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On Symmetrie Solution Sets
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Abstract

Given an n x n interval matrix [,4]and an interval vector [b]with n components we present an overview
on existing results on the solution set Ssym of linear systems of equations Ax = b with symmetrie
matrices A E (A]and veetors b E [b].Similarly we eonsider the set Esymof eigenpairs associated with the
symmetrie matrices A E [A].We report on characterizations of Ssymby means of inequalities, by means
of interseetion of sets, and by an approach which is generalizable to more general dependencies of the
en'tries. We also reeall two methods for enclosing Ssymby means of interval veetors, and we mention a
charaeterization of Esym.

AMS Subject Classifications: 65GIO.

Keywords: Solution set of linear systems, symmetrie solution set of linear systems, eigenpair set,
symmetrie eigenpair set, linear interval systems, Oettli-Prager theorem.

1.lntroduction

With this paper we intend to give an overview on existing results for the sym-
metric solution set

Ssym := {x E IRnlAx = b, A = AT E [A], bE [b]}, (1)

where [A]is a given n X n interval matrix with [A] (~[A]T,and [b]is a given interval
vector with n components. This set öbviously is a subset of the general solution set

S := {x E IRnlAx = b, A E [Al, bE [b]}, (2)

where the restriction A = AT on A E jRnxnis not required. Knowing Sand Ssymis
particularly interesting in the following situations:

(a) Assume that one has to solve a linear system lx = b on a computer using
floating point arithmetic. Due to rounding errors, the computed result i nor-
mally will not fulfill Ai = b. If .1A E IRnxn,.1b E IRnare given nonnegative tol-
erances one may view i as an acceptable solution whenever i E S with S formed
as in (2) with respect to [A] := A + [-.1A, .1A],[b]:= b + [-.1b, .1b];in this case i
can be interpreted as exact solution of a linear system Äx = b with some

Ä E [A], bE [b].
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(b) In contrast to (a), where the linear system is known we assurne now that one
has to solve a linear system Ax = b where A, b are not given exacdy, but they are
known to differfrom someA E [Rnxn,bE [Rnby at most ~A E [Rnxnand ~b E [Rn,
respectively (~A, ~b nonnegative). Then A E [A]:= A + [-~A, ~A], b E
[b]:= b + [-~b,~b]. Compute a solutionx*oL4x= b.Sincex* ES one can accept
x* as a good approximation for the unknown solution ofAx = b. This situation
can occur due to /'

- conversion errors (from decimal to binary or vice versa),

- effors in measurements,

- effors in adjusting the technical devices.

As we shall see Sand Ssymare not so easy to handle. Therefore, enclosures of S
and Ssym are important. For S such enclosures can be computed by means of
interval arithmetic. Since such methods are contained in textbooks like [1], [20],

e.g., we will omit them here. They trivially deliver also enclosures for Ssym~ S.
But there are also methods to enclose Ssymwithout bounding S at the same time.
We will study such methods later on. Although we shall concentrate on Ssymin
this paper we will give a short glance at S in order to work out particularities of
Ssym.So we start in Sec!. 3 with several equivalent statements for x E Sand list
some properties of S. In Sect. 4, we characterize the boundary aSsym of Ssymby
means ofparts ofhyperplanes and quadrics. In Sect. 5, we introduce two methods
for enclosing Ssymand in Sec!. 6, we report on the eigenpair set

E:= {(xT,;t)T E [Rn+llAx = Ax, x =I0, A E [A]} (3)

and the symmetric eigenpair set

Esym:= {(xT, Af E [Rn+ll Ax = Ax, x =I0, A = AT E [A]= [A]T}. (4)

It turns out that quadrics are needed in order to describe E and algebraic in-
equalities of order at most three in order to describe Esym-

2. Notations

In the sequel we denote intervals in square brackets, i.e., [a]= [f!,a], and identify
point intervals [a,a] by their unique element omitting the brackets. We assurne
that the reader is familiar with the elementary rules and basic facts of interval
arithmetic as introduced in the first chapters of [1] or [20], e.g. We will write I[R,
I[Rn, I[Rmxnfor the set of real compact intervals, interval vectors with n compo-
nents and m x n interval matnces, respectively. We apply the notation
[A]= [A,A]= ([a]z)= ([Qij'aij)) simultaneouslyfor interval matrices and have a
similar notation for interval vectors, real vectors and real matrices. An interval
matrix [A] is called regular if each A E [A] has this property. By A we denote the

midpoint of [A],i.e., A := ~ (A+ A), and by rad[A]:= !(A - A) its radius which we
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wrote as ~A in Seet. L In eonneetion with interval veetors and intervals this

notation is used analogously. If T is any bounded subset of !Rn the symbol DT
denotes the interval hull of T, i.e., the smallest enclosure of T by an interval
veetor. For real matriees A E !Rnxnwe write p(A) for the speetral radius of A, and
define the absolute value lAI = (Iaijl) E !Rnxn. In addition, we introduee the
entrywise defined partial ordering '<', and proeeed similarly with veetors. For
intervals [a], [e] we define Ira]!:= max{lalla E [an, ([a)) := min{lalla E [an and
q([a], [c]) := max{IQ - fl, la - cl} (= Hausdorff distance). For interval matriees
[A],[B] E !Rnxnwe introduee the distanee q([A], [B]) := (q([a]ij'[b]ij))E !Rnxnand
the eomparison matrix ([A)) = (cij) E !Rnxnwhieh we define by

