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Abstract. The paper establishes a computational enclosure of the solution of the linear complemen-
tarity problem (g, M), where M is assumed to be an H-matrix with a positive main diagonal. A class
of problems with interval data, which can arise in approximating the solutions of free boundary
problems, is also treated successfully.

1. Introduction

Let M = (m;) € R"*" and g = (g;) € R". The linear complementarity problem,
denoted by (g, M), is to compute a vector x such that

x>0, Mx+g>0  (Mx+q)Tx=0, (1.1)

or to show that no such solution exists. In this paper we consider the problem (g, M),
where M 1s assumed to be an H-matrix with a positive main diagonal. Remember
that M is an H-matrix if there is a vector d = (d;) with positive components d;
such that
Z |m,_,]dj < ]m,-,- Id;, = 1, 2, R (£ (12)
J#i
Define the comparison matrix M = (in;;), where
_ |m,;} if i=j,
mij = i iaE F
—|my| if i#).
* The article was completed during the second author’s stay in the Institut fiir Angewandte
Mathematik, Universitit Karlsruhe.



424 GOTZ ALEFELD, ZHENGYU WANG, AND ZUHE SHEN

Then we can alternatively write the above condition (1.2) as
Md > 0.

It is known that an H-matrix with a positive main diagonal is a P-matrix, which is
defined as a matrix with positive principal minors; and M is an H-matrix if and only
if M~! > 0. One can find the aforementioned results in Plemmons [11]. From the
classic result [12] we know (g, M) has a unique solution for any vector q if M is an
H-matrix with a positive main diagonal.

There are various numerical methods for solving linear complementarity prob-
lems [5], [9], but very few enclosure methods are studied. In [1], [3] the authors
developed the Moore test [8] and applied Miranda’s theorem [7], respectively, to
the equation

min{x, Mx+q} =0, (1.3)

where min(-, -) is the componentwise minimum of two vectors. (1.3) 1s an equiv-
alent formulation of (1.1) given by Pang in [10]. The two papers both provide
sufficient conditions for insuring the existence of solutions of the linear comple-
mentarity problem in a given interval, but neither points out how to compute the
interval enclosing the solutions. This paper establishes an enclosure of the solution
of (g, M), for which the main computational cost is to solve a system of linear
equations. Furthermore, we extend the enclosure method to the problem with inter-
val data in the vector ¢ , which can arise in approximating the solutions of the
free boundary problems [13]. Recall some necessary notations. Denote the one-
dimensional real closed interval by [x] = [x,X], where x < X are real numbers.
Denote the n-dimensional real closed interval by [x] = ([x]);, where each of its
components ([x]); is a one-dimensional real closed interval. Also we can write an
n-dimensional interval as [x] = [x,X], where x,X € R" and x < X holds component-
wise. We define the midpoint of an interval by m([x]) = (x+X) /2 and the radius by
r([x]) = (x — x)/ 2. Refer to [2].

2. Existence Test

We begin with giving an existence test for the solution to the nonlinear comple-
mentarity problem NCP(f), i.e, the problem of finding a vector x such that

x>0, fx>0, xf(x)=0,

where f : R" — R" is assumed to be continuously differentiable and has an interval
extension f'([x]) over [x]. Define

p(x) = max{0,x — Df(x)},

where D is a diagonal matrix with positive diagonal elements. We can call D a
positive diagonal matrix. It is known that x solves NCP(f) if and only if x is a
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fixed point of the mapping p(x), i.e., x = p(x), which can also be written as the
equation

min{x, Df(x)} = 0.

We can see that Pang’s formula (1.3) is a special case of it.
Introduce an interval operator

max{0, [x]} = [max{0, x}, max{0,x}],

where [x] is an n-dimensional interval, and max{0, x} is carried out componentwise.
Notice that this interval operator is inclusion monotonic, i.e., the inclusion [x] c [y]
implies max{0, [x]} < max{0,[y]}, and the fact that r(max{0, [x]}) < r([x]).
The following is an interval test for the existence of solutions to the nonlinear
complementarity problem NCP(f).

THEOREM 2.1. Let [x] be an n-dimensional interval, denote by f’'([x]) an interval
extension of f* over [x]. If

I(x, [x], D) := max{0, x — Df@) + (| - Df (D) - 0} <[, (@1

where x € [x] is fixed and D is a positive diagonal matrix, then there is a solution
x* to NCP(f) in T'(x, [x], D). Moreover, if a solution x* of NCP(f) is contained in
[x], then x* € T'(x, [x], D).

