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Abstract

Within this contribution the efficient finite element analysis of shell structures with highly nonlinear behavior is
presented. The coupled nonlinear system of equations resulting from the FE discretization is solved using Newton-like
procedures, thus the solution of a linear system of equations is needed in each Newton iteration. For fine discretizations
the resulting linear systems of equations become very large and their solution dominates the computational effort.
Consequently, parallel computers offer major capabilities to reduce the CPU time needed. A geometrical approach for
parallelization is used, standard methods for the graph partitioning are employed. It is weil known that iterative
methods for the solution of linear equation systems are much more suitable for parallelizing compared to direct
methods. Therefore in a first step the use of such methods is investigated for the application to badly conditioned
problems typical for shell problems in particular in failure situations with alm ost singular matrices. In the analysis of
shell structures with tendencies to buckle a static and a dynamic approach are discussed considering both physical and
computational aspects.
@ 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

For stability investigations of structures in solid
mechanics usually a static approach is preferred in
combination with a finite element discretization. Such a

procedure involves the computation of so-called stability
points and mostly path-following algorithrns are needed
to judge the postbuckling behavior. In addition eigen-
value analyses are often performed. Such approaches are
very successful for medium size models with fairly small
numbers of degrees of freedom. However, for more
complex structures as e.g. silo shells such a method does
not lead to a: reliable estimate of the real postbuck-
ling behavior due to the many solution paths possible.
In addition, within a Newton-Raphson solution con-
vergence becomes a problem as the matrices become

.Corresponding author.

singular resp. almost singular in a large part of the
postbuckling regime. Thus, it seems to be advisable to
investigate the real problem including the time depen-
dency of the buckling process performing a nonlinear
transient analysis.

Both types of analysis require a fine discretization as
local effects are important also for the global response
and the models contain large numbers of unknowns.
Parallelization of the complete solution process is a must
and has been carried out for static nonlinear analyses
even with rather badly conditioned system matrices. The
latter is-aside from the singularities due to the struc-
tural behavior-a result of the discretization with shell

elements in general. In transient analyses the condi-
tioning of the matrices ameliorates compared to static
analyses, thus iterative solvers should be even better
suited for the solution. Besides the adjustment of the
time integration schemes for a fully parallel solution, it is
also an important aspect to choose an efficient but still
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reliable preconditioning strategy taking advantage of the
knowledge that with constant time step size the system
matrix changes only fairly little in most cases.

In Section 2 basic equations for the static and tran-
sient finite element analyses are given and the applied
solution strategies are introduced. Direct and iterative
solvers for the solution of the arising systems of linear
equations and their properties are discussed in Seetion 3.
For a nonlinear static problem, the efficiency of the
different solvers is compared. With the restrietion to it-
erative solvers the parallelization is performed and some
results are presented in Section 4 to show the efficiency
of the approach. Finally, in Section 5 the problem of an
axially loaded cylindrical silo shell is investigated. Es-
peciaIly the question of the modeling of the problem-
either static or transient-is addressed. As the efficiency
of the solution process is strongly affected by the mod-
eling, this aspect is also investigated in more detail.

2. Governing equations and solution strategies

2.1. Static analyses

In nonlinear finite element analyses nonlinear sys-
tems of equations have to be solved:

G(u, Je)= Ap - r(u) = O. (1)

Herein r is the vector of the internal farces, p is the ex-
ternalload vector, },is a scalar load parameter and u are
the nodal displacements. As it is weIl known, the ap-
plication of Newton's method leads to an incremental
iterative solution procedure, in which for every load step
m linear systems of equations

KT(Ui) . /),.u= r(ui) - },mp = /),.r, i = 1,2,... (2)

have to be solved. K T is the Hessian matrix (tangent
stiffness matrix), /),.u is the incremental displacement
vector, and /),.r the vector of the residual forces. The
update of the displacement vector u in each iteration i is
given by

Ui+l = Ui + /),.u. (3)

For nonlinear finite element analyses of structures
with snap-through or snap-back behavior also arc-length
methods are neeessary (see e.g. [4,25,26,31)). The load
parameter A is then treated as an additional variable. As
a eonsequence, an additional constraint equation has to
be introduced, anq after linearizing this equation, a
linear, nonsymmetrie system of equations is obtained:

[KT
vT -p 1 [/),.l~]= - [

/),.r

],
CXJ /),./, 1

(4)

where 1 defines the arc-length constraint, v comes from
the linearizationand 6;\ is thc incrementof the load

parameter. Performing bloek-Gaussian elimination, the
solution of the linear system (4) can be obtained by
solving the two symmetrie systems of equations

/),.Ul= K~lp and /),.JI = -K~l /),.r,

and then

(5)

/),.,1.= _I + VT/),.ull
o::+vT/),.UI

(6)

and

/),.u = /),.Ull+ /),.,1./),.ul. (7)

Thus, the main effort to perform nonlinear finite element
analyses is in the solution of linear, symmetrie systems
of equations with sometimes indefinite tangent stiffness
matrices, that-in case of thin sheIl structures-may be
already iIl-conditioned in the purely linear case.

