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Abstract

Given an n x n interval matrix [4] and an interval vector [b] with » components we present an overview
on existing results on the solution set Sy, of linear systems of equations Ax = b with symmetric
matrices 4 € [4] and vectors b € [b]. Similarly we consider the set gy, of eigenpairs associated with the
symmetric matrices 4 € [4]. We report on characterizations of Sgm by means of inequalities, by means
of intersection of sets, and by an approach which is generalizable to more general dependencies of the
entries. We also recall two methods for enclosing Sy, by means of interval vectors, and we mention a
characterization of Egyp,.
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Keywords: Solution set of linear systems, symmetric solution set of linear systems, eigenpair set,
symmetric eigenpair set, linear interval systems, Oetth-Prager theorem.

1. Introduction

With this paper we intend to give an overview on existing results for the sym-
metric solution set

Som = {x €R"| Ax=b, A=A4" € [4], b€ [b]}, (1)

where [4] is a given n x n interval matrix with [4] = [4]", and [b] is a given interval
vector with n components. This set obviously is a subset of the general solution set

= {x R Ax=b, A€ [d], be b}, 2)

where the restriction 4 = A" on 4 € R™" is not required. Knowing S and Sy, is
particularly interesting in the following situations:

(a) Assume that one has to solve a linear system Ax = b on a computer using
floating point arithmetic. Due to rounding errors, the computed result x nor-
mally will not fulfill A% =b. If A4 € R™" Ab € R"are given nonnegative tol-
erances one may view X as an acceptable solution whenever x € S with S formed
as in (2) with respect to [4] :== 4 + [~A4,A 4], [b] := b+ [~Ab, Ab]; in this case %
can be interpreted as exact solution of a linear system Ax =b with some

Aeld], be [].
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(b) In contrast to (a), where the linear system is known we assume now that one
has to solve a linear system 4Ax = b where 4, b are not given exactly, but they are
known to differ from some 4 € R™” b € R" by at most A4 € R™" and Ab € R",
respectively (A4, Ab nonnegative). Then A€ [d]:=A+[-A4,A4], b€
[b] := b + [~Ab, Ab]. Compute a solution x* of Ax = b. Since x* € S one can accept
x* as a good approximation for the unknown solution of Ax = b. This situation
can occur due to .

— conversion errors (from decimal to binary or vice versa),
— errors in measurements,
— errors in adjusting the technical devices.

As we shall see S and Sg, are not so easy to handle. Therefore, enclosures of S
and Sgym are important. For S such enclosures can be computed by means of
interval arithmetic. Since such methods are contained in textbooks like [1], [20],
e.g., we will omit them here. They trivially deliver also enclosures for Sgy, C S.
But there are also methods to enclose Syymwithout bounding S at the same time.
We will study such methods later on. Although we shall concentrate on Sy in
this paper we will give a short glance at S in order to work out particularities of
Ssym- So we start in Sect. 3 with several equivalent statements for x € S and list
some properties of S. In Sect. 4, we characterize the boundary 0Sm of Sgym by
means of parts of hyperplanes and quadrics. In Sect. 5, we introduce two methods
for enclosing Ssym and in Sect. 6, we report on the eigenpair set

Bra {(xT,A)TeR”“iAx:Ax, x40, 4 € [A]} (3)
and the symmetric eigenpair set
Egym = {(xf,;t)T ER™| Ax=dx, x#0, A=AT € [4] = [A]T}. (4)

It turns out that quadrics are needed in order to describe E and algebraic in-
equalities of order at most three in order to describe Egyp,.