Proof. For any y € [x] we have

y — Df(y) € x — Df(x) + (I — Df'([xD) ([x] — x),

see [8], so

p(y) = max{0, y — Df(y)} € max{0, x — Df(x) + (I — Df'([x]))([x] — 1)},

i.e., I'(x, [x], D) is an interval extension of the mapping p(-) over [x]. Thus the
condition (2.1) implies that p(-) maps [x] into itself, from which, using the continuity
of p(-), it follows that p(-) has a fixed point x* € [x], where x* is a solution to NCP(¥).
For any solution x* of NCP(f) in [x], we can conclude that

x* = p(x*) € max{0, x — Df(x) + (I — Df'([x]))([x] — x)},
which indicates x* € I'(x, [x], D). O

COROLLARY 2.1. Let I'(x, [x], D) be defined as in (2.1). If T'(x, [x], D) n [x] = 0,
then there is no solution to the problem NCP(f) in [x].

Theorem 2.1 indicates that if we can find an interval [x]°, for which the condition
(2.1) holds, then an inclusion monotonic sequence {[x]*} of n-dimensional intervals
can be computed, where

K =TeF 5 DY A k%, k=01, ...,
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x* e [x]¥, D* a positive diagonal matrix. Furthermore, we can guarantee that a
solution x* to NCP(f) is contained in each interval [x]*. A real approximation of x*
can also be automatically given by x* € [x]* with the componentwise error less than
][x]k — [xk,xk]|. A common choice of x* is x* = m([x]*). Then the componentwise
error is less than or equal to the radius r([x]%). We apply the above results to linear
complementarity problems.

COROLLARY 2.2. Let M € R™", g € R", let [x] be an n-dimensional interval,
x € [x] be fixed and D a positive diagonal matrix. If

['(x, [x], D) := max{0, x — D(Mx + q) + (I — DM)([x] — x)} c [x], (2.2)
then there is a solution x™ to the linear complementarity problem (g, M) in I'(x, [x], D).
Moreover, if a solution x* of (q, M) is contained in [x), then x* € T'(x, [x], D).

We give the following interval iterative algorithm for solving the linear com-
plementarity problem (g, M), where M = (m;;) is an H-matrix with a positive main
diagonal.

ALGORITHM 2.1. Let D = diag(m;,',m5,, ..., m;!), and [enclosure] be an interval
in which the unique solution x* of (g, M) is contained. Compute

[x]° := [enclosure],
[x)**! = [x]* A max{0, x* — D(Mx* + q) + (I — DM)([x)* — x*)},
where x* = m([x]).

Since the solution x* of (g, M) is contained in [enclosure], Algorithm 2.1 will
compute a nested sequence {[x]*}. Furthermore, we can show that the sequence
converges to the point interval [x*, x*].

THEOREM 2.2. Let M be an H-matrix with a positive main diagonal. If the unique
solution x* of (q, M) is contained in [enclosure), then Algorithm 2.1 will compute a
nested sequence {[x]k}, which converges to [x*,x*].

Proof. From Corollary 2.2 we know that Algorithm 2.1 will compute a nested
sequence {[x]*} such that x* e [x]* fork =0, 1, .... Considering that

x]¥*! ¢ max{0, x* — DWMx* + g) + I — DM)([x]* — x5},
we have
r([x1¥*1) < r(max{0, x* — D(Mx* + g) + (I — DM)([x]* — x*)})
< r(xk — D(Mx* + g) + (I — DM)([x]* — x*))
r((I — DM)([x)* — xb)).

Since x* = m([x]*), we have

(I — DMY([x)* — x*) = (I — DM)[—r([x]"), r([x]")]
= [—(I — DMOH[x*), (I — DM)A([x1%)],



ENCLOSING SOLUTIONS OF LINEAR COMPLEMENTARITY PROBLEMS... 427

where I — DM > 0. Hence

r((x]**") < (1 — DM)r([x1").
Since M is an H-matrix, p(/ — DM) < 1, see [11]. Consequently, r([x]k) — 0, and
the conclusion holds. a
3. Enclosing Solution

We consider the problem of computing an [enclosure] needed in Algorithm 2.1
and in Theorem 2.2. Choose x = 0 in I'(x, [x], D) of (2.2), D = diag(m; ') and
[x] = [—d,d], where d > 0. Then

(I — DM)[—d,d] = [-(I — DM)d, (I — DM)d],
and we can write (2.2) as
[(x, [x], D) := max{0, —Dq + [—(I — DM)d,(I — DM)d]} c [-d.d]. (3.1)

In order to find a vector d > 0 such that the inclusion (3.1) holds, we need the
following results.