For eomputations on serial computers, direct solvers
are usually preferred over iterative ones, beeause onee
the factorization of the stiffness matrix is performed, the
solution of the two linear systems (5) can be obtained by
two simple forward/baekward substitutions. Using iter-
ative methods, the two systems have to be computed
independently and almost no advantage can be drawn
from the solution of the first system. In [20,21,28] a
method is described, which reduces the computation time
for the iterative solution of (4), but it does not completely
overcome the disadvantage of the iterative solvers for
strongly nonlinear analyses. The focus in Sections 3 and
4 is on the application of various iterative solver strate-
gies even for ill-conditioned thin shell problems-and
their use as solvers in a parallel implementation.

In the nonlinear static solution process, the infor-
mation on the stability in the sense of LJAPUNOV[22] of
the structure can be obtained by monitoring the defi-
niteness of the tangential stiffness matrix. Using direct
methods for the solution of the arising linear systems of
equations in Newton's method, a simple and efficient
procedure is to monitor the determinant of the stiffness
matrix:

det(KT) = det(LDLT) = det(L) det(D) det(LT)

= det(D), (8)

if an LDLT factorization is performed. It is a necessary
condition for instability, that det(K T) becomes negative.
If det(K T) is positive, however, the equilibrium is not
necessarily stable, because there may be an even number
of negative eigenvalues.

Another criterion is based on the so-caIled inertia of

the stiffness matrix, that is the tripie (n,z,p), where n is
the number of negative, z the number ofzero and p the
number of positive eigenvalues. Again using a LDLT
faetarization with A being the diagonal matrix of ei-
genvalues and Q the matrix of eorresponding eigenvee-
tors
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inert(A) = inert(QTKTQ) = inert(QTLDLTQ)

= inert(XT DX) = inert(D), (9)

the inertia can be detennined by directly checking the
diagonal matrix D. The number of negative eigenvalues
is identical to the negative entries in D.

These eriteria can then be used for the detennination

of critical points. A very simple proeedure is to bisect
these eritieal points; a more elegant proeedure to com-
pute the critical points direct1y is described in [34,35].
If the eritical points are bifurcation points, also the
branching solution paths have to be computed (see e.g.
[18]). In addition, as proposed in [7], so-ealled fold lines
can be computed, i.e. eritieal sub set paths in a multi-
parametric space.

2.2. Transient analyses

Induding inertia effeets, the system of nonlinear dif-
ferential equations now reads in a semi-discrete fonn as

Mü+r(u) =P (10)

with the mass matrix M, the displaeements u, the ac-
celerations Ü, the nonlinear internal forces rand the
externaIload p. Starting with the known solution for the
displacements Un,the velocities un and the accelerations
ün at time tn, the solution at time tn+l= tn+ I1t has to be
detennined:

Mün+! + r(Un+d = Pn+l. (11)

Using the standard Newmark approach [11] leads to

Un+l = Un+ I1tun+ I1r[G - ß)ün + ßün+d (12)

and

Ün+!= ün + I1t[(1 - y)ün + YÜn+d, (13)

with the Newmark parameters ß and y. For ß = 0.25 and
Y = 0.5 the Newmark method is known to be uneondi-
tionally stable and the accuracy is then of order two.
Introducing Eq. (12) into (11) leads to the nonlinear
system

1

I1t2ßMun+J + r(un+d = Pn+l+ Mu
(14)

with

u = M~ß (u" + MÜn) + (2~ - 1) Ün,
(15)

that can be solved for the displacements using Newton's
method. Thus, in each Newton iteration i the linear

systemof equations

1525

[11:2ßM+KT]I1U=Pn+1 -r(Ui)+M[U- 11:2ßUi]

(16)

is solved and an update of the displacements

Un+Li:= Ui+l = Ui+ l1u (17)

has to be perfonned. After convergence, velocities and
aceelerations ean then be detennined using Eqs. (12) and
(13).

It should be noted, that eompared to static analyses,
where the coefficient matrix for the linear equation sys-
tems is the tangential stiffness matrix KT' an "effective
stiffness matrix"

K* = 11:2ßM + KT
(18)

is the consequence of the Newmark algorithm which will
be diseussed further in Seetion 5.

For the transient approach, no efficient stability cri-
teria are available like in the static case. Some details

concerning this topie are given in [29].

3. Iterative methods for solving linear systems of equations
in structural mechanics

The most time consuming step in the nonlinear pro-
cess is the solution of the linear systems of equations (5)
in the static case resp. (16) in the transient case. As es-
pecially Eq. (5) may become very ill-conditioned in the
context of buckling and stability problems, often direct
solvers are preferred over iterative ones.

In this section, the application of iterative precondi-
tioned Krylov-subspace methods to such a dass of ill-
eonditioned problems is investigated. For a nonlinear
example problem, the efficiency and robustness of these
iterative methods are eompared to a fast direct sparse
solver. A parallelization based on iterative solvers can
only be suggested, if such iterative solvers lead to reli-
able solutions independent of the problem.