2. Notations

In the sequel we denote intervals in square brackets, i.e., [¢] = [a,a], and identify
point intervals [a,a] by their unique element omitting the brackets. We assume
that the reader is familiar with the elementary rules and basic facts of interval
arithmetic as introduced in the first chapters of [1] or [20], e.g. We will write IR,
IR?, IR™" for the set of real compact intervals, interval vectors with n compo-
nents and m X n interval matrices, respectively. We apply the notation
[4] = [4,4] = ([a];;) = ([a;,a;]) simultaneously for interval matrices and have a
similar notation for interval vectors, real vectors and real matrices. An interval
matrix [4] is called regular if each 4 € [4] has this property. By A we denote the
midpoint of [4], i.e., 4 := 5 (4 + 4), and by rad[4] := 3 (4 — 4) its radius which we
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wrote as A4 in Sect. 1. In connection with interval vectors and intervals this
notation is used analogously. If T is any bounded subset of R” the symbol [|7
denotes the interval hull of T, i.e., the smallest enclosure of T by an interval
vector. For real matrices 4 € R™" we write p(4) for the spectral radius of 4, and
define the absolute value |4| = (|a;|) € R*”*". In addition, we introduce the
entrywise defined partial ordering ‘<’, and proceed similarly with vectors. For
intervals [a], [c] we define |[a]| := max{|a||a € [a]}, ([a]) := min{|a]||a € [a]} and
q([a], [c]) == max{|a — ¢|,|a — ¢|} (= Hausdorff distance). For interval matrices
4], [B] € R™" we introduce the distance ¢([4], [B]) := (g([a];;, [b];;)) € R"" and
the comparison matrix ([4]) = (¢;) € R™" which we define by

- { (ij): if i = j,
0= lalyly €A

We call a regular matrix 4 € R™ an M matrix if a;; < 0fori # jand 4~! > 0. An
n x n interval matrix [4] is termed an interval M matrix if each element 4 € [4] is
an M matrix. In particular, an interval M matrix is always regular, and it is an
interval H matrix, i.e., it satisfies ([4])~" > 0.

From interval analysis (cf. [1], e.g.) we use the following result:

Theorem 1. Let f(x),...,x,) be a rational expression in x,...,x, in which each
variable x; occurs at most once. If [x,, ..., [x], are given intervals then

f([x]lv‘“r[x]n) = {f(xl?" 'rxﬂ)I X € [x]la"' » Xn € [x]n}?

ie., replacing xi,...,x, in f by [x],,...,[x], and evaluating all appearing arithmetic
operations according to their interval arithmetic definition yields to the range of f
restricted to [x]; X [x], X ... x [x] . ]

By I we denote the unit matrix, by O an orthant of R” and by O; the first orthant,
ie, 01 ={xeR"|x;>0fori=1,...,n}

3. The Solution Set .S

In this section, we collect some well-known results on S. We begin with some
equivalent formulations of the statement ‘x € S which we prove for complete-
ness.

Theorem 2. For [A] € R™" and [b] € R" the following assertions are equivalent:

(a)xes;
(b) |b— Ax| < (rad[d]) - |x| + rad[p];  (Oettli and Prager, 1964 [21])
(©) 3D e R™" . |D| <IAAx—b=D((rad[4])|x| + rad[p]); (Rohn, 1984 [22])
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(d) [p] N [4]x # 0; (Beeck, 1972 [10])
(e) 0 e [b] [A]x; (Beeck 1972 [10])
) b; — Za x; <0< b — Zaux}, i .

la;,a] if x;
where a;, a; - are defined by [a],; = { @}, a; lfx 0 (Hartﬁel 1980 [12])
Proof:
(@) = (b)

Since x € S there are 4 € [4], b € [b] such that Ax = b. Therefore,
0 = dx — b{ > dx — (rad[d]) x| — b — rad[], <A x-+ (rad[])x| - b+ rad[B],

whence —((rad[4])|x| + rad[]) < b — Ax < (rad[4])|x| + rad[]. This implies (b).
(b) = (0
is seen immediately.

© = (d)

Lett D, be such that |Dy|=7 and Dyx=|[x]. From (c) follows
(4 — D(rad[4])D,)x = b + D( rad[p]) € [b]. Since 4 — D(rad[4])D; € [4], the as-
sertion (d) follows

(d) = (e)

From the assumption (d) and Theorem 1 we obtain 4 € [4], b € [b] such that
Ax = b holds. Hence 0 = b — 4x € [b] — [4]x.

