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Abstract. Tbe theorems of Kantorovich, Miranda and Borsuk all give conditions on the existence of a zero of a
nonIinear mapping. In this paper we are concerned with relations between these theorems in terms of generality in
the case that the mapping is finite-dimensional. To this purpose we formulate a generalization of Miranda's theorem,
holding for arbitrary norms instead of just the 100-norm. As our main results we then prove that the Kantorovich
theorem reduces to a special case of this generalized Miranda theorem as weil as to a special case of Borsuk's
theorem. Moreover, it turns out that, essentially, the Miranda theorems are themselves special cases of Borsuk's
theorem.
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1. Introduction. In this paper we are concemed with two well-known classical theo-
rems, both of which guarantee the existence of a zero of a nonlinear mapping f from a norm
ball in ]Rnto ]Rn. These theorems are Kantorovich's theorem and Borsuk's theorem. Mi-
randa's theorem, which we also consider, is essentially a special version of Borsuk's theorem
in the case that the norm ball is a box, i.e, the norm is the maximum norm. Kantorovich's
theorem and Borsuk's theorem apparently are very different in nature: Kantorovich's theo-
rem is motivated by the analysis ofNewton's iteration to approximate a zero of fand it gives
an apriori criterion for the convergence of this iteration, in this manner proving that there
is a zero of f within a certain ball centered at the initial guess for Newton's method. The
major ingredients in its hypotheses are the Lipschitz-continuityof the derivative of f in a suf-
ficiently large neighbourhood of the starting point and the assumption that the function value
at the starting point is sufficiently small. On the other hand, Borsuk's theorem only requires
the mapping f to be continuous on the ball and to fulfill a non-colinearity condition for the
function values at all pairs of antipodal points on the boundary of the ball.
The purpose of this paper is to prove the remarkable fact that the Kantorovich theorem is
(essentially) a special case of Borsuk's theorem in the sense that the hypotheses of the Kan-
torovich theorem imply those of Borsuk. For the case that the norm is the Zoo-norm this
result was essentially already obtained in [1], where it was shown that the hypotheses of Kan-
torovich's theorem imply those of Miranda's theorem. In the present paper we formulate a
version of Miranda's theorem holding for arbitrary norms, which is then proven to be 'in be-
tween' Kantorovich and Borsuk, i.e. more general than Kantorovich's but (essentially) more
special than Borsuk's theorem.
Let us remark here that our results heavily rely on the finite dimension of the underlying vec-
tor space. While the Kantorovich theorem immediately extends to general Banach spaces,
Borsuk's theorem does so only if one substantially restricts the class of mappings to be con-
sidered, for example to compact modificationsof the identity or generalizations thereof.
The rest of this paper is organized as follows: In the next section we give precise formulations
of Kantorovich's theorem, of Miranda's theorem and of Borsuk's theorem. In section 3 we
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formulate and prove our generalization ofMiranda's theorem for arbitrary norms. In section 4
we then come to the major result of this paper establishing the hierarchy of the theorems with
respect to generality. Some conclusions are formulated in seetion 5.

2. The theorems of Kantorovich, Miranda and Borsuk. We start with Kantorovich's
theorem. It can be stated in its 'standard' form and in an 'affine invariant' form. Although
the latter is the more general one, the standard form is the one that can usually be found in
textbooks. We therefore give both versions.
Here, as in the sequel, 11.11denotes some arbitrary norm in JRnand its corresponding operator
norm. The closed ball with radius p 2: 0, centered at Xo, is

B(xo,p) = {x E JRn: Ilx - x011 ~ p}.

B (XO , p) and 8B (XO, p) denote the topological interior and boundary of B (xO, p), respec-
tively.
THEOREM2.1. (Kantorovich, standardform [8]) Let f : D ~ JRn-+ JRnbe differentiable in
the open convex set D. Assume thatfor some point xO E D the Jacobian l' (xO) is invertible
with

111'(XO)-ll1 ~ ß, 111'(xO)-lf(xo)1I ~ TJ.