3.1. lntroduction oi iterative solvers

As the tangential stiffness matrices in (5) resp. (16)
are symmetrie, Krylov subspace methods like the con-
jugate gradient [10], the Lanczos method [19,23] and the
symmetrie QMR method [8] are applied. More general
methods for the solution of nonsymmetric eoefficient
matrices as e.g. BICGSTAB or GMRES for the solution
of the linear system in Eq. (4) appear to be 1ess eonve-
nient, as they require more numerical effort. The main
difference between the three mentioned methods for

symmetric coefficient matrices lies in the field of appli-
cation. The conjugate gradient method is restricted
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to positive definite systems of equations, whereas the
Lanczos and the QMR method can also be appliedfor
indefinite systems.

Since the convergence behavior of iterative methods
depends strongly on the condition number of the coef-
ficient matrix, preconditioning techniques are used to
speed up the solution process. In particular, the fol-
lowing-partially well known-techniques are applied
in this context:

. Jacobi preconditioning (diagonal scaling),

. SSOR preconditioning with the Eisenstat trick [5],. several techniques based on incomplete factorizations
as e.g.
- incomplete factorization on the sparsity pattern of

the coefficient matrix MPILU, often referred to as
ILU(O) in the literature, with diagonal modifica-
tion to enforce positive definiteness,

- a block version of MPILU, where the coefficient
matrix can be filtered before computing an incom-
plete factorization Block-MPILU [27],

- incomplete factorization allowing fill-in of the first
level FLILU, often referred to as ILU(1) in the lit-
erature,

- incomplete factorization with numerical dropping
NDILU.

It should be noted, that aIl these preconditioning
matrices are forced to be positive definite. This property
has to hold for the conjugate gradient and the Lanczos
method, but not for the QMR method. EspeciaIly this
fact makes the QMR method very attractive for the
following reason: Within the Newton scheme, sequences
of linear equation systems have to be solved. In each
Newton step, the changes of the tangential stiffness
matrix are moderate. Therefore, it seems to be reason-
able to re-use preconditioning matrices in subsequent
Newton iterations. Thus, computationally "expensive"
preconditioners may become attractive-particularly the
complete factorization of the coefficient matrix, resulting
in a hybrid direct/iterative scheme. However, as the
tangential stiffness matrix may be indefinite in a non-
linear solution process, it can be used for precondi-
tioning purposes in general only in combination with the
symmetric QMR method.

3.2. Numerical comparison using a benchmark problem

These preconditioned iterative methods are com-
pared to an efficient direct sparse solver SMP AK [6]
using the nested dissection (nd) and minimum degree
(md) strategy to permute the matrix in order to minimize
fill-in. As a benchmark problem, the system in Fig. 1 is
used. It is a cross-pipe with stiffeners at the ends, the
latter is called flange in the following. The flange is fixed
at the lower and the upper part and subjected tQ shear

b~a---Hb

I
.:::

1

Fig. 1. Flange: system.

loads at the left and right side, as can be seen in Fig. 1.
The material behavior is assumed to be linear elastic

with E = 2.1 X 105 N/mm2 and v = 0.3 (steel). It is a

badly conditioned thin sheIl-problem (the condition
number is about 108), with sheIl thickness 3 mm, at the
stiffeners 6 mm. The geometrical data are a = 200 mm,

b = 30 mm and h = 400 mm. The complete sheIl struc-
ture is discretized with 22,400 four-noded bilinear sheIl
elements [9] which leads to 112,500 equations. In Fig. 2,
the nonlinear load-deflection curve of the points A and
Bof the flange-structure is depicted. There, a snap-
through-behavior can be seen; after reaching a maxi-
mum value, the load decreases and remains constant
afterwards, whereas the displacements are still increas-
ing. The deformed structure is depicted in Fig. 7. The so-
caIled snap-through phenomenon happens, when the
dents at the left and right sides of the horizontal pipe are
occurring (Fig. 3).

Fig. 4 shows the computation time and the memory
requirements of the above mentioned solvers for the
solution of one linear system of equations on an IBM
RS6000 workstation. For this problem, the two different
fiIl reducing strategies 'md' and 'nd' behave quite simi-
larly concerning computation time as weIl as memory
requirement. This may change dramatically for other
problems [27]. The preconditioned iterative solver, how-

point A --0--
point B -0-

.............-........
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displacement [mm]

16 18 20

Fig. 2. Flange: load-detlection curve.
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undeformed load 5tep 10 load 5tep 13

Fig. 3. Flange: defonnation at various load steps (see marks in Fig. 2).
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cg (without)

cg (Jacobi)

cg (SSOR)

cg (Block-MPILU)

cg (MPILU)

cg (FLlLU)

cg (NDILU)

Fig. 4. Computing time and memory requirement on a IBM RS6000 for flange example (solving one linear system at a typicalload
step).

ever, leads to faster solution of the given problem, with
the exception of the NDILU preconditioning. Here,
unavoidable index operations slow down the computa-
tion of the preconditioner. In this case, the most efficient
solution is obtained for the Block-MPILU and the

FLILU preconditioning, but also simple precondition-
ing strategies like Jacobi and SSOR lead to satisfactory
solution times for the linear problem. It must be noted
that the memory requirement for the iterative solvers is
considerably smaller. Though the number of iterations
required for the better preconditioners SSOR and of
course the xl LU preconditioners are substantially
smaller than for the Jacobi preconditioning, the corre-
sponding algorithms need more computer memory. In
addition the number of operations per iteration is sub-
stantially larger; as a consequence the overall effect
represented by the computing time in Fig. 4 does hardly
decrease for the "better" preconditioning algorithms.