(€ =
From (e) and the definition of aj.f it follows:
inf([A}x — [5]), = b, +Za,1xj <0< b+ atw; = sup(fs — ),

Jj=1 J=1
F=1 cnall

) = (2

From (f) we obtain:

Jj= j=1

Define  o(7) : =taj; + (1 =)y, Bi(t) =3 oui(O)x;, t€[0,1], i,j=1,.
Since f;(7) is continuous it assumes for 0 st < 1 all values between ﬁI(O) and
B;(1). From B;(0) < b;, b; < B;(1) and b; < b; there is some value 7 = ¢ € [0, 1]
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:Xl

Fig. 1. The solution set S of Example 1

such that B,(t) € [b],. With 4 :=A(t,...,1,) = (o(t})), b= (B;(t)) we get
Ax =b, A € [4], b € [b], hence x € §. O

Note that the equivalence (a) < (b) is the famous Oettli-Prager criterion which
was generalized by Fischer and Heindl in [13] (cf. also [14]). In the equivalence
(a) < (f) the coefficients of the inequalities remain fix as long as one stays in a
fixed orthant. Therefore, this equivalence shows that the intersection of S with
any fixed closed orthant O is the intersection of finitely many half-spaces. In
particular, the boundary 9S of S is composed of finitely many pieces of hy-
perplanes. As long as [4] is regular, S is connected and compact which follows
from the continuous mapping f(4,5) = A~'b on the connected and compact set
[4] x [b]. If [4] contains a singular matrix, connectivity may be lost as Jansson’s
example [4] =[-1,1], [p)] =1, S = (—o0,—1]JU[l,00) in [17] shows. On the
other hand it can be present as the example [4] =[-1,1], [b)]=[0,1], S=R
illustrates. Compactness is always absent if [4] is not regular and S # (). In this
case S is unbounded even if the linear systems with singular matrices 4 € [A4]
are not solvable for any b € [b]. Use Cramer’s rule, e.g., to prove this state-
ment. Since half-spaces are convex and intersections of convex sets share this
property one obtains it for SN O. The following example shows, however, that
convexity need not hold for the whole solution set S.

Example 1. Let

0= (iay 1) 8=(5")

From Theorem 2, we get the inequalities |x;| < |x;| < 1 which characterize the set
S completely. Its position in R* can be seen from the subsequent Fig. 1.
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4. The Symmetric Solution Set Sqym
4.1. Historical Remarks and Properties

In contrast to S the symmetric solution set Sy as defined in (1) is much more
difficult to characterize. It occurs when the coefficients of a fixed linear system
with a symmetric matrix 4 is perturbed by symmetric matrices only. Since
Ssym C S Neumaier advised in a letter to J. Rohn [23] dated on 23rd December,
1985, to consider this set for its own. In his book [20] which appeared in 1990 he
mentioned Sy, in Example 3.4.2 . In the same year, Jansson gave a talk in Albena
in which he presented inner and outer enclosures for Sgym (cf. Sect. 5 of the present
paper). For more general dependencies such enclosures were given by Rump in his
survey article [24] which appeared in 1994. In 1993 an interval version of the
Cholesky method was introduced by the authors in [8] in order to enclose Sgym.
Criteria of feasibility were proved there and-a corresponding perturbation result
was given in [9]. This method was recently extended to a block version by Schifer
in [26]. It was proved for the first time in 1995 in [9] that the boundary 0Ssym can
be curvilinear — in contrast to the boundary 9S of S. The proof covered only 2 x 2
matrices and could unfortunately not be generalized to the n—dimensional case.
By means of the Fourier—Motzkin elimination process of linear programming this
was possible in 1996 1n [2]; cf. also [3]. These results were even generalized two
years later in [4] where now affine dependencies were allowed. In [7] the elimi-
nation process introduced in [2] and [4] was generalized in order to handle par-
ticular dependencies such as Toeplitz and Hankel matrices. While the approaches
always took place in a fixed orthant it was possible in [19] to modify the elimi-
nation process by an approach similar to the equivalence (a) < (e¢) in Theorem 2
due to Beeck; cf. Sect. 4.3 of the present paper.

We start by an instructive 2 x 2 example whose features remain true also in the
n X n case.

Example 2. Let

=y o) 8= (pl)

Considering 4~ 'b one easily recognizes Sgym € S C O;. Anticipating Sect. 4.2, we
list the inequalities by which Sy, is described:

—4 4+ x1 +x; <0,
4—x1 —-2x2 SO,
—2+XI — X2 501

1 -—2)C] Soa

x‘? —4x1 —i-XQ SO,
X3+ x5 — 4x; + 2x; >0.