Let there be a Lipschitz constant", > 0for l' such that

111'(u) - 1'(v)11 ~ '" 'lIu - vllforall u, v E D.

If h = TJß'"~ ~ and B(xO, p-) ~ D, where

p- = 1 - vI - 2h
ß'"

then f has a zero x* in B(xO, p-). Moreover,this zero is the uniquezero off in (B(xO, p-) U
B(xO, p+)) nD where p+ = 1+~ and the Newton iterates xk with

Xk+1 = xk - 1'(xk)-l f(xk)

are well-defined, remain in B(xO, p-) and converge to x*.
The following affine invariant form of the Kantorovich theorem is a generalization of the
standard form as can be seen immediately by setting I.V= ß"'.
THEOREM2.2. (Kantorovich, affine invariantform [4,5]) Let f : D ~ JRn -+ JRnbe
differentiable in the open convex set D. Assume thatfor some point xO E D the Jacobian
l' (xO) is invertible with

IIf'(xO)-l f(xO)11~ TJ.

Let there be a Lipschitz constant I.V> 0for l' (XO)-1 l' such that

111'(XO)-l(1' (u) - 1'(v))11 ~ I.V. lIu - vllfor all u, v E D.

If h = TJI.V~ ~ and B(xO, p-) ~ D, where

p- = 1 - vI - 2hI.V
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then f has a zero x* in B(xO, p-). Moreover,this zero is the unique zero of f in (B(xO, p-)U

B(xO, p+)) nD where p+ = HV1=2h and the Newton iterates xk with

Xk+l = xk - f'(xk)-l f(xk)

are well-defined, remain in B (xO, p-) and eonvergeto x*.
Note that in this theorem one may leave the values of'Tland IJ)unchanged after transformations
f -t A . f for any non-singular matrix A E ]Rnxn. Therefore, the theorem holds irrespective
of linear transformations whence the name 'affine invariant form'.

Note also that IJ)will often be much smaller than ßK. It is therefore not difficult to construct

examples where for a given differentiable mapping fand a given point xO, the main assump-

tion 'Tlß/'i,:S ~ ofthe standard theorem is not fulfilled, whereas the assumption 'Tl1J):S ~ in the
affine invariant theorem is met. In this sense, Theorem 2.2 is more general than Theorem 2.1.
We now turn to formulate Borsuk's theorem. Let us say that a set B ~ ]Rn is symmetrie with
respect to xO E ]Rn, if for all y E ]Rn we have XO + Y E B :::} xO - Y E B.
Then Borsuk's theorem can be stated as folIows.

THEOREM 2.3. (Borsuk [2,3]) Let B ~ ]Rn be open, bounded, eonvex and symmetrie with
respeet to XO E B. Let f : B -t ]Rn be a eontinuous mapping, assume that f(x) :f. 0 on oB
and that

(2.1) f(xO + y) :f. ).f(xO - y)forall)' > 0 and all XO+ Y E oB.

Then f has a zero in B.
Often, this theorem is stated in terms of the mapping h defined by h(y) = f(xO + y) on
B' = B - XO = {y E ]Rn : y = X - xO, xE B}. Condition (2.1) then reads

h(y) :f. )'h( -y) for all ). > 0 and all y E oB',

where B' is open, bounded, convex and symmetrie with respect to the origin 0 E B'.
Very interestingly, Borsuk's theorem is 'naturally' affine invariant: If f satisfies (2.1), then
A. f satisfies (2.1), too, for any non-singular matrix A E ]Rnxn.
In our comparisons to the Kantorovich theorem, it will be usefu1to consider Borsuk's the-
orem on balls B = B(xO,p), p > 0, with respectto a givennorm 11 . 11. This is just an
apparent restrietion, since in our finite-dimensionalsetting, any set B satisfying the assump-
tions of Borsuk's theorem, Theorem 2.3, is in fact a norm ball with respect to the Minkowski
functional corresponding to B (and its center xO).
If, in addition, we do not want to exclude a zero on the boundary of B, we arrive at the
following immediate corollary to Theorem 2.3.
COROLLARY2.4. Let f : B(xO, p) -t ]Rnbe a eontinuousmapping. Assume that

(2.2) f(xO + y) :f. ).f(xo - y)forall)' > 0 andallxO + y E oB(xo,p).