For the w,hole nonlinear solution, the same compar-
ison is carried out on a NEC-SX4 computer. The fol-
lowing analyses give an impression on the effort needed
for the computations along the full load-deformation
path induding stable and unstable parts with partially
very bad condition numbers. In order to allow a general
judgement on the performance of the various algorithms

beyond computing times also the memory required is

monitored. The Lanczos method is used for the iterative
solution, because the tangential stiffness matrix gets in-
definite within the nonlinear solution path. As can be
seen from Fig. 5, the direct SMP AK solver leads to a
faster solution ofthe problem. This is mainly due to the
fact that with the use of the arc-length method two
linear systems of Eq. (5) have to be solved within each
nonlinear iteration and therefore the direct solver can
reuse the LDL T-factorization. As a consequence, the
direct solution of the second system is very fast. In
contrast to this, the iterative solver cannot benefit from
the solution of the first linear system when solving the
second one, with the exception of the preconditioner,
that has to be built only once. A method to speedup the
iterative solution within the arc-length method is given
in [20,21,28], where the system (4) is tackled. The com-
puting times for the Block-MPILU, MPILU and FLI-
LU, however are competitive to the direct solution. As
in the linear case, the memory requirements are signifi-
cantly lower for the iterative solver than for the direct
one. A remarkable difference between the nonlinear and
linear solution occurs for the NDILU preconditioner. In
the nonlinear case, the index operations are performed
only once. The resulting sparsity pattern is reused for all
subsequent linear systems. Due to the high quality of
this preconditioner, the time spent to create the sparsity
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Fig. 5. Computing time and memory requirement on a NEC SX4 for fiange example (complete nonlinear solution).

pattern is regained with small iteration numbers. An-
other difference between the linear and the nonlinear

case lies in the behavior of the Jacobi and SSOR pre-
conditioner. Within the nonlinear computation, the
condition number of the tangential stiffness matrix in-
creases. Consequently, the convergence behavior is de-
teriorated; this behavior is more significant to these two
preconditioners of minor quality than to the other ones.

The most efficient solution, however, can be ob-
tained with the combination of a direct and an iterative

method. In this example, the combination of the sym-
metric QMR method SQMR with the direct SMPAK
method is chosen, because the tangential stiffness matrix
is getting indefinite, and as a consequence, the precon-
ditioning with the matrix itself is indefinite. The com-
plete LDLT-factorization is performed once per Newton
step and reused for all subsequent Newton iterations
within this load step. Then, areduction of the comput-
ing time by a factor of 2.5 is achieved compared to the
fastest direct solution. This performance also holds for
other problems. SQMR coming out as the most efficient
method is-of course-limited to the fact that this holds

only, if the problem is still nicely fitting into the memory
of the computer.

Summarizing, it can be stated, that iterative solvers
are generally suitable for the solution of linear systems
of equations resulting from structural mechanics. Be-
sides their low memory requirements, the computation
time is often smaller than for the direct solver. In non-

linear solutions using the arc-Iength method, direct so-
lution strategies in general lead to a faster solution.
However, iterative solvers are competitive. Most im-
portant is the fact,' that the iterative solution is also
robust even for badly conditioned problems and there-
fore can be used exclusively for parailelizing. Besides
this, it must be noted, that the most efficient solution
for nonlinear problems is achieved with the combination
of a direct with an iterative solver. The time savings
thereforearein generalgreaterthan 50%.

3.3. Some remarks on the iterative solution of nonlinear
problems

In this subsection, some more general remarks on the
choice of a suitable solver for nonlinear structural me-

chanics problems are given, resulting from benchmark
problems ranging from weIl conditioned 3D continuum
problems to badly conditioned thin shell problems and
obtained for similar cases in structural analysis. Some
remarks concern methods and applications in structural
analysis not discussed in this paper, more information
on these methods can be obtained directly from [20,27],
see also for some aspects of similar algorithms [2,3,13-
15,24]. Clearly, these suggestions are restricted to the
investigated methods and-as no general theory for
nonlinear problems is available-the validity is limited.
Nevertheless, our experience in the solution of solid and
structural mechanics problems as weil as observations
from the corresponding examples in the cited references
allow some conclusions for the choice of appropriate
solvers for similar problems.