THEOREM 3.1. Leta,b,c € R", a < band c > 0. Then
max{0, [a,b]} c [—¢,c]
holds if and only if b < c.

Proof. Consider the i-th component of the inclusion. If
max{0, [a;, bil} < [—ci, cil,

then

max{0, [a;, b;]} = max{0, b;} < c;,

and so b; < max{0,b;} < c;. Conversely, if b; < c;, then max{0,b;} < ¢; since
¢i > 0. So max{0, [a;,b;]} c [—ci.¢;] if and only if b; < ¢;, and the conclusion
holds for the n-dimensional case. O

COROLLARY 3.1. Let M € R™*" have a positive main diagonal (not necessarily an
H-matrix), and let d > 0. Then the inclusion (3.1) holds for (g, M) if and only if

Md+q > 0.

Proof. From Theorem 3.1 it follows that the inclusion (3.1) holds if and only if
—Dg + (I — DM)d < d,

which is equivalent to D(Md + q) > 0, and so the conclusion holds since D is a
positive diagonal matrix. O
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Assume that M is an H-matrix with a positive main diagonal. From Corollary 3.1,
it follows that the unique solution x* of (g, M) is contained in
max{0, —Dq + [—(I — M)d, (I — M)d]}
or equivalently
max{0, —Dq + [—d + Du,d — Dul}, (3.2)

where u = Md, d > 0 and Md +q > 0. If u > 0 is given, then we can compute
d = M~'u > 0; otherwise, we cannot guarantee that Md = u has the nonnegative
solution. Hence, to get an enclosure, we have to compute a vector d satisfying the
following system of linear inequalities

d >0,
Md > 0, 3.3)
Md+q > 0.

We give the following algorithm to compute the enclosure of the solution of the
problem (g, M).

ALGORITHM 3.1. For the linear complementarity problem (g, M), where M is
assumed to be an H-matrix with a positive main diagonal, choose the positive
diagonal matrix D as D = diag(m; '), choose u = (u;), where

0 if g=>0,
u = .
== if qgi < 0,

and compute the unique solution d of the system of linear equations Md = u. Then
the unique solution of (g, M) is contained in

[enclosure] = max{0, —Dq + [—d + Du, d — Dul}. (3.4)
Let d satisfy (3.3) with Md = ii. Then we can get an enclosure of the type
of (3.2)
max{0, —Dgq + [—d + Di, d — Dii}}.

Let d and u be defined as in Algorithm 3.1. Since # > 0 and &t + g > 0, 1t is clear
that iz > u. Because I — DM > 0, we have

d— Dit=(I — DM)d > (I — DM)d = d — Du,
which indicates
max{0, —Dq + [—d + Du,d — Du]} c max{0, —Dgq + [—d + Dit, d — D]},

in other words, (3.4) is the sharpest enclosure of the type of (3.2) under the require-
ment of (3.3).
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4. Numerical Results

In this section we apply Algorithm 3.1 for computing an enclosure to several typical
test problems in the literature, and improve the enclosure via Algorithm 2.1 and the
iterative algorithm presented in Alefeld et al. [1]. We terminate the iteration when
the radius of the interval is not more than le—15 componentwise. The algorithms
are coded in MATLAB 6.5. The numerical results include the enclosures computed
by Algorithm 3.1, and we use the following abbreviations:

NUMI1: the number of the iterations of Algorithm 2.1;

NUM2: the number of the iterations of the algorithm of [1];

RADI1:  ||r([x*])||e for [x*](") computed by the method of this paper;
RAD2:  [|r([x*]1?)||eo for [x*]@ computed by the method from [1];
FUNI1: | min(x, Mx + @)||oo, where x = m([x*]D);

FUN2: || min(x, Mx + q)||o0, Where x = m([x*]@).