Then f has a zero in B(xO, p).
We finally formulate Miranda's theorem. This theorem works with the Zoo-normand looks at
components of f on the faces of an Zoo-ballwhich is a hypercube. We write Boo(xO,p) to
denote such a ball centered at xOwith its faces given as

B~+(xO,p) = {x E ]Rn : IIx - xOlloo = P,Xi - x? = p}
B~-(xO,p) = {x E]Rn: IIx- xOlloo= P,Xi - x? = -p}
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Then Miranda's theorem can be stated as follows.

THEOREM 2.5. (Miranda [7]) Let f : Bco(xO, p) ~ ]Rn -+ ]Rn be a continuous mapping.
Assume that

. X
{

~ 0 forallx E B~+(xO,p)
f.() ::; 0 for all x E B"c;;,-(xO,p)

Then f has at least one zero x* in Bco(xO, p).
In [12] it is shown that Miranda's theorem is equivalent to Brouwer's fixed point theorem (for
lco-balls).

(2.3) fori = 1,... ,n.

3. Generalization of Miranda's Theorem. Miranda's original theorem has been gen-
eralized in several different directions before, see e.g. [11], [14] and [6]. For any of these
generalizations, however, it has not been shown that it contains Kantorovich's theorem as a
special case, i.e. that whenever Kantorovich's theorem guarantees the existence of a zero then
the respective generalization would guarantee the existence of such a zero, too. Indeed, there
are examples which show that this is not always the case.
In Theorem 3.2 we present a new generalization of Miranda's theorem which does contain
Kantorovich's theorem: As we will show in Theorem 4.1, whenever Kantorovich's theorem
guarantees the existence of a zero, our generalizationof Miranda's theorem does so, too.
Observe that (2.3) can be interpreted as saying that at each point x on the boundary of
Bco(xO,p) the image f(x) points in an 'outside' direction. This interpretation is the basis
for our generalization ofMiranda's theorem to balls with respect to an arbitrary norm formu-
lated as Theorem 3.2 below.
This generalization uses the concept of normal vectors. Let (', .) denote the usual inner prod-
uct on ]Rn. We say that the vector a E ]Rnis normal to the open convex set e ~ ]Rn at
X E oe iff (a, x - y) > 0 for all y E e, i.e. if ais a nonzero vector normal to e at x in the
sense of [10]. By the Hahn-Banach- Theorem, there exists at least one vector normal to e at
eachx E oe.If eis a ball B(xO,p), p > 0, withrespectto somenorm 11 . 11 and 11 . IId its
dual norm

lIylld = 1~~l(x,y) = 1j;j~ll(x,Y)I,
then the vectors normal to e at x can be characterized as follows:

LEMMA3.1. For any p > 0, the vector a E ]Rnis normal to B(xO, p) at x E oB(xO, p) iff a
is a positive multiple of same a' E ]Rnfor which

(3.1)

lIa'lId = 1 and (a', x - xO)= p.