The first four inequalities characterize S while the last two restrict x to be con-
tained in Ssym-



On Symmetric Solution Sets 7

1 3 5 %y

Fig. 2. The solution sets S and Ssym of Example 2

From Fig. 2, one sees that Sgm is connected and compact. This remains true also
in the general case as long as [4] is regular. The counterexamples for non-regular
matrices are the same as in Sect. 3. As we shall see (Sects. 4.2 and 4.4) the
boundary 0Seym of Seym is composed by pieces of hyperplanes and quadrics; In
particular, Sy, can be curvilinear. In general, Sgy is not convex, and the same
holds true for its intersection with an orthant. Up to now it is unknown whether
Ssym N O 1s always connected.

4.2. Characterization of Ssym by Means of a Fourier-Motzkin Elimination

In this section, we show that Sm M O can be characterized by means of quadrics
and hyperplanes. To this end we aim at describing Sgym N O by means of linear and
quadratic inequalities whose coefficients consist of the bounds b, b; and a;j, @y
Without loss of generality we choose the orthant O = O,. We only indicate the
algorithm by replacing b and aj, by b, b and a,,, @2, respectively. We get the

following equivalences:

XESymNO, ©x€0; N A=4A"€[d], be[b]: Ax=b
&x€0, A Jag;eR fori,j=1,...,n:

n
éj g Zaijxj S bz'
=1

a; < ajj < a;j )

et §

((I.;‘j s G'ﬁ N

SxeSN0; A 3a;j€Rfori,j:1,...,n:
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bx; < Za:jxij < bix;
(afj = a; N\ i ) (5)

a;xixj < aXiXy < ApXix;

Only the implication ‘<=’ of the last assertion requires a proof since x; =0 or
x; = 0 is possible. Let 4 = AT be the matrix whose entries fulfill, by assumption,
the inequalities in (5). If xx #0, x; # 0 then obviously a € [a];,. Otherwise
nothing can be said on ay in this respect. From x € SN O; we get a;; € [a]ij such
that ), d;x; = b; € [b],. Define 4 by

agj ika%o, x;#O,
&kl v &kl ika =0 and X 7£ 0 5
' ar if xx #0 and x; =0,
Zlk{ if X = 0 and X} = 0.

Since we assumed [4] = [4]” when considering Sqm, the midpoint 4 of [4] is
symmetric, and the definition of 4 shows that 4 has this property, too. Moreover
we get 4 € [4] and b < Ax < b for the vector x under consideration. Note that

(a) whenever a;; occurs in (5) it has the same factor x;x;;

(b) trivial inequalities like 0 < 0 can be omitted;

(c) there are only linear inequalities (cf. Theorem 2 (f)) and quadratic ones;

(d) no additional multiplication will be needed in the further stages of the algorithm.

We next isolate the aj,—term:
XESymNOy & xeSN0; A Ha;jERfOI’f,j: LicsagH

( n
= Zaljxj}xl < apxix
j=1

J#2
. n
< {b — Zaljxj}xl
j=1
J#2
a;; = aj; A < at )- 6
( / / {b, — Za2_ij}x2 < apxix; L ©)
=2

n

< {Bz = Za:ljxj}xZ

=2

appxixy < apxixy < apxix;

remaining a;; — free inequalities ]
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Now those inequalities written down explicitly in (6) hold if and only if the
maximum of their left-hand sides is less or equal than the minimum of their right—
hand sides and this again holds if and only if each of these left-hand sides is less or
equal than each of the right-hand sides. Therefore we get:

X€ESymNO ©x€SN0;Ada; €Rforij=1,...,n, (i,7) €{(1,2),(2,1)}:
4 n 3\

{b _.Zaljxj}xl < apxix
j=1
J#2

n
{b, - Zaz,ij}xz < apxixz

j=2
) n - n
{bi = ayxiin < {br— Y ayx;}x
j=1 =2
j#2
aii= @y N34 _ 2 }).
( s Capxixy < {b — Zaux;}x:
Jj=1
#2
- n
a1X1xX2 < ‘{bz —Z azjx}-}xz
=
n . . : — n
{by =Y @} < {b1 = ) _aixin
=2 j=1
#2

| remaining aj, — free inequalities

No aj,-term appears now any longer in the set of inqualities, and the isolation and
elimination process can be repeated for the other entries a;;. At the end we are left
with a set of inequalities as indicated above. This process which was given 1n a
slightly modified form in [2] must be repeated for any of the 2" orthants, so the
amount of inequalities can increase tremendously with » although sometimes
inequalities can be combined and turn out to be contained in other ones.