EXAMPLE 4.1 (Random test problems). We first apply Algorithm 3.1 to two ran-
dom test problems studied in Alefeld et al.[1], which have the common matrix M
and different column vectors g, where M = (m;, mp, m3, my),

[ 1388713122168711
—4.699766249426920¢ — 1
7.370559770214220¢ —2

\ —4.110090461033111e—1 /

/ —4.699766249426920e 1 \
o 1.453401598450949
2= 3.334909523505895¢ —2 |’

\ —5.175564143615730e —1 /

7.370559770214220e —2 \
I 3.334909523505895¢ —2
2= 6.604515405730874e—1 |’

—1.651162344083680e —1 /

—4.110090461033111e—1 \

—5.175564143615730e —1

—1.651162344083680e —1
1.477373564900058

The matrix is diagonally dominant, and so it is an H-matrix. Furthermore, the
diagonal elements are positive. For the vectors

9.252128641303051
2.789538442487311
9.950524251712144
—3.325681126317601

my =




430 GOTZ ALEFELD, ZHENGYU WANG, AND ZUHE SHEN

Table 1.

i [enclosure]

1 [0.00000000000000, 0.00000000000000]
2 [0.00000000000000, 0.00000000000000]
3 [0.00000000000000, 0.00000000000000]
4  [1.00479765662298, 3.49735563125256]

Table 2.

i [enclosure]

1 [0.00000000000000, 1.26839053831666]
2 [0.00000000000000, 0.09849992333873]
3 [1.15283989683645, 3.53837185135689]
4 [0.32032065803092, 3.53173054280243]

Table 3.
Example NUM! NUM2 RADI1 RAD2 FUNI1 FUN2
1 1 1 0 0 0 0
2 21 14 4.4409e—16 4.8880e—17 0 4.8880e—17

and

8.679035675427925¢ —1

2.692546385763099
—1.549159013124430
—2.845459307376360

respectively, Algorithm 3.1 gives the enclosures for the solutions to the corre-
sponding linear complementarity problems. The results are presented in Table 1
and Table 2, respectively.

In Table 3 a comparison of the new algorithm is performed with the algorithm
from [1].

For the second example, if we apply Algorithm 2.1 two times, and start the
algorithm of [1] with the interval computed, then after one iteration, an enclosure
is computed with the radius less than 1e—15 componentwise.

EXAMPLE 4.2 (Murty [9]).

1 2 2ione 2
0 1 2w i
001

M= e B e = e~



ENCLOSING SOLUTIONS OF LINEAR COMPLEMENTARITY PROBLEMS... 431

M is an H-matrix with positive diagonal elements. The exact solution of the problem
is x* =(0,...,0,1)T. Applying Algorithm 3.1, we can compute the enclosure

(1037777
[0,3"2]

[0,3"72]
[enclosure] = )

[0,3]
\ [1L1] )

which is very wide if the dimension of M is large. We do the numerical tests for
n = 5,10, 20,50, 100, and the results show that it is needed just one iteration until
the stopping criteria is fulfilled via the algorithm from [1] and also if Algorithm 2.1
is used.

EXAMPLE 4.3 (Journal bearing problem [4]). The following problem can arise in
discretizing the free boundary problem for an infinite journal bearing by a finite
difference method [6]: M = (m;;) is a tridiagonal matrix, where

¢ —h3

T
i'+2

R +h,, if j=i

if j=i+1,

- |, if j=i—1,

0, otherwise
and g = (g;), where
q,’=3(hl-+% _hi—%)’ i=1,'2,...,n.
In a common model for the infinitely long cylindrical bearing,

1+ ecos(n(i — 1)6
h_1 = fe 2)_)_, i=1,2,..,n+1,

‘_5 \/E

§ = ——, T = 2. Following Cryer [6], choose & = 0.8. For n = 10 and n = 100

n+1’
Algorithm 3.1 gives the enclosures presented in Tables 4 and 5.

For the case n = 100, the algorithm from [1] does not improve the enclosure.
However, starting with the interval which the Algorithm 2.1 has computed after 1000
iterations, the algorithm of [1] computes an enclosure with RAD2 < 4.4490e—16
and FUN2 < 6.5161e—17 after just one iteration.
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Table 4. (n=10)

[enclosure]

L R

OO0~ N Lh

10

[0.00000000000000, 0.15860695902414]
[0.00000000000000, 0.36679074313145]
[0.00000000000000, 0.73042625644525]
[0.00000000000000, 1.56250650372998]
[0.29659205265926, 3.08014830457683]
[0.00000000000000, 0.00000000000000]
[0.00000000000000, 0.00000000000000]
[0.00000000000000, 0.00000000000000]
[0.00000000000000, 0.00000000000000]
[0.00000000000000, 0.00352664824520}