Proof. ais normal to B(xO, p) at x E oB(xO, p) iffthere is a A > 0 such that a E A . ocp(x),
where ocp(x) denotes the subdifferentialof the convex function

1
cp: ]Rn-+ JR,y I-t -lly - xOIl,

p

see e.g. [10, Cor. 23.7.1]. We therefore show

1
ocp(x) = - {a' E]Rn : lIa'lId = 1 and (a', x - xO) = p}.P

To this purpose we first observe that if a E ocp(x), i.e. cp(y) ~ cp(x) + (a, y - x) for all
y E ]Rn, then

1 1
(a, h) ::;-llx - xO+ hll- 1::; -llhllp p
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holds for an hE ]Rn.Hence lIalld:::; (1/ p) and (a, xO - x) :::;-1. But this implies lIalld =
(1/ p) and (a, x - xO) = 1 since 1:::; (a, X - XO):::;lIalldllx- x011:::;1. Consequently, for
a' = pa we have lIa'lId = 1 and (a' , x - XO)= p.
Conversely,if lIa'lId = 1, (a' , x - xO)= p anda = (1/p)a', thenfor anyy E ]Rnwehave

1
<p(x)+ (a, y - x) = 1 + -(a' , y - xO+ xO- x)

P
1 1

= -(a' , y - XO) :::;-lla'lldlly - x011= <p(y),
p p

showing a E o<p(x). 0
THEOREM3.2. Let B(xO, p), p > 0, be an open ball with respect to an arbitrary nonn 11.11.

Let I : B(xO, p) -t ]Rnbe continuous and assume thatJor all x E oB(xO, p) there exists a
vector a nonnal to B (xO , p) at x such that

(3.2) (f(x), a} 2::o.

Then

a) the relation (3.2) actually holdsJor an vectors a nonnal to B(xO, p) at x,
b) I has a zero in B(xO, p).

Proof To prove part a), we firstnote that [10, Cor.23.7.1], which we already used in the proof
ofLemma 3.1, implies thatit is sufficientto show that forthefunction <p: y t-t (1/ p)lIy-xOIl
we have

(f(x), a) 2::0 for an xE oB(xo, p) and an a E oep(x).

Secondly, we remark that it is known (see e.g. [10,Tb. 25.6]) that

o<p(x) = convS(x)

where a E Sex) iff there is a sequence Xi in ]Rn such that for all i the convex func-
tion<p is differentiable in xi, i.e. Oep(Xi) = {<p'(Xi)}, and such that limi-too xi = x and
limi-too <p'(xi) = a.
Forx E oB(xO,p) let xi denotesucha sequence.W.l.o.g.we can assumeXi =IxO for an
i. Dueto the homogeneityof 11 . 11, thefunctionepis differentiablenotonlyin xi butalsoin
xi = xO+(l/<p(xi))(xi-xO) E oB(xO,p) with<p'(xi) = <p'(xi). Hencelimi-too <p'(xi) = a
and obviously also limi-too xi = x. At xi every vector normal to B (XO, p) is a positive
multiple of <p'(xi), so by assumption we have (f(xi) , ep'(xi)} 2::0 and since I is continuous
in x we can conc1ude (f(x) , a) 2::O.We therefore have (f(x) , a) 2::0 for an a E Sex), and
since (.,.) is linear and continuous in its second argument we even have (f(x) , a) 2::0 for
an a E conv Sex).
Part b) is now easily proved via Borsuk's theorem. Let e:> 0 and take

I.(x) =I(x) +e:(x- XO).

By a) we know that (f(x), a} 2:: 0 for an vectors anormal to B(xO, p) at x, and thus
(f.(x),a) > 0 for an such a. By Corollary 2.4 and Lemma 3.3 below the mapping I.
has a zero in B (XO, p). So any limit point of the sequence of these zeros for e:= ~, n E N is
a zero of f. 0

The proof above makes use of the fonowing auxiliary result which we will need again in
section 4.

LEMMA3.3. Let B(xO, p), p > 0, be an open ball with respect to an arbitrary nonn 11 . 11.

Let I : B (XO, p) -t ]Rn be continuous and assume that Jor all x E oB (xO, p) and Jor all
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vectors anormal to B(xO, p) at x we have

(f(x),a) > O.

Thenfor all x = XO + Y E öB(xO, p) andfor all A > 0 we have

f(xo + y) i- Af(xO - y) .