.-

{
([at), if i = j,

cij.- I[at), ifi=/=I

We eall a regular matrix A E IRnxnan M matrix if aij < 0 for i =/= j and A-I > O.An
n x n interval matrix [A] is termed an interval M matrix if eaeh element A E [A]is
an M matrix. In partieular, an interval M matrix is always regular, and it is an
interval H matrix, i.e., it satisfies([A])-1 2:: O.

From interval analysis (cf. [1], e.g.) we use the following result:

Theorem 1. Let f(Xl,'" ,xn) be a rational expression in Xl,'" ,xn in which each
variable Xj occurs at most once. 1f [x]l' . . . , [X]nare given intervals then

f([Xh,..., [x]n) = {f(XI,... ,xn)1 Xl E [xh,... ,Xn E [X]n}'

i.e., replacing Xl,'" ,xn in f by [x]1,..., [X]nand evaluating all appearing arithmetic
operations according to their interval arithmetic definition yields to the range of f
restricted to [x]l x [xh x . . . X [x]n' 0

By I we denote the unit matrix, by 0 an orthant of !Rnand by 01 the first orthant,
i.e., 01 = {X E !RnI Xj 2:: 0 for i -- 1".., n}.

3. The Solution Set S

In this seetion, we eolleet some well-known results on S. We begin with some
equivalent fonnulations of the statement 'x E S' whieh we prove for complete-
ness.

Theorem 2. For [A] E !Rnxnand [b] E !Rn the following assertions are equivalent:

(a) X E S;

(h) 16- Axl :S (rad[A]) .lxi + rad[b];

(e) 3D E !Rnxn: IDI< I 1\Ax - b = D((rad[A]) lxi + rad[b]); (Rohn, 1984[22])

(Oettli and Prager, 1964 [2lD
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(d) [b] n [A]x # 0;

(e) 0 E [b] - [A]x;

(Beeck, 1972 [10])

(Beeck, 1972 [10])
n n

(f) ß - '5:.atxj < 0 < bi - '5:.aijxj, i = 1,..., n,
j= I j= I - + .

- +

{
[aij'aij] If xJ > 0,

where aij' aij are defined by [a]ij = [ + - ]
"

f . 0 (Hartfiel, 1980 [12])
aij' aij I Xj < .

Proof

(a) =? (b)

Since x ES there are A E [A],b E [b]such that Ax = b. Therefore,

0 = Ax - b{ >1x - (rad[ADlxl- b - rad[b],<1 x + (rad[ADlxl-b + rad[b],

whence -((rad[ADlxl + rad[bD < b - Ax < (rad[ADlxl+ rad[b]. This implies (b).

(b) =? (c)

is seen immediately.

(c) =? (d)

Let Dx be such that IDxl = land Dxx = lxi. From (c) follows
(1 - D(rad[ADDx)x= b+ D( rad[bDE [b]. Since 1 - D(rad[ADDxE [A], the as-
sertion (d) folIows.

(d) =? (e)

From the assumption (d) and Theorem 1 we obtain A E [A], b E [b] such that
Ax = b holds. Hence 0 = b - Ax E [b] - [A]x.

(e) =? (f)

From (e) and the definition of a'/j it folIows:

n n

inf([A]x - [bDi = -bi + L aijxj ::; 0 < -Qi+ L atxj = sup([A]x - [bDi'
j=l j=l

i = 1,... ,n.

(f) =? (a)

From (f) we obtain:

n n

([A]X)i = L aijxj < bi, ([A]X)i= L atxj > ß.
j=1 j=l

Define aij(t):= tat + (1 - t)aij, ßi(t) := '5:.;=1aij(t)xj, tE [0,1], i,j = 1,..., n.
Since ßJt) is continuous it assurnes for 0 < t < 1 all values between ßi(O) and
ßi(l). From ßj(O) < bj, 14 < ßj(l) and Qj < bj there is some value t = tj E [0,1]
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Fig. 1. The solution set S of Example 1

such that ßi(ti)E[bt. With A:=A(tI,...,tn):=(aij(ti))' b:=(ßi(ti)) we get
Ax = b, A E [A), b E [b), hence xE S. D