Table 5. (n = 100)

[enclosure]

1
10 [0.00000000000000, 0.17608386065516]
20  [0.00000000000000, 0.42170736330022]
30  [0.00000000000000, 0.90669935946865]
40  [0.00000000000000, 2.10359042750378]
50  [0.00000000000000, 2.08064053243049]
60  [0.00000000000000, 0.24370748854934]
70 [0.00000000000000, 0.03790090545453]
80  [0.00000000000000, 0.01201508633063]
90  [0.00000000000000, 0.00452851819317]
100 [0.00000000000000, 0.00038814001364]
Table 6.
n NUM1 NUM2 RADI RAD2 FUNI FUN2
10 137 2 8.8818e—16 0 1.2837e—16  6.2450e—17
100 10836 — 9.9920e—16 1.3833 0 5.5635¢—4

EXAMPLE 4.4 (Problems with interval data [13]). In [13] Schéfer develops the
validation method of [1] to the linear complementarity problem (g, M), where

(1 =1 0 0
1 1 >
-2 I =

M=1 ¢ 0 |-

1 1

__il._E

1
\ O 0 )
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and g is not known exactly, however is contained in
(-

h* -

et
L )

[F]+ k- [=D,D] = yo )

PO 1| e

1 1] - 1F1+ 43 . [-D, D]
QE[q]zi . =4 2

1 [F1+i0*-[-D.D] )

r Ll
=

-

In [13] the details of computing [g¢] are explained. The problem arises in discretizing
a class of free boundary problems by taking account of the discretization error. In
[12] an enclosure of the solution is also given

[0, yo]
=]

L

[0, yol
[Oa y(]]

by some characterization of the free boundary problem, not via the validation
method. Here we consider a modification of Algorithm 3.1 to the problem (g, M),
where M is an H-matrix with a positive main diagonal, and g € [g] is unknown.
However, the involved vector [¢] is given.

ALGORITHM 4.1. For the linear complementarity problem (g, M), where M is
assumed to be an H-matrix with a positive main diagonal and g € [g] is unknown,
choose the positive diagonal matrix D = diag(m;; 1, choose u = (u;), where

0 if g. >0,
u; = =
—q, otherwise.

Solve Md = u for d, and set

[enclosure] = max{0, —D[q] + [—d + Du, d — Dul}. 4.1)

It is clear that the vector u chosen in Algorithm 4.1 satisfies u > O and u > —¢q
for any g € [q], so from Corollary 3.2 we know that the unique solution to (g, M) is
contained in the enclosure (4.1) although g € [¢] is unknown. We test Algorithm 4.1
for Examples 5.1 and 5.2 in [13].

Extensive numerical results show that the first g—th components of the enclosure

(4.1) are a little wider than [0, yo], but the remaining components are all sharper than
[0, o], and the radius decreases rapidly along with the increase of the subscript. It
seems very hard to improve the enclosures by the iteration presented in [13].

Our experience shows that the algorithm from [1] works well especially for
an interval sufficiently sharp. The more large-scaled the problem is, the sharper
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Table 7. (n=10)

[enclosure]

T,

[0.01783542862101, 0.17945394160203]
[0.00000000000000, 0.15971337039656]
[0.00000000000000, 0.14187794177556]
[0.00000000000000, 0.12404251315455]
[0.00000000000000, 0.10620708453354]
[0.00000000000000, 0.08837165591253]
[0.00000000000000, 0.07053622729153]
[0.00000000000000, 0.05270079867052]
[0.00000000000000, 0.03486537004951]
[0.00000000000000, 0.01702994142851]

o 00 NN R W N

S

Table 8. (n=300)

i [enclosure]

30  [0.00000000000000, 0.18005631584958]

60  [0.00000000000000, 0.16012366950035]

90  [0.00000000000000, 0.14019102315112]
120  [0.00000000000000, 0.12025837680189]
150 [0.00000000000000, 0.10032573045266]
180  [0.00000000000000, 0.08039308410343]
210  [0.00000000000000, 0.06046043775420]
240  [0.00000000000000, 0.04052779140496]
270  [0.00000000000000, 0.02059514505573]
300  [0.00000000000000, 0.00066249870650]

the starting interval is required. In practical computation, we prefer to sharpen the
enclosure firstly via Algorithm 2.1, and then accelerate the convergence by the
algorithm of [1].
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