Proof If ais normalto B(xO,p) at x = xO+ y, its negative-a is normalto B(xO,p) at
xO - y. So, ifwe had f(xO + y) =Af(xO - y) for some A > 0, we would arrive at

0< (f(xO + y), a) = (Af(xo - y), a) = -A(f(XO - y), -a) ,

which is impossible since (f(xO - y), -a) > 0.0
Just in passing, let us note that Theorem 3.2 remains valid if we replace B(xO, p) by an
arbitrary non-empty open bounded convex set. Part a) can then be proved by replacing <p(x)
by p(x - XO) where xO is an arbitrary point of e and p is the Minkowski functional of
e - xO. A proof for b) can easily be derived from the following proposition, which is just
the application of the Leray-Schauder-Theorem [8, 6.3.3] to the mapping 9 with g(x) =
x - f(xO + x), x E e - xO.
PROPOSITION3.4. Let e be a non-empty open bounded subset ofJRn and f : e ~ JRna
continuous mapping. Assurnethat there is an XOE e suchthatfor all x E öe

f(x) cf.P(x - xO) : A < O}.

Then f has a zero in e.

4. The hierarchy with respect to generality. In this seetion we prove our central re-
sults. We show that the Kantorovich theorem for an arbitrary norm is a special case of the
generalized Miranda theorem, Theorem 3.2. In addition we show that the Kantorovich the-
orem for an arbitrary norm is also a special case of Borsuk's theorem. This hierarchy is
illustrated in Figure 1.
We will use the numbers p-, p+ which have been defined in Theorem 2.2.
THEOREM4.1. Let f satisfy all assumptions of the affine invariantform of the Kantorovich
theorem (Theorem 2.2). Put

9 : D ~ JRn, X ~ !,(XO)-l f(x)

and considerany positive pE [p-, p+] such that B(xO,p) ~ D. Thenfor all xE öB(xO, p)
and for all normals a to B (XO, p) at x we have

(4.1) (g(x) , a) ~ 0,

which is the hypo thesis ofthe generalized Miranda theorem (Theorem 3.2)for the mapping 9

and the ball B(xO, p) .
Proof Let x E öB(xO, p) and a anormal to B(xO, p) at x. Because of Lemma 3.1, we can
assurne Ilalld = 1 and (a, x - XO) = p. We first prove

(4.2)
CA)

I(g(x) - g(xo), a) - pi::;2/2.

In order to do so, we define the continuously differentiable function <p: [0, 1] ~ JRas

<p(t) = (g(xO+ t(x - xO))- tg'(XO)(x- XO),a) .



1O8

Then

and

ETNA
Kent State University

etna@mcs.kent.edu

Götz Alefeld, Andreas Frommer, Gerhard Heindl, and Jan Mayer

3

FIG. 4.1. The hierarchy with respect to generality

tp'(t) = ((g'(XO + t(x - XO))- g'(XO)) (x - xO), a)

Itp(1) - tp(O)I = 111 tp'(t)dt!

~ l1Itp'(t)1 dt

= 111( (g'(XO+ t(x - xO))- g'(XO))(x - xO), a)1 dt

~ 11 11(g' (xO+ t(x - XO))- g' (xO)) (x - xO)11 . Ilallddt

~ 1111g'(xO+ t(x - XO))- g'(xO)II'llx - x011dt

~ 11 w . t .llx - XOll2dt
w

= - . Ilx - xOW2
w

- _p2- 2 .

On the other hand

tp(l) - tp(O)= (g(x) - g'(xO)(x - xO), a) - (g(xO), a)

The hypotheses of Kantorovich's theorem
(Theorem 2.2)

Theorem 4.1

The hypotheses of
Miranda's theorem Theorem 4.