. For very large problems or computers with limited
memory available an iterative solver is advantageous.. On vector machines with sufficient memory direct
multifrontal or profile solvers outperform other solv-
ers with respect to computation time.. For 3D continuum problems iterative solvers with
simple preconditioning strategies like Jacobi, SSOR
or Block-MPILU are very efficient. Direct solvers
are inferior for such problems.. Direct sparse solvers have larger memory require-
ments compared to iterative solvers but are often
more efficient in terms of computing time for nonlin-
ear and badly conditioned problems. This is especially
true then in combination with arc-length methods.. Block-MPILU, MPILU and FLILU are good choices
for nonlinear shell problems. The preconditioning
matrix should be updated once per Newton step.
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. Ifthe finite element mesh is not numbered carefully, a
band or profile minimization before computing an in-
complete factorization improves the quality of the
preconditioner.. For nonlinear problems, the combination of direct
and iterative methods leads by far to the fastest solu-
tion, with the restriction that this is dependent on the
memory available on the computers.

4. Parallelization strategy

The parallelization strategy used is based on a com-
mon geometrical approach depicted in Fig. 6. The given
finite element mesh is divided into parts, that are as-
signed to the different processors of a parallel computer.
In our implementation, the decomposition is done in a
serial preprocessing step on a single processor using
common available graph partitioning software (e.g.
spectral bisection [1] or the METIS-library [12]) and it
remains static throughout the whole nonlinear compu-
tation without dynamic load-balancing. This leads to a
sufficient load balance for geometrically nonlinear ana-
lyses, as there is no additional effort necessary dependent
on the level of deformation and mostly also for material
nonlinearities, because the main effort lies still in the
solution of the resulting linear systems of equations and
not in the computation of the element stiffness matrices.
For adaptive parallel analyses however, dynamic load
balancing strategies are certainly more important.

Once, each processor is loaded with its own part of
the mesh, the "partial" or "local" stiffness matrices Ki
can be computed fully in parallel; the global stiffness
matrix is then given by

np

K=2:Ki
i=l

(19)

with np the number of processors. It is dear, that at the
inner boundaries (where the parts of the meshes on dif-
ferent processors share no des) communication is neces-
sary during the solution process.

domain decomposition
...

sequential

For the solution of the linear systems of equations,
iterative solvers are used. The main parallel tasks per
iteration hereby are the ca1culation of

1. vector updates,
2. dot products,
3. a matrix vector multiplication and
4. the solution of a preconditioning system.

To minimize communication in the fourth step, the
preconditioning is done block-wise on the local stiffness
matrices (19) with the preconditioning strategies given in
Section 3.1. The local stiffness matrices may be singular,
as there may be not enough boundary conditions within
local parts of the mesh; then no factorization may exist.
In order to overcome this problem the stiffness matrix
entries corresponding to the boundaries are summed up
before the factorization to enforce positive definiteness
of the local stiffness matrices (if the global stiffness ma-
trix is positive definite). This communication can be
done efficiently using asynchronous communication by
first computing the element stiffness matrices of the el-
ements neighboring the inner boundaries, then-while
communicating-computing the remaining major part
of the element stiffnesses. After this computation hope-
fully all messages arrived and the local stiffness matrices
can be updated.

For a more detailed description of the parallel im-
plementation see [20,21,27,28].

In Fig. 7 the computing times for the nonlinear flange
problem is given for different preconditioning strategies.
In the double-Iogarithmic plot, the curves denote an
almost constant incremental speedup, that is in the
range of 1.7-1.9. For larger processor numbers (32 and
64) it is decreasing as a consequence of the rather small
size of the problem: using 32 processors, each processor
has only approximately 3500 unknowns of 112,500. The
most efficient solution is obtained for the Block-MPILU

followed by the MPILU and FLILU preconditioning
strategy. The indicated super-linear speedup from one
processor to two processors is a consequence of the fact,
that the sequential time is obtained with areal sequential
version of the program on other hardware, and not by

computation
~

parallel

Fig.6.Schemeof theparallel solution concept.
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SSOR --<>--- :
MPILU ...

Block-MPILU -- .
FLlLU ---
NDILU----
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1 4 16 32 642 8
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Fig. 7. Computing times for the flange problem on an IBM SP2
with different numbers of processors varying the precondi-
tioning (one-processor solution with sequential version on other
computer).

running the parallel code on one processor on the par-
allel machine. For this reason, no speedup curve is given.

5. Static and dynamic buckJing behavior of cylindrical
steel silo shells

In the following, the application of transient finite
element analyses on silo buckling behavior is investi-
gated. In addition, the numerical aspects performing
a transient analysis with a Newmark time integration
scheme and the corresponding effective stiffness matrices
are discussed.

Steel silos are containers to store large amounts of
material, like e.g. granular solids, liquids or gas on a
fairly small area. They are often cylindrically shaped and
thin walled. Due to the weight of the upper structure
and in the case of granular solids sliding friction resp.
sticking of the bulk material to the silo walls these are
subjected to axial loading. Therefore the thin-walled
structure is prone to buckle, in particular, in the case of
emptying in the lower part (see Fig. 8).

