D.

Proof. We will show that (2.2) holds for g = f'(z%)~1 f. It then also holds for f. To start, let
2% +y € dB(z°, p) and assume that (2.2) does not hold, i.e. we have X € (0, o) such that

(4.3) 9(z° +y) = Ag(z° — ).

Replacing, if necessary, y by —y, we can even assume A > 1. Let a be an arbitrary vector to
be specified later, and set

o(t) = (g(z° + ty) — tg'(z")y, a).
Then
o'(t)=((g'(=" +ty) —g'(z")) v, a)

and, since ¢'(z°) = id, we have

fo ((¢'(@®+ty) —g'(z%)y,a)dt

@(1) —»(0)
(9(z°+y) - g'(z°)y,a) - (9(z°), a)
(9(z°+y),a) - (y,a)—(g(z°), a),

which gives

(4.4) (g(:v°+y),a)=(y,a)+(9($"),a)+£ ((¢'(@® +ty) — g'(a)) y, a) dt,
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and, similarly for —y instead of y

(45) <9(I0 _y) ’ a) = _(yu a)+(g(IU) ) a>_[[) ( (gi'(x() = ty) o gJ(ID)] v, a) dt.
By (4.3) we have

(9(z° +y), a) = Mg(z® - ), a),
which, using (4.4) and (4.5) and after rearranging terms gives

1
1+M)(y,a) = (A -1)(9(z°), a) —/0 ((g'=°+ty) —g'(°)) y, a) at

(4.6) - /\/U ((9'(z° —ty) — 9'(z°)) y, a) dt.

Now take a such that ||a||¢ = 1and (y, a) = ||y||. Such a exists, since (R", || -||) is identical
to its bidual, i.e.
Yllaa = llyll = max (a,y).
llalla=1
In exactly the same manner as in the proof of Theorem 4.1, bounding the terms on the right
hand side of (4.6), we get

w w
L+ Vlyll < A= DllgE)l + 5 - lyll* + A llyll®
where ||y|| = p and ||g(z°|| < 1. We therefore have
(1+0p < A= D+ (1+ 1350
or
o _
(1+2X) (29 p+n) 2n > 0.

But this is impossible, because for p € [p_, p_] the first summand is non-positive and > 0.
Therefore, (4.3) does not hold, and since z° + y was chosen to be an arbitrary point from
OB(z°, p) we have shown that g satisfies (2.2). 0

As was suggested by an anonymous referee, there is another well-known theorem on the exis-
tence of zeros which adds an additional stage to the hierarchy presented so far. This theorem
is Smale’s theorem [13], which in the finite-dimensional case may be stated as follows:
THEOREM 4.4, Let f : R® — R™ be analytic in R® and for z° € R" let

1/(k=1)
B, ) = |£'@) 6], 2@ f) = max | (") R &)
Then, if B(z°, f)v(z°, f) < ao, where ay is an invariant, approximately equal to 0.130707,
the iterates of Newton’s method starting with z° converge to a zero z* of f.
This result is interesting because it proves convergence of Newton’s method from information
at just one point z°.
As was already mentioned in [13], this result is in fact a special case of the affine invariant
version of the Newton-Kantorovich theorem (Theorem 2.2), meaning that the hypotheses of
Theorem 4.4 imply those of Theorem 2.2. As was shown by Rheinboldt [9], Theorem 4.4
may be generalized to a local version where f is assumed to be analytic only on some open
subset of R™. The proof of that result shows that, again, we are in the presence of a special
case of the Newton-Kantorovich theorem.
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5. Conclusions. In this paper we have established a hierarchy with respect to generality

between Kantorovich’s theorem (which contains Smale’s theorem), Miranda’s theorem and
its generalization and Borsuk’s theorem. This hierarchy is meant only with respect to the
existence of a zero. While the Kantorovich theorem also guarantees the uniqueness of the
zero (and the convergence of Newton’s method), the other theorems only partly address this
aspect: they actually guarantee that the topological degree of the mapping is odd, see [3].
We have proven two major results. The first (Theorem 4.1) shows that if Kantorovich’s theo-
rem (Theorem 2.2) guarantees the existence of a zero of f in a ball B(z%p),p >0, p- <
p < p4 with B(z°, p) C D, then the generalized Miranda theorem (Theorem 3.2), applied
to f'(z°)~!f also guarantees the existence of a zero in the same ball. In this sense, the
generalized Miranda theorem is the more general theorem. Our second major result, The-
orem 4.3, establishes a similar relationship between Kantorovich’s theorem and Borsuk’s
theorem. Here, we can even use the same mapping f in both theorems, i.e. the transition
to f'(z°)~! f is not necessary. On the other hand, we have to restrict ourselves to the case
n > 0,ie. f(z°) # 0. If f(2°) = 0, Theorem 4.2 shows that f still satisfies the hypothesis
of Borsuk’s theorem for all p € (0, p+) (note that p— = 0 for 5 = 0). Hence, the only situa-
tion where we did not establish the connection between Kantorovich and Borsuk is when we
simultaneously have = 0 and p = p.. The following example shows that then there indeed
need not be such a connection.
EXAMPLE 1. Let f : R — R, f(z) = z(1 — |z|). Then f'(z) = 1 — 2|z|. Take
z° = 0 so that f(z°) = 0, f'(z°) = 1, and take n = 0,w = 2 in Kantorovich’s theorem
which thus gives p_ = 0, p; = 1. Therefore, the Kantorovich theorem guarantees that
20 is the unique zero of f in (—1,1). But Borsuk’s theorem cannot be applied to the ball
[-1,1], since f(~=1) = f(1) = 0, i.e. we have f(z) = Af(—=z) forall A > 0 and all
z € d(-1,1)={-1,1}.
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