Note that the equivalence (a) {::} (b) is the famous Oettli-Prager criterion which
was generalized by Fischer and Heindl in [13] (cf. also [14]). In the equivalence
(a) {::} (f) the coefficients of the inequalities remain fix as long as one stays in a
fixed orthant. Therefore, tbis equivalence shows that the intersection of S with
any fixed closed orthant 0 is the intersection of finitely many half-spaces. In
particular, the boundary as of S is composed of finitely many pieces of hy-
perplanes. As long as [A]is regular, S is connected.and compact which follows
from the continuous mapping f(A, b) = A-Ib on the connected and compact set
[A)x [b).If [A)contains a singular matrix, connectivity may be lost as Jansson's
example [A]=[-l,l], [b)=l, S=(-oo,-I]U[1,oo) in [17] shows. On the
other hand it can be present as !he example [A)=[-I,I], [b]=[O,I], S=IR
illustrates. Compactness is always absent if [A) is not regular and S =I- 0. In this
case S is unbounded even if the linear systems with singular matrices A E [A)
are not solvable for any bE [b). Use Cramer's rule, e.g., to prove this state-
ment. Since half-spaces are convex and intersections of convex sets share this
property one obtains it for Sn O. The following example shows, however, that
convexity need not hold for the whole solution set S.

Example 1. Let

[A] = ([- :, I] n ' [bI = (i- ~' I])
From Theorem 2, we get the inequalities Ixzl< lXII < 1 which characterize the set
S completely. Its position in IRzcan be seen from the subsequent Fig. 1.
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4. The Symmetrie Solution Set Ssym

4.1. Historical Remarks and Properties

In contrast to S the symmetric solution set Ssymas defined in (1) is much more
difficult to characterize. It occurs when the coefficients of a fixed linear system
with a symmetric matrix A is perturbed by symmetric matrices only. Since
Ssym<;: S Neumaier advised in a letter to J. Rohn [23]dated on 23rd December,
1985, to consider this set for its own. In his book [20]which appeared in 1990 he
mentioned Ssymin Example 3.4.2 . In the same year, Jansson gave a talk in Albena
in which he presented inner and outer enclosures for Ssym(cf. Sect. 5 ofthe present
paper). For more general dependencies such enclosures were given by Rump in his
survey article [24] which appeared in 1994. In 1993 an interval version of the
Cholesky method was introduced by the authors in [8] in order to enclose Ssym.
Criteria of feasibility were proved there and.a corresponding perturbation result
was given in [9].This method was recently extended to a block version by Schäfer
in [26]. It was proved for the first time in 1995 in [9] that the boundary aSsymcan
be curvilinear - in contrast to the boundary as of S. The proof covered only 2 x 2
matrices and could unfortunately not be generalized to the n-dimensional case.
By means of the Fourier-Motzkin elimination process oflinear programming this
was possible in 1996 in [2]; cf. also [3]. These results were even generalized two
years later in [4] where now affine dependencies were allowed. In [7] the elimi-
nation process introduced in [2] and [4] was generalized in order to handle par-
ticular dependencies such as Toeplitz and Hankel matrices. While the approaches
always took place in a fixed orthant it was possible in [19] to modify the elimi-
nation process by an approach similar to the equivalence (a) {:} (e) in Theorem 2
due to Beeck; cf. SecL 4.3 of the present paper.

Westart by an instructive 2 x 2 example whose features remain true also in the
n x n case.

Example 2. Let

[A] = ([1 ~ 2]
[1,2] )[-1,0] , [b] = ([1~2])'

Considering A-Ib one easily recognizes Ssym<;: S <;: 01. Anticipating SecL 4.2, we
list the inequalities by which Ssym is described:

-4 + Xl +X2 :::;0,
4 - Xl - 2x2 <0,

-2 +Xl -X2 <0,

1 - 2x1 <0,

xT - 4Xl +X2 <0,

xT +~ - 4XI + 2x2 >0.

The first four inequalities characterize S while the last two restrict X to be con-

tained in Ssym.



On Symmetrie Solution Sets 7

X2

5

3

1

1 3 5 Xl

Fig. 2. The solution sets Sand Ssymof Example 2

From Fig. 2, one sees that Ssymis connected and compact. This remains true also
in the general case as long as [A]is regular. The counterexamples for non-regular
matrices are the same as in Sect. 3. As we shall see (Sects. 4.2 and 4.4) the

boundary 8Ssym of Ssymis composed by pieces of hyperplanes and quadrics; in
particular, 8Ssymcan be curvilinear. In general, Ssymis not convex, and the same
holds true for its intersection with an orthant. Up to now it is unknown whether

Ssymn 0 is always connected.