Starting with abrief description of experiments per-
formed in order to obtain a finite element model with

only limited uncertainties, a standard static stability
analysis is presented and discussed criticaIly. Due to the
problems with the static approach-interpretation of
the postcritical behavior and numerical determination
of postbuckling branches-transient analyses are per-
formed to simulate the real experiments, for which re-
corded data are available. Finally, aspects ofthe transient
approach to parallel computations are discussed.

5.1. Experiments

To verify the mechanical model geveloped, experi-
mentaldata are necessaryand thereforephysicaltests

Compressive
streSses

Fig. 8. Silo, granular solid as filling, maximum axialloading in
silo walls by emptying.

with steel silos have been performed in a long-term co-
operative project at the University of Karlsruhe [17].
Before the tests, the geometry and thus the imperfections
of the structures were measured carefully using a special
coordinate measurement system, because it is weIl
known, that the imperfections have a major influence on
the buckling behavior.

In the first experimental series, the cylindrical sheIl
was mounted between two thick loading plates in a very
stiff testing machine. The axialloading was created by a
centrally loaded hydraulic cylinder at the top of the
cylinder (see Fig. 9). For experiments with additional
internal hydrostatic pressure, a thin synthetic membrane
was fed into the cylinder and water pressure was applied
using a filling pipe through the top plate. In this paper,
however, only the experiments and numerical simula-
tions with empty cylinders are considered, for filled
cylinders and real silo tests with granular material see
e.g. [16,32].

In all cases the buckling of the structure occurred
suddenly with a loud bang, no major deformations
could be observed in the prebuckling phase.

After the experiments were finished, material data
like Young's modulus, Poisson ratio and sheIl thickness
were determined using coupon testing.

5.2. Static stability analyses

In this section, the finite element model used for nu-
merical analyses is introduced and the computed buck-

crown of press

hydraulic cylinder

filling pipe

- test specimen

lower plate

Fig. 9. Setupofexperiments for verification tests, axialloading.
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ling loads are compared to experimental data. Also, the
computations performed to estimate the stability be-
havior and the postbuckling load are presented and
discussed.

5.2.1. Finite element model

The geometry and the material data used for the
numerical analyses are given in Fig. 10. It is an axiaIly
loaded cylindrical sheIl, that represents the lower part of
a steel silo endangered to buckling as shown in Fig. 8.
The boundary conditions are assumed to be hinged at
the top and at the bottom edge of the cylinder; aIl dis-
placements are constrained at the bottom edge, at the
top edge only the radial displacements are constrained,
such that the upper part of the structure can move in
axial direction.

For the cylinder AL- I 100 out of aseries of cylinders
tested, the measured imperfections are given in Fig. 1I .
There the deviation from the cylindrical shape is scaled
with a factor of 50. Besides a long-wave pattern in cir-
cumferential direction, one dent in the upper part is
visible. It is expected that from this particular imper-
fection the evolution of the buckling process starts.

Based on the measured coordinates a finite element
mesh with 9400 nodes and 9200 elements is chosen, re-
suIting in a linear system of equations with 46,800 un-
knowns.

r

geometry:
r = 625mm
h = 966mm
t = 0.56mm
material:

linear elastic (steel)
E = 2.1.105 N/mm2
v =0.3
p = 7.85. 10-6 kg/mm3

Fig. 10. Finite element model of silo; axial loading via con-
tacting upper plate.

Fig. 11. Geometrical imperfections for cylinder AL-I 100,
scaled by fador of 50.
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Table I
Experimentaland numericalbucklingloads, numericalsolution
by nonlinear static analysis

5.2.2. Computation 01 the buckling load
With the strategies from Section 2-static analyses

and path foIlowing-the buckling load of the axiaIly
loaded cylinder can be estimated numericaIly. In Table 1
the numerical buckling loads are compared to the ex-
perimental data for three different cylinders. There is a
rather good agreement between the numerical and the
experimental data, however, some differences remain.
These are mainly a resuIt of unknown imperfections in
the boundary conditions; in the experiment it can not be
ensured that the cylinder is in perfect contact with the
loading plates everywhere along the edges. Even minor
longitudinal deviations have great influence on the
membrane stress and consequently on the buckling load
(see [16]).

5.2.3. Quasi-static computation 01 the postbuckling be-
havior

In Fig. 12 the load-displacement curve for the cyl-
inder AL- 1100 is given. The stable parts of the solution
paths are plotted with solid lines, the unstable ones with
dashed lines. The shape of the postbuckling path is ra-
ther complex and looks similar for other cylinders. The
analysis has to be performed using smaIl load steps,
however, convergence is poor, although consistent lin-
earization of the nonlinear equations was performed.
The complete postbuckling path could not be deter-
mined beyond the points shown in the curve due to
major convergence problems. This is inherent in the
computation of the postbuckling paths for more com-
plex sheIl structures. In addition the deformation states
depicted in Fig. 13 and the corresponding load levels
marked by dots and numbers in the load-deflection
curve in Fig. l2(a), give no resp. not yet an indication
about the buckling mo des in the postbuckling region, as
is shown in the foIlowing chapter.