We end this section with another example whose inequalities were derived by the
method above.

Example 3. Let

] = ([031] [#[2:1_]1])» b= (Egi})

Then § N Oy is characterized by

0<x <2, 0<x<x,
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S sym

L
\'\

Fig. 3. The solution sets S and Sg, of Example 3

while S N Oy with Oy := {(x1,x2)" € R*| x; >0, x, <0} can be described by
—2§XQ§0, ngl§2—~XQ.

Note that we combined some of the inequalities omitting redundant ones and
taking into account the respective orthant. For Sy, the following additional in-
equalities are needed

g ==1)° +x3 <1 in the case Sgym N Oy,
(x — 1)2 + (x2 + l)2 <2 in the case S, N Oy,

where we omitted again redundant ones. Figure 3 shows S and Sgym,.

4.3 Characterization of S¢ym by Means of Sets

In this section, we do not stick to a fixed orthant but describe Sy, as a whole. This
decreases the amount of relations drastically. For the algorithm we need a simple
lemma which we formulate first.

Lemma 1.

(@) Let [a], € IR fori=1,...,n, n > 3. Then
Ml #0 & [a,nla, £0 fori<j, ij=1,...,n.
i=1

(b) Let [a], [b], [c] € IR. Then
(la] + BN [e] #0 & [a] N ([c] - [2]) # 0. O



The proof is easy. Like the whole approach in this section it can be found in [19].
As the referee pointed out part (a) of the lemma is the simplest case of Helly’s
theorem on intersections of convex sets; cf., e.g., Theorem 12 in [18], p. 166. He

On Symmetric Solution Sets

also mentioned that part (b) 1s often used in the equivalent form

([d =) Nl #0 < (la] —[c]) N [b] # 0.

Now we show how to replace the parameters a;;, b; by intersections involving [a];,

[5];-

xESsym‘\‘:;’aaiJ;ERfori,j:l,...,ni

ajj = 4ji

{i:agx}} N [b]x 7& @

{ay;} N [a]ij # 0

N

<x€S AdagjeRforij=1,...,n:

aij = aji

{Zn: aijxij} N[blxi # 0
A

Jj=1

{aipxic;} 0 [a]prie; # 0

&x€S A dagjeRiorij=1,...,n:

(

a;j == aj-; A

\

SxeS AdagjeRforij=1,...,n (i,)) €{(1,2),(2,1)}:

1)

(

a;j:aﬁ/\ {

{axix} N ([ — Y axxy) # 0
=1
o

n

§ axixn} N ([Blxa — ) ayxox;) # 0

=2

{anxix2} N [a]x1x0 # 0

| remaining aj; — free intersections

(

n
[a] ;12 N ([B] 31 — Zaljxlxj)
j=1
j#2

N ([b]yx2 — Zagjxng) #0

J=2

1

—

J)

| remaining aj; — —free intersections )
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The multiplication by x; and x;, respectively, is used as in Sect. 4.2. No ad-
ditional multiplication is needed in the further course of the algorithm. In
order to continue it is necessary to resolve the triple intersection by intersec-
tions with two operands. The key to this is given by Lemma 1 . We leave the
details to the reader. The quadrics are seen here only at a second glance. They
are hidden behind the intersections. However, since these intersections can be
expressed by inequalities the approach in this section can be reformulated by
formulas as in Sect. 4.2. Both approaches lack, however, a generalization to
more than dependencies as they occur in symmetric (a;; = a;;), skew—symmetric
(a;j = —aj;), and persymmetric matrices (a;; = dnt1—jat+1-i), Tespectively. In or-
der to generalize the elimination process in Sect. 4.2 we need a modification
presented 1n Sect. 4.4.

We conclude the present section by the general 3 x 3 case.

Example 4. Let [4] = [4]" € IR¥3, [b] € IR and consider again Sy. Eliminat-
ing b;, a; fori=1,2,3 and a;; leads to
XESSym@xES A Jdagz, a3z eR: (013203{ A ar = as

( a]ixix2 N ([o]x1 — [a]“x% — aj3x1x3) A

N ([blx2 — [al x5 — azsxaxs) # 0

(7)

A {axaxst 0 ([Blsxs — apxoxs — [0133)‘%) # 0

V
S

{aixix3} N [a]zxixs # 0

( {asxmoxs} N [a]ysxox3 # 0 J

After having resolved the triple intersection in (7) into simple intersections the
isolation of a;3 and its elimination yield to

XESyme x€S AT apeR: (a23:a32

laljsxixs N ([B]yxn — [aly 27 — [a]yx1x2)
N ([Blyxs — arxors — [ald)

A S N (Bl — bl — a3 + a]pd + areons) £0 ¢ ).