4.2. Characterization of Ssymby Means of a Fourier-Motzkin Elimination

In this section, we show that Ssymno can be characterized by means of quadrics
and hyperplanes. To this end we aim at describing Ssymn 0 by means oflinear and
quadratic inequalities whose coefficients consist of the bounds Qi' bi and [bj, aij.
Without loss of generality we choose the orthant 0 = 01. We only indicate the
algorithm by replacing band al2 by Q, band Q12,al2, respectively. We get the
following equivalences:

x E Ssymn 01 <=?x E 01 /\ 3A = AT E [A], b E [b] : Ax = b
<=?xE 01 /\ 3aij E IR for i,j = 1,. . . ,n :

(aij = aji /\

n

Qi ::; L aijXj ::; bi
j=1

Qij < aij < aij
)

<=? xE Sn 01 /\ 3aij E IRfor i,j = 1,..., n :
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(aij = aji 1\

n

ßxi < L aijXiXj < bixi
j=1

rbjXiXj < aijXiXj < aijXiXj
). (5)

Only the implieation '~' of the last assertion requires a proof sinee Xi = 0 or
Xj = 0 is possible. Let A = AT be the matrix whose entries fulfill,by assumption,
the inequalities in (5). If Xk i- 0, Xl i- 0 then obviously akl E [a]kl' Otherwise
nothing ean be said on akl in this respeet. From X E sn 01 we get ClijE [a].. such- ~
that 2:;=1 ClijXj= bi E [bt. Define A by

{

akl

akl

akl:= ~lk
akl

if Xk i- 0, Xl i- 0 ,
if Xk ='0 and Xl i- 0 ,
if Xk i- 0 and Xl = 0,
if Xk = 0 and Xl = O.

Sinee we assumed [A]= [At wh~n eonsideri~g Ssym, the midpoint A of [A] is
symmetrie, and the definition of A shows that A has this property, too. Moreover
we get Ä E [A] and 12< Äx < b for the veetor X under eonsideration. Note that

(a) whenever aij oeeurs in (5) it has the same faetor XiXj;

(b) trivial inequalities like 0 < 0 ean be omitted;

(e) there are only linear inequalities (cf. Theorem 2 (f) and quadratie ones;

(d) no additional multiplieation will be needed in the further stages of the algorithm.

We next isolate the al2-term:

xE Ssymn 01 {::} xE Sn 01 1\ 3aij E ~ for i,j = 1,..., n :
n

{121 - LaljXj}xl ::; al2xlx2
j=1
fl=2

n

::; {bI - LaljXj }Xl
j=1
fl=2

(aij = aji 1\

n

{122 - L a2jXj }X2 < a12XIX2
j=2

). (6)

n

< {b2 - La2jXj}X2
j=2

Ql2XIX2 ::; a12Xlx2 < a12xlx2

remaining al2 - free inequalities
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Now those inequalities written down explicitly in (6) hold if and only if the
maximum of their left-hand sides is less or equal than the minimum of their right-
hand sides and this again holds if and only if each of these left-hand sides is less or
equal than each of the right-hand sides. Therefore we get:

xE Ssymn 01 {::}xE Sn 01/\ 3aij E ~ for i;j = 1,..., n, (i,j) (j {(I, 2), (2, I)} :
n

H~I -2::aljXj}xI :::;a12XIXZ
j=l
#z

n

H~z~ 2:: a2jXj }xz :::; aIZxIxZ
j=2

n n

{QI -2::aljXj}xI < {hz - 2::aljXj}x2
j=I j=2
j=/=2

(aij = aji /\
n

. Q12XIX2'< {bI - LaIjXj}xl
j=I
j=/=2

).

n

Q12XIX2 <{b2 ~La2jXj}X2
j=2

n . n

{Q2 - LaijXj}X2 < {bI - LaljXj}XI
j=2 j=1

#2

remaininga12 - free inequalities

No all-term appears now any longer in the set ofinqualities, and the isolation and
elimination process can be repeated for the other entries aij:Atthe end we are left
with a set of inequalities as indicated above. This process which was given in a
slightly modified form in [2] must oe repeated. for any of the 2n orthants, so the
amount of inequalities can increasetremendously with. n although sometimes
inequalities can be combined and turn out to be contained in other ones.

We end this section with another example whose inequalities were derived by the
method above.

Example 3. Let

[A] := ([O~I]
[0, 1]

)
.- ([0,2]

)[-4, -I] , [b].- [0,2] .

Thcn S n 01 is characterized by

0 <Xl < 2, 0 :::;X2 < Xl,
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Fig. 3. The solution sets Sand Ssymof Example 3

while sn 04 with 04 := {(Xl,X2l E 1R2\ Xl > 0, X2 < O}can be described by

-2 ::; X2 < 0, 0 <Xl::; 2 - X2.

Note that we combined some of the inequalities omitting redundant ones and

taking into account the respective orthant. For Ssymthe following additional in-
equalities are needed

{
(Xl - 1)2 + x~ ::; 1
(Xl - 1)2 + (X2 + 1)2 ::; 2

in the case Ssymn 01,
in the case Ssymn 04,

where we omitted again redundant ones. Figure 3 shows Sand Ssym.

4.3 Characterization of Ssymby Means of Sets

In this section, we do not stick to a fixed orthant but describe Ssymas a whole. This
decreases the amount of relations drastically. For the algorithm we need a simple
lemma which we formulate first.