(Theorem 3.2)

Lemma 3.3

The hypotheses of Borsuk's theorem
(Corollary 2.4)
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and g'(XO) = id asweH as (x - XO, a) = p, which shows(4.2).
l,From (4.2) we conclude

(g(x) ,a) 2 -ip2 + P+ (g(xO),a)

2 -ip2 + p -lIg(xO)II'lIalld

= _~p2 + p -lIg(xo)112

> - ~ 2+ - { 2 0 if P E [p-, p+]
- 2P pT}> 0 if p E (p-, p+)

0

In theproof ofTheorem4.1 wehaveactuallyshownthat(4.1)holdswithstrictinequalityas
soon aspE (p-, p+). Using Lemma 3.3 we thus arrive at the foHowingresult.
THEOREM4.2. Let f satisfy all assumptions ofthe affine invariantform ofthe Kantorovich
theorem. Then j satisfies (2.2)for all balls B(xO, p) ~ D with pE (p-, p+).
Proof. The discussion above already showed that g = f'(xO)-l j satisfies (2.2). But (2.2)
remains invariant under affine transformations, so f satisfies (2.2), too. 0
Of course, it would be more satisfying if in the above theorem one could take the closed
interval[p-, p+] for p insteadofjust the openinterval.As wewillshownow,this is indeed
so, as soonasT}> 0,i.e. if f(xO) :f.O.Thisresultisprovedin our finaltheorem,wherewe
haveto go a directwaywithoutusingthe generalizedMirandaTheorem.
THEOREM4.3. Let f satisfy all assumptions ofthe affine invariantform ofthe Kantorovich
theorem (Theorem 2.2) and exclude the case T}= O. Then j satisfies (2.2)for all pE [p-, p+]
such that B(xo, p) ~ D.
Proof. We will show that (2.2) holds for g = f'(XO)-l f. It then also holds for j. To start, let
xO + y E 8B(xO, p) and assume that (2.2) does not hold, i.e. we have >.E (0,00) such that

(4.3) g(XO + y) = >.g(XO- y).

Replacing, if necessary, y by -y, we can even assume >.2 1. Let a be an arbitrary vector to
be specifiedlater,andset

tp(t) = (g(xO + ty) - tg'(xO)y, a).
Then

tp'(t) = ( (g'(xO+ ty) - g'(xO))y, a)

and, since g'(XO) = id, we have

11( (g'(xO+ ty) - g'(xO))y, a) dt
= tp(l) - tp(O)

= (g(XO+ y) - g'(XO)y, a) - (g(xO), a)

= (g(xO +y), a) - (y, a) - (g(x°), a),

which gives

(4.4) (g(xO+ y), a) = (y, a) + (g(xO),a) + 11 ((g'(XO+ ty) - g'(XO))y, a) dt,
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and, similarly for -y instead of y

(4.5) (g(xo -y), a} = -(y, a) + (g(xO), a} -11 «(g'(XO- ty) - g'(xO») y, a) dt.

By (4.3) we have

(g(XO+y), a} = ..\(g(xo-y), a},

which,using(4.4)and (4.5)andafterrearrangingtermsgives

(1 + ..\)(y, a) = (..\-1)(g(xo), a} -11 «(g'(xO+ ty) - g'(xO))y, a) dt

(4.6) -..\ 11 ( (g'(xO- ty) - g'(XO))y, a) dt.

Nowtakea suchthat lIalld= 1and(y, a) = lIyll.Such a exists, since (I~n, 11.11)is identical
to its bidual, i.e.

lIylldd = lIyll = max (a, y).
lIalld=l

In exactly tl1esame manner as in tl1eproof of Theorem 4.1, bounding tl1eterms on tl1eright
hand side of (4.6), we get

(;J (;J 2

(1 + ..\)lIyll ~ (..\ - 1)llg(xO)11 + 2 '11y1l2 + ..\211YII

where lIyll= p and IIg(xOIl ~ 17.We tl1erefore have

(1 + ..\)p~ (..\-1)17 + (1 + ..\)~p2
or

(1 + ..\) (~p2 - P + 17)- 217 ~ O.