{anxx3} N ([6]yx2 — lalpx1x2 — [a]zzx%) # 0

( {a23x2x3} N [a]yyx0x; # 0 )

Here again we omitted an intersection which can be deduced from x € S. Elim-
inating the last parameter a,; the fourfold intersection produces (‘2') simple

intersections among which only one is axn-free. This one turns out to be



On Symmetric Solution Sets 13

a consequence of x € S. Therefore, it can be omitted, and we are finally left with
the equivalence

XESym & x€S
A lalyxoxs 0 ([blyxa = [a] 31 — [a]0%)
([)3x3 — [a];5x103 — [a]35%3)
(= [B)x1 + [Blyx2 + [a] %) — [a] x5 + [a]15%103)
(=Bt + [Blx2 + (B33 + [al 3] — [alypx; — [al33%3) /2
(= [Blx1 + [Blsxs + a3 + [a] 012 — [a]533)
{(l; = [B])x1 + [Blyxz + (@l — lalyp)x
— [a] 2122 — [a] 3}
# 0.

2 D D oD

Using Lemma 1 (a) this multiple intersection can equivalently be written as
(3) = 21 simple ones. Two of them can be deduced from the requiry x € S. The
remaining 19 ones together with the three occuring from Beeck’s criterion in
Theorem 2 (d) result in a total of 22 which all can be rewritten in the form
“0 € ...”. Introducing the interval bounds, fixing an orthant O and taking into

account
Ocla©a<0<a

finally yields to 44 inequalities for the characterization of Sgym N O as was already
mentioned without proof in [2].

4.4. A Generalizable Approach for Characterizing Seym,

The subsequent modification of Sect. 4.2 is based on the following theorem which
is proved in [7].

Theorem 3. Let f;,, gi, A=1,...,k (>2), u=1,...,m, be real valued functions
of x = (x1,...,x,)" on some subset D C R". Assume that there is a positive integer
ki < k such that

f;‘l(x);.‘é(}foraffle{1,...,k}, (8)
Su(x) >0 forall x € D and all 2 € {1,...,k}, 9)
for each x € D there is an index " = p*(x) € {1,... ki } with fg1(x) >0
and an index y* = y*(x) € {ki + 1,...,k} with fi.1(x) > 0. (10)
For m parameters uy,...,u, varying in R and for x varying in D define the sets

S;, Sz by
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8 s={x €Dy e R, p=1,...,m: (11)., (12) hold},
S ={xeD|Fu, eR, p=2,...,m: (13) holds},

where the inequalities (11), (12) and (13), respectively, are given by

g{f(x)‘{_Zfﬁ#(X)H‘u Sfﬁl(x)ula ﬁzls"'wkl:r (11)
=2
S < 6,6 + > Sl v =+ 1.k, (12
n=2

and

gp(x)fn(x) + Zfﬁﬂ(x)ﬁ’l(x)“u < gy(x)fp(x) + i:ﬁm(x)fﬁl(x)“w (13)

p=2 n=2
[j:‘l'}""}kl? '}J:kl-{_‘lﬂ"'}k'

( Trivial inequalities such as 0 < 0 can be omitted.) Then
S1= 5. L]

The assertion of Theorem 3 even holds if f5(x), f,1(x) are replaced in (13) ( but
not in (11), (12)) by f,(x) and f, (x), respectively, where

S (x) = by, () (), f1(x) = hgy () f0 (%)

with nonnegative functions f};l, f;l, hp, defined on D.