Lemma 1.

(a) Let [at E IlRfor i = 1,... ,n, n 2:3. Then
n

n[at # 0 {:} [a]i n [a]j # 0 for i < j, i,j = 1,. . . , n.
i=l

(b) Let [a], [b], [c] E IIR. Then

([a] + [b]) n [c] t- 0 {:} [a] n ([c] - [b])t- 0. D
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The proof is easy. Like the whole approach in this section it can be found in [19].
As the referee pointed out part (a) of the lemma is the simplest case of Helly's
theorem on intersections of convex sets; cf., e.g., Theorem 12 in [18], p. 166. He
also mentioned that part (b) is often used in the equivalent form

([a] - [bDn [cl 0:} 0 ~ ([a] - [cD n [b] 0:} 0.

Now we show how to replace the parameters aij, bi by intersections involving [a]ij,
[b]j.

x E Ssym ~ 3 aij E IR for i,j = 1, . . . ,n :

aij = aji A {taijXj} n [b],# 0

{aiJ n [atj 0:} 0

~ xE S A 3 aij E IRfor i,j = 1,..., n :

aij = aji A {
t aijXij

}
n [btXi 0:} 0

}=l

{aijXiXj} n [abXiXj0:} 0

~ x E S A 3. aij E IR for i,j = 1,. . . , n :
n

{a12xlx2} n ([b] lXI - LaljXIXj) 0:} 0
j=I
#2

aij = aji A

n

{a12xlx2} n ([bbx2 - La2jX2Xj) 0:} 0
j=2

{al2XIX2} n [a]l2xlx2 0:} 0

remaining al2 - free intersections

~ xE S A 3 aij E IR for i,j = 1,... ,n, (i,j) f/. {(I,2),(2,In :

n

[a]l2xlx2 n ([b]lxl - LaljXIXj)
j=I
#2

aij = aji A n

n ([bbX2 - La2jX2Xj) 0:} 0
j=2

remaining al2 - -free intersections
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The multiplication by Xi and Xj, respectively, is used as in Sect. 4.2. No ad-
ditional multiplication is needed in the further course of the algorithm. In
order to continue it is necessary to resolve the tripie intersection by intersee-
tions with two operands. The key to this is given by Lemma 1 . We leave the
details to the reader. The quadrics are seen here only at a second glance. They
are hidden behind the interseetions. However, since these intersections can be
expressed by inequalities the approach in this section can be reformulated by
formulas as in Sect. 4.2. Both approaches lack, however, a generalization to
more than dependencies as they occur in symmetrie (ai) = aji), skew-symmetric
(aij = -aji), and persymmetrie matrices (ai) = an+I-j,n+I-i),respectively.In or-
der to generalize the elimination process in Sect. 4.2 we need a modification
presented in Sect. 4.4.

We conclude the present section by the general 3 x 3 case.

Example 4. Let [A]= [Af E I~3x3, [b] E I~3 and consider again Ssym. Eliminat-
ing bi, aü for i = 1,2,3 and a12leads to

xE Ssym {:} xE S 1\ :3 aB, an E ~: (al3 = a31 1\ an = a32

[a] 12XIX2 n ([bhxI - [a]llxT - aBxlx3)

n ([bhx2 - [a]22x~ - anX2X3) -# 0

{al3Xlx3} n ([bbx3 - anX2X3 - [ab3xD -# 0 ~). (7)1\

{al3XIX3} n [a]13xlx3-#0

{anX2X3} n [a]nX2X3 -# 0

After having resolved the tripie intersection in (7) into simple intersections the
isolation of aB and its elimination yield to

X E Ssym {:} x E S 1\ :3 an E ~: (an = a32

[a]Bxlx3 n ([bhxI - [a]llxT - [a]12xlx2)

1\

n ([bhx3 - anX2X3 - [ab3xD

n ([b]IxI - [b]2x2 - [a]llxT + [a]22x~ + a23x2x3) -# 0 ).

{anX2X3} n ([bhx2 - [a]12xlx2 - [a]22xD -# 0

{anX2X3} n [a]nX2X3-# 0

Here again we omitted an intersection which can be deduced from x E S. Elim-

inating the last parameter an the fourfold intersection produces (i) simple
intersections among which only one is a23-free. This one turns out to be
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a consequence of xE S. Therefore, it can be omitted, and we are finally left with
the equivalence

X E Ssym {:} x E S

1\ [a]23x2x3 n ([bhx2 - [a]12xlx2 - [ab2xi)

n ([bhx3 - [a]13xlx3 - [ab3~)

n (-[b]lxl + [bbx2+ [a]llxi- [ab2x~ + [a]13xlx3)

n (-[bhxl + [bhx2+ [bhx3+ [a]llxf- [a]22xi- [ab3~)/2

n (-[b]}Xl + [bbx3+ [a]llxf + [a]12xlx2- [ah3xj)

n {([b]l- [b]l)Xl + [bhx2+ ([a]ll- [a]l1)xi

- [a]12xlx2 - [a]22xi}

=I 0.