But tl1is is impossible, because for p E [p-, p+] tl1e first summand is non-positive and 17> O.

Therefore, (4.3) does not hold, and since XO+ Y was chosen to be an arbitrary point from
8B(xO, p) we have shown tl1at 9 satisfies (2.2). 0
As was suggested by an anonymous referee, tl1ere is anotl1er well-known tl1eorem on the exis-
tence of zeros which adds an additional stage to tl1ehierarchy presented so far. This theorem
is Smale's theorem [13], which in tl1e finite-dimensional case may be stated as folIows:
THEOREM 4.4. Let f : ]Rn -+ ]Rn be analytic in ]Rnandfor xO E ]Rn let

1

1

1

1/(k-1)

ß(xo,f) = 1f'(xO)-lf(xO)I, "(xO,f) = If;f k!f'(XO)-lf(k)(xO) .

Then, if ß(xO, fh(xO, f) < 0:0, where 0:0 is an invariant, approximately equal to 0.130707,
the iterates of Newton 's method starting with xO converge to a zero x* of f.

This result is interesting because it proves convergence ofNewton's metl10d from information
at just one point XO.
As was already mentioned in [13], this result is in fact a special case of tl1e affine invariant
version of tl1e Newton-Kantorovich tl1eorem (Theorem 2.2), meaning that the hypotl1eses of
Theorem 4.4 imply tl10se of Theorem 2.2. As was shown by Rheinboldt [9], Theorem 4.4
may be generalized to a local version where f is assumed to be analytic only on some open
subset of ]Rn. The proof of tl1at result shows tl1at, again, we are in the presence of a special
case of tl1e Newton- Kantorovich tl1eorem.
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5. Conclusions. In this paper we have establisheda hierarchy with respect to generality
between Kantorovich's theorem (which contains Smale's theorem), Miranda's theorem and
its generalization and Borsuk's theorem. This hierarchy is meant only with respect to the
existence of a zero. While the Kantorovich theorem also guarantees the uniqueness of the
zero (and the convergence of Newton's method), the other theorems only partly address this
aspect: they actually guarantee that the topological degree of the mapping is odd, see [3].
We have proven two major results. The first (Theorem4.1) shows that if Kantorovich's theo-
rem (Theorem 2.2) guarantees the existence of a zero of f in a ball B(xO, p), p > 0, p- ~
p ~ p+ with B(xO, p) ~ D, then the generalized Miranda theorem (Theorem 3.2), applied
to l' (XO)-1 f also guarantees the existence of a zero in the same ball. In this sense, the
generalized Miranda theorem is the more general theorem. Our second major result, The-
orem 4.3, establishes a similar relationship between Kantorovich's theorem and Borsuk's
theorem. Here, we can even use the same mapping f in both theorems, i.e. the transition
to l' (xO)-1 f is not necessary. On the other hand, we have to restrict ourselves to the case
1]> 0, i.e. f(xO) =f.o. If f(xO) = 0, Theorem 4.2 shows that f still satisties the hypothesis
of Borsuk's theorem for all p E (0, p+) (note that p- = 0 for 1]= 0). Hence, the only situa-
tion where we did not establish the connectionbetween Kantorovich and Borsuk is when we
simultaneously have 1]= 0 and p = p+. The followingexample shows that then there indeed
need not be such a connection.
EXAMPLE 1. Let f : JR ~ IR, f(x) = x(1 - lxI). Then 1'(x) = 1 - 21xl. Take
xO = 0 so that f(xO) = 0, f'(xO) = 1, andtake1]= O,w= 2 in Kantorovich'stheorem
which thus gives p- = 0, p+ = 1. Therefore,the Kantorovichtheoremguaranteesthat
xO is the unique zero of f in (-1,1). But Borsuk's theorem cannot be applied to the ball
[-1,1], since f( -1) = f(l) = 0, i.e. we have f(x) = V( -x) for all A > 0 and all
xE 8(-1,1) = {-I, I}.
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