5.3. Transi('//l IIIwlyses

The limits of the static stability analysis, in particular
the numerical problems, lead to the question, if a more
realistic simulation of the complete process by a tran-
sient analysis would aIlow adetermination of somehow
useful postbuckling loads.

Numerical Experiment Fnum/ Fexp
solution

Buckling load (kN)
1100-AL 164 135 1.21
850-AL 263 230 1.14
650-AL 566 535 1.06
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Fig. 12. Load-displacement curve ofaxial displacement, static analysis: (a) complete curve and (b) elose-up.
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Fig. 13. Cylinder AL-llOO, deformation states, quasi-static analysis, scaled by factor of 30.

6

5.3.1. Simulation of the test procedure
For the simulation of the test procedure the same

finite element model as in the static case can be used,
with the exception of the load definition, that now has
to be a function of the time. As the test procedure
is rather displacement driven, in the simulation the
displacements of the upper edge are prescribed. The
quasi-static prebuckling behavior is achieved by slowly
increasing the displacements. Fig. 14(a) shows the load-
deflection behavior for a constant (very low) velocity
of v = 0.01 mmIs. The "load" is identical to the sum of

vertical forces at the lower boundary or, respectively, to
the sum of the contact forces at the upper boundary. As
known from the exp~riments, in the simulation a rather
sudden collapse of the cylinder is obtained. Due to the
low velocity, the prebuckling behavior is identical to the
one found in the quasi-static analysis and the same
buckling-load is obtained.

A doser look at the buckling process, as given in

Fiß. 14(b), reveal:i,that the buckling processtakes place

within a very short deformation of 0.0003 mm. In ad-
dition, the solid load-deflection curve shows an almost
constant postbuckling load after the buckling process,
that is very dose to the experimental value and is also in
good agreement with design rules, as e.g. the German
rule DIN 18,800. Only a small part ofthe systems energy
is transferred into kinetic energy, given by the dashed
line, indicating that the simulation remained really quasi-
sta tic.

The global buckling (see Fig. 15), starts from a dee-
per local dent, visible in Fig. 11, which transforms into a
global buckling pattern. The loads corresponding to the
states depicted in Fig. 15 are marked with dots in Fig.
14(a). At the midrange ofthe cylinder the pattern is dose
to the well known diamond pattern observed in buckling
experiments.

We have to remark that an increase of the velocity
by a factor of 100 does not result in an increase of
the buckling and the postbuckling load. However, the

buckling process is extended to 0.03 mm and the ki-
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Fig. 14. Load-deflection curve for cylinder AL-llOO, transient axial load, v = 0.01 mm/s; (a) total curve (b) dose-up at buckling point
induding kinetic energy time history and load levels from experiment and German DIN norm.

4 5

Fig. 15. Cylinder AL-I100, deformation states, transient axial load, v = 0.01 mm/s, scaled by factor of 10.

6

netic energy after buckling is about 30% larger com-
pared to the smaller velocity. The visually observed
buckling process is similar and therefore not shown here.
This, of course, changes with higher velocities. Similar
results were obtained for a wide range of cylinders and
imperfections [17,32]. Further aspects concerning such a
variation are discussed in detail, particularly also for
cylinders with uniform and nonuniform filling [17,32]. It
must be noted that beyond the single transient analysis
considered here the consideration of perturbations in
combination with transient analysis allows a very good
judgement of the sensitivity of a stable point on the load
deflection path [27,29]. This also holds for other load
cases.

5.4. Efficiency aspects

All the results presented have been obtained using
the parallel implementation of the FE-pro gram FEAP-

MeKa [33] as described in Section 4. Fig. 16 shows a
typical domain decomposition of the structure for 16
processors using the spectral bisection algorithm [1].
However, as discussed in [30], for quasi-static compu-
tations of the axially loaded cylinders almost no benefit
resulted from the utilization of parallel methods due to
the very ill-conditioning of the structural problem in
combination with iterative schemes for the solution of

the arising linear systems of equations. This is particu-
larly true, if the comparison of the computing time for
the iterative parallel solution is not made to the corre-
sponding iterative solution on one processor but to the
most efficient sequential solution that is available, what
in our case is the combination of the symmetrie QMR
method [8] with one factorization per Newton step as a
preconditioner [28]. Hence, in the static case, the user
has no benefit from parallel processing, until other so-
lution strategies like e.g. parallel direct methods or
multilcycl mcthQds are available.
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Fig. 16. Domain decomposition for 16 processors using spec-
tra1 bisection.

For the transient analysis the situation is different. As
mentioned in Seetion 2.2, for transient analyses using
the Newmark method (or related methods) the tangen-
tial stiffness, whieh is rather ill-eonditioned, is not the
eoeffieient matrix of the linear system of equations to be
solved, but the effeetive stiffness matrix (see Eq. (18)). A
doser look reveals, that deereasing the time step ßt leads
to a domination of the mass term in the final matrix. As

a eonsequenee, the eondition of the effeetive stiffness
matrix K* ameliorates, beeause the mass matrix is
symmetrie and positive definite. In Fig. 17 the solution
of one linear system cf equations with the eoeffieient
matrix K* at the beginning of the analysis with different
values for ßt is eompared using the preeonditioned eg-
method. For preeonditioning the weIl known ineomplete
faetorization MPILU is applied.