Using Lemma 1 (a) this multiple intersection can equivalently be written as

G) = 21 simple ones. Two of them can be deduced from the requiry x E S. The
remaining 19 ones together with the three occuring from Beeck's criterion in
Theorem 2 (d) result in a total of 22 which all can be rewritten in the form
"0 E .. .". lntroducing the interval bounds, fixing an orthant 0 and taking into
account

0 E [al {:} Q < 0 :::; 7i

finally yields to 44 inequalities for the characterization of Ssymn 0 as was already
mentioned without proof in [2].

4.4. A GeneralizableApproach Jor Characterizing Ssym

The subsequent modification of SecL 4.2 is based on the following theorem which
is proved in [7].

Theorem3. Let Jr' g)., A.= 1,. . . ,k (> 2), Jl = 1,... ,m, be real valuedJunctions
oJx = (x}, . . . ,xn) on some subset D ~ IRn.Assume that there is a positive integer
k} < k such that

Iu (x)t 0 Jor all A.E {I,... ,k},

J).}(x) > 0 Jor all x E D and all A.E {I, . . . , k},

Jor each x E D there is an index ß* = ß*(x) E {I,..., kI} with Jß'} (x) > 0

and an index y* = y*(x) E {k} + 1,... ,k} with fr'l(X) > O.

(8)

(9)

(10)

For m parameters Ul, . . . , Umvarying in IRand Jor x varying in D define the sets
SI, S2by
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SI := {X E DI::3uflE IR, J1= 1,...,m: (11), (12) hold},

S2 := {x E DI::3uflE IR, J1= 2,...,m: (13) holds},

where the inequalities (J 1) > (J2) and (13) >respectively> are given by

rn

gp(x) + Lfpfl(X)Ufl < fPl (X)UI,
fl=2

ß = 1, . . . , k1, (11)

rn

fYl (X)Ul :s; gy(x) + LfYfl(X)Ufl,
fl=2

y = kl + 1,..., k, (12)

and

rn rn

gp(X)fYl (x) + Lfpfl(X)hI (X)Ufl< gy(x)fpI (x) + LfYfl(X)fpl (x)ufl,
fl=2 fl=2

ß = 1,... ,k1, Y= kI + 1,... ,k.

(13)

(Trivial inequalities such as 0 < 0 can be omitted.) Then

SI = S2. D

The assertion of Theorem 3 even holds if fßI (x), hl (x) are rep1aced in (13) ( but
not in (11), (12)) by ]PI (x) and hI (x), respectively, where

fpI (x) = hpy(x)]P1(x), fyl (x) = hpy(x)hl (x)

with nonnegative functions fPI, fy!> hpy defined on D.

In contrast to the procedure in Sect. 4.2 there is no need in Theorem 3 to
find factors such that the expressions to be eliminated have the same shape in
all inequalities after multiplication. This allows the application of this
theorem also for more general dependeneies of the entries of A and b, re-
spectively. We apply now the theorem to symmetrie matrices with D:= 01
starting as in Sect. 4.2. lust for illustration, we ehoose al2 as the entry to be
eliminated.

xE Ssymn 01 q xE 01 1\ ::3aij E IR for i,j = 1,..., n :

( -

{

Qi :s; t aijxj < bi

}
)aij - aji 1\ }-1

a-- < az
-
;- < ai;--Z} - -
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{:}xEOI J\ 3aijE~fori,j=I,...,n:
n

121- LaljXj < al2x2
j=1
j=J2

n

al2x2 < bl - LaljXj
j=1
j=J2

(aij = aji J\

n

122 - L a2jXj < al2xI
j=2

)
n

al2xl < b2 - L a2jXj
j=2

f!12 < al2

al2 < al2

remaining al2 - free inequalities

{:}X E 01 J\ 3 aij E ~ for i,j= I,...,n, (i,j) tJ. {(I,2),(2, I)}:
n

121- LaljXj S al2X2,
j=l
j=J2

n

f!l2X2 < b1 - LaljXj,
j=l
j=J2

n

b - L a2jXj < a12XI,
j=2

)(aij = aji J\
n

f!12XI S b2 - L a2jXj,
j=2

... n n

QIXl - LaljXIXj S b2x2 - La2jX2Xj,
j=1 j=2
j#

n n

Q2X2 - L a2jX2Xj < b1xI - LaljXIXj,
j=2 j=1

j#

femaining al2 - ffee inequalities

The first four inequalities coincide with those in the elimination process for
Sn 01. The next two are new; they are apparently caused by the symmetry and
contain quadratic polynomials. When eliminating aij for (i,j) tJ.{(1, 2), (2, I)}
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according to the remark below Theorem 3, no additional multiplication is needed in
inequalities which contain quadratic polynomials. This is true because the function
/Afl in front of aij reads/Afl(x) = XiXj in these inequalities, and in the remaining (non-

quadratic) inequalities they are given by /Afl(X)= Xi,/Afl(X)= Xj and /Afl(X)= I,
respectively. Note that the sign ofthese functions remains constant over the orthant
01. This is the reason, why no splitting is needed for D = 01 during the elimination
process. Pursuing this process shows that the final inequalities for Ssymn 01 consist
of the inequalities which characterize S n 01, and quadratic inequalities.

5. Enclosures for Ssym

As the preceding seetions show itis gene rally not easy to decide whether a given
vector X belongs to Ssym for given [A]= [Af E IlRnxn, [b]E IR. Therefore, it is
interesting to look for bounds of Ssym.We iestrict öurselves to bounds which are
not at the same time bounds of S, i.e., we look for bounds which should be better
than the latter ones. Up to now there are essentially two methods with this
property: a direct one and an iterative one. The first generalizes the well-known
Cholesky method and uses the definitions

[a]2 := {a2la E [a]}, M := [a]1 := {Jala E [a]},

where Q > 0 is assumed for the square root. The algorithm which was first con-
sidered in [8] reads

Step 1: "LL T-decomposition"

for j := I to n do

(

j-l

)

1/2

[/]jj:= [a]jj- I)/]~k ;
k=1

for i := j + I to n do

[/]ij:= ( [a]ij - f(lb[/]jk ) /(I]jj;
k=1

Step 2: Forward substitution'

for i := 1 to n do

[YL:=
( [bL - f[l]ij[Yt )

/[/]ii;
;=1

Step 3: Backward substitution

for i:= n downto 1 do

[xl; := (lYJi- j1;" [/lji[xJf) /[/]"
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It is easy to see by the indusion monotonieity of the interval arithmetie operations
that SsymC [xf holds. One also sees direetly that the feasibility of the preeeding
interval Choleskymethod does not depend -on [b]and requires that eaeh matrix
A E [A]is symmetrie and positive definite. Unfortunately, this property is not suf-
fieient. As was shown in [8] the feasibility is guaranteed if [A]is asymmetrie H matrix
satisfying f!.ü> 0 for i = 1,. . . , n. Interval matriees [A]with a strietly diagonally
dominant eomparison matrix ([A]) and f!.ii> 0, i = 1,. . . ,n, belong to this dass.

Moreover, ifthe algorithm is feasible for [A]and if p(l[AJclq([A],rD/ < 1 then it is
feasible for [B], too, as was proved in [9]. Here, I[A] 1:= ([L] )- ([L])-l where
[L] = ([lt) is the lower triangular interval matrix whose n?n zero entries [ltj, i > j,
are defined by the algorithm above. Replaeing [A], [B]byA, [A],respeetively,proves
that the interval Cholesky method is feasible whenever A is positive definite and
satisfies p(IAClrad([A])) < 1. The following example shows that the interval
Cholesky method is tailored to endose Ssym,but not S. However, it does not always
yield to encIosures for Ssymwhieh are better than general endosures for S. In par-
tieular, for larger n it may show a bad behavior due to rounding errors and data
dependeneies.

Example 5. Let

Setting A := (~

.- ( 4 [-1,1]
)[A].- [-1,1] 4 '

:) for A E [A],we get

-] 6 (
4-IX

)
.

A b = - - ~ 4 - ß wlth IX,ß E [-1, 1].

[b]:= (~).

Sinee ß = IXin the ease A = AT E [A] one obtains

OSSJm = ([~L2],m, 2]l, OS = ([g, 2],[g, 2]l,

[xf = ([1,2],[i~,2]l, [x]G = ([1,2],G~,2]l,

where [x]G denotes the veetor resulting from the interval Gaussian algorithm
(cf. [1]). The sets

s- = {4~ a( :)r - 1 < a < 1} = {Y.(: N < Y < 2}

and (see [12])

S = eonvex hUll
({(~,~l (22l (~ 30)T

(30 ~)
T

})5 5 ' , , 17'17 ' 17'17

ean be seen in Fig. 4.



18 G. Alefeld et al.

Example 5 illustrates that the following properties can occur.

(i) OSsymi- OS(cf. also [20], p. 95),

(ii) OSsymi- [x]c,

(iii) OSi- [x]G,

(iv) S Cl [x]c (but Ssym~ [xf),

(v) [xf ~ [x]Gwith [xf i- [x]G.

Unfortunately, [xf ~ [x]c with [x]Gi- [x]c can also occur as was shown by an
example in [8].