A signifieant saving of iterations and therefore a
deereasing eomputation time ean be observed for smaIl
time steps. Though it is not advisable to deerease the
time step unneeessarily-as a result many more linear
systems of equations would have to be solved for the
simulation of the same time interval-it ean be stated,
that if it is neeessary to use small time steps, one will
benefit from the better eonditioning of the effeetive
stiffness matrix.

In Fig. 18 the speedup of the eomplete transient
eomputation from Seetion 5.3.1 due to parallelization is

~ 400
0

'Z
~ 300
QJ
.f->

;.: 200
0

% 100

0

ßt=
u

'Z
cu.f->
\I)

~
r-I
I
0
T"""i

~
N
I
0
T"""i

~
"<t'
I
0
T"""i

~
Cf:)
I
0
T"""i

~
0
T"""i

~
T"""i

100 ' d..- .., - ~..
--- ideal ~

-~CG-MPILU ~

.~~ SQMR-LU ~

Co
~

'0
GI
GI
Co
UI

10 ~~._.~ ...~ ~ ...~_.- ~~ .
~~~._~.~. .~~~_..~~~ ~~~ ~-~

-~-~ ~ ~ ~_.. ~.

~ ---~~.~---

1
1 32 642 4 8 16

# processors

Fig. 18. Speedup of parallel solution for transient analysis
compared to two different sequentia1 solutions, CG-MPILU
and SQMR-LU.

given. The parallel eomputation is performed using the
preeonditioned eg-method, where on the loeal domains
of proeessors some ineomplete faetorizations for the
preeonditionings are done (see e.g. [28]). These eompu-
tation times are eompared to the eorresponding se-
quential solution (MPILU) and also to the most effieient
solution proeedure available, that is the symmetrie
QMR method with some eomplete faetorizations (LU),
as mentioned above. The speedup is suffieiently good, if
the size of the given problem is taken into account; for
the eomputation with 64 proeessors eaeh domain eon-
sists of about 150 elements, and the proeessors are by far
not loaded enough. However, it is obvious that in the
transient analysis the user benefits from the parallel
proeessing even eompared to the best available sequen-
tial method. Comparing the effort required for a statie
vs. a transient solution there is little differenee within a

solution step beyond the faet that the added mass matrix
improves the eondition number of the system matrix
also strongly dependent on the size of the time step.
However, the physieal nature of the problem is eonsid-
erably different in a transient proeess, as inertial forees
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timestep size l1t in Eq. (18).



Th. Rottner et aI. / Computers and Structures 80 (2002) 1523-1536 1535

are excited and the real failure process is more realisti-
cally represented.

6. Conclusions

The fully parallel solution of finite element problems
in structural mechanics even with bad condition num-
bers was presented. The domain decomposition is done
in aserial preprocessing step; it is valid for all type of
elements and it remains static throughout the whole
nonlinear computation. This has shown to be sufficient
in terms of load-balancing for geometrical nonlinear
problems and also for most problems involving material
nonlinearities, because the load unbalance only arises in
the assembly of the stiffness matrices which is done fully
in parallel and has no influence on the solution of linear
equation systems, which is the major parallel task.
Therefore it seems not to be useful to adopt dynamic
load-balancing strategies unless adaptivity is applied.
For the solution of the arising linear equations precon-
ditioned Krylov subspace methods are used.

Good speedups are achieved even for badly-condi-
tioned thin shell problems. For the static computation of
axially loaded cylindrical shells, though leading to good
incremental speedups, the implemented iterative solver
does not lead to an efficient solution compared to the
sequential hybrid direct/iterative solution strategy due
to conditioning problems. Here, almost no advantage
could be drawn from parallel processing.

For the mentioned problem of theanalysis ofaxially
loaded cylinders concerning buckling, the common sta-
tic stability analysis has been compared to an analysis
using algorithms as for transient loading. Though no
overall valid and computationally inexpensive criterion
is available for the judgement of the stability of the
simulated motion, the transient approach permits-in
contrast to the static analysis-the computation of the
postbuckling behavior with moderate effort. In addition,
the estimated postbuckling loads compare very weIl to
the design loads suggested in the German DIN 18,800
and to experimental values. These statements hold not
only for empty cylinders, but also for cylinders with
filling (see [32]).

Moreover, the transient scheme is well suited for it-
erative solution procedures due to the far better con-
ditioning of the effective stiffness matrix, if e.g. the
Newmark method is used for time integration; it is also
weIl suited to parallel processing and therefore reason-
able speedups can be achieved, which is not the case for
the static approach considering the available parallel
iterative equation solvers (see [30]).

Further advantages are expected for multilevel resp.
multigrid schemes which are currently under investiga-
tiOll,
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