The second method which we want to recall was introduced by Jansson [15], [16]
and is a modification of the following we!l-known iterative method for general
linear interval systems

[X]k+l= i + C([b]- [A]i)+ (1- C[A])([xt - i), k = 0, 1,. ..,

where C E [Rnxnis any preconditioning matrix and i is any fixed vector from [Rn.
Usually, C is an approximate inverse of the midpoint A and i is an approximate
solution of the midpoint equationAx = b. Exploitingthe symmetryof A E [A]and
of [A]= [A]T and substituting [x]~ := [x]k - i finally yields to

[X]~+l= [z]sym + (1- C[A])[x]~, k = 0, 1,... (14)

y

2

1

Ssym

x
1 2

Fig.4. ThesolutionsetsSand Ssymof Example5
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with

n n j-l

[Z]?m := L ciA[b]j - [a]jiJ - L L(CijXZ+ CilXj)[atz
j=1 j=1 Z=I

= {(C(b -Ax))iIA = AT E [A],b E [b]) for i = 1,... ,no

Note that the last equality holds by virtue of Theorem 1 . Thus [z]symis the
interval hull of the set {C(b - Ax) IA = AT E [A], b E [b]}and is therefore optimal.
The subsequentresults were proved in [15],[16].

Theorem 4. Let (Ssym)idenote the projection 01Ssymonto the Xi coordinate axis and
let [~t := (1- C[AD[x]~. Jf '

([x]~+I)i~([X]~)i fori= 1,...,n

then the lollowing assertions hold.

(a) [A]and C are regular.

(b) Ssym ~ x+ [x]~+1 ~ x+ [x]~ for k > ko.

( ) - sym Ako .
(S )

- sym Ako
e Xi + ~j + Qj < mm sym j < Xi + ~ + ilj ,

- -sym Ako < (S ) < - -sym Ako
Xj +Zj + Qj - max sym j - Xj +Zj + ili. 0

By Theorem 4 one sees at onee that the relations

inf Ssym E x + tym + [~]ko,

SUpSsym Ex + zsym+ [L\]ko

hold. Therefore, if rad[~]ko is small then the enclosure for Ssymis good. This ean be
expeeted, in partieular, if rad[A],rad[b] are smalI, C ~ i-I and x~ i-Ib. Then
IIrad[x]~ 1100« 1 is possible whenee [~to is quadratieally small.

6. The Symmetrie Eigenpair Set

Our final seetion is devoted to the eigenpair sets E and Esymfrom (3) and (4),
respeetively. In order to eharaeterize E we apply the Oettli-Prager theorem to the
equation (A - ll)x = 0 whieh leads to

(XT,A{ E E {:? 1(1 - ll)xl < (rad[ADlxl/\ X -I o. (15)

There is a slight difficultyin comparison with Sect. 3 in so far as the matrix A - II
is not fixed but depends on the last eomponent of the veetor (xT,Altested to
belong to E. This diffieulty ean be overeome thinking A to be arbitrary but fixed.
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Then A - II is a fixed matrix for which Theorem 2 can be applied without any
restrictions. Rewriting (15) as in Theorem 2(f) by means of inequalities shows
that E nO can be characterized by a variety of inequalities which - by virtue of
the Ax term are at most quadratic. That means that E is the union of finitely many
intersections of sets whose boundaries are pieces of hyperplanes and quadrics. We
mention that the inequalities for E can also be obtained by applying Theorem 3 .
Using any approach of Sect. 4 shows that the symmetrie eigenpair set Esymcan be
described by means of inequalities with polynomials of order three at most. The
starting point is now formed by the double inequality

(A - ll)x < 0 S (A - A1)X

which is equivalent to (A - ll)x = O.For details we refer to [6].We conclude our
paper with an illustrative example for E and Esym.

Example 6. Let

[A] = ([-J, 1]
[-1,1]

)1 .

Then E is characterized by

{
Xl - jX21S Axl< Xl + IX21

Xl . X2 i- 0 /\ -lXII + X2 < Ax2< Ixd + X2 .

If A = 1 then any vector (Xl,x2l i- 0 occurs as an eigenvector hence E ~ 1R3
contains the plane A = 1 punctured at (0,0, l)T. If J, i- 1 then Xl . X2 i- 0 and
(xT, Al E E if and only if the subsequent statement holds.

2

1.8

1.6

1.4
<:'j

'"d 1.2
.D
8 1<:'j........

0.8

0.6

0.4

0.2

0
-10 -8 -6

x2 =1

-4 -2 0
xl

2 4 6 8 10

Fig. 5. EI := E nPI and Esymn PI (dashed) of Example 6
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{

I -Ixzl ~ A< 1+ I~~ I

A'" 1 AXI . xd 0 A 1 -I~:I :S: A < 1+ I~I.

Restrieting A E [A]to be symmetrie yields to any pair (xl,x2f i- 0 as eigenveetor
in the ease A= 1. This is true by virtue of I = IT E [A]. If Ai- I then Esym is
deseribed by lXII= IX21 > 0, 0 < A< 2, li- 1, whieh together with E leads to
Fig. 5 in whieh we interseeted these sets with the plane PI : X2= 1.
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