In contrast to the procedure in Sect. 4.2 there is no need in Theorem 3 to
find factors such that the expressions to be eliminated have the same shape in
all inequalities after multiplication. This allows the application of this
theorem also for more general dependencies of the entries of 4 and b, re-
spectively. We apply now the theorem to symmetric matrices with D := O,
starting as in Sect. 4.2. Just for illustration, we choose aj» as the entry to be
eliminated.

xE€ES8mNOL©xecOy A dayeRiori,j=1,...,n:
" —
b <> ayx; < b

(a;j = dji A j=1 )

‘_I;j < ai; = dij
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&x€e0) AN JajeRforij=1,...,n:

(az‘j =a; N <

s

n b

b = g ajixj < apx
=1
#2

n

b, — E ayx; < apx

=2
n
apxy < by — E arx;
=2
a;, < ap
ap <ap

remaining a,, — free inequalities

15

&x€0; A JajeRforij=1,...,n (i,)) €{(1,2),(2,1)}:

4

(aij =aj N |

\

n
by — E ayxj < apxa,
Jj=1

J#2
n
appxy < by — E ay i,
=
j#2
n
b, — E axXj < a1pxy,
§=2
n
apxy < by — E azjx;,
j=2
n n
byx1 — E ayxixy < baxy — E a2i%2X};
et =2
j#2
n n
byxy— g azxax; <-bix; — E ayx1x;,
=2 J=1

J#2
remaining a;; — free inequalities

S\

F

The first four inequalities coincide with those in the elimination process for
SN O,. The next two are new; they are apparently caused by the symmetry and
contain quadratic polynomials. When eliminating a; for (i,7) € {(1,2),(2,1)}
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according to the remark below Theorem 3, no additional multiplication is needed in
inequalities which contain quadratic polynomials. This is true because the function
fauin front of a;; reads f,(x) = x;x; in these inequalities, and in the remaining (non-
quadratic) inequalities they are given by f),(x) = x;, fi,(x) =x; and f,(x) =1,
respectively. Note that the sign of these functions remains constant over the orthant
O;. This is the reason, why no splitting is needed for D = O; during the elimination
process. Pursuing this process shows that the final inequalities for Sy, N O; consist
of the inequalities which characterize S N O;, and quadratic inequalities.

5. Enclosures for Sqym

As the preceding sections show it is generally not easy to decide whether a given
vector x belongs to Sy, for given [4] = [4]" € IR™", [b] € R. Therefore, it is
interesting to look for bounds of Sgm,. We restrict ourselves to bounds which are
not at the same time bounds of S, i.e., we look for bounds which should be better
than the latter ones. Up to now there are essentially two methods with this
property: a direct one and an iterative one. The first generalizes the well-known
Cholesky method and uses the definitions

(@)’ == {dlaca}, Id:=1d

where a > 0 is assumed for the square root. The algorithm which was first con-
sidered in [8] reads

[STE

={Vala € [d]},

Step 1: “LLT-decomposition”
for j:=1tondo

P 1/2
ij ([a]jj - Z[Z]jk) ;

fori:=j+1tondo

Mij : ([a]u - }z:[l]ik[l]jk) /[l]jj;

k=1

Step 2: Forward substitution®

fori::ltondo
W, = ([b]; - Z[l]ijb’]j) Aurs

Step 3: Backward substitution

for i := n downto 1 do

;= (Mf— Z [ILI[XLC)/ i

j=it+1
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It is easy to see by the inclusion monotonicity of the interval arithmetic operations
that Sgym C [x]¢ holds. One also sees directly that the feasibility of the preceding
interval Cholesky method does not depend on [b] and requires that each matrix
A € [A] is symmetric and positive definite. Unfortunately, this property is not suf-
ficient. As was shown in [8] the feasibility is guaranteed if [4] is a symmetric H matrix
satisfying a; > 0 for i = 1,...,n. Interval matrices [4] with a strictly diagonally
dominant compamon matrix ([A]) and g; >0, i =1,...,n, belong to this class.
Moreover, if the algorithm is feasible for [4] and if p( [Ac] [q( [A] E:B’ 2 < 1 then it is
feasible for [B], too, as was proved in [9]. Here, |[4]"] := ([L]") ! where
[L] = ([1];) 1s the lower triangular interval matrix whose non zero entnes [l]l i 82
are defined by the algorithm above. Replacing [4], [B]by 4, [4], respectively, proves
that the interval Cholesky method is feasible whenever 4 is positive definite and
satisfies p(]4“[rad([4])) < 1. The following example shows that the interval
Cholesky method is tailored to enclose Sgym, but not S. However, it does not always
yield to enclosures for Ssym which are better than general enclosures for S. In par-
ticular, for larger » it may show a bad behavior due to rounding errors and data
dependencies.

Example 5. Let

= (i i) o= Q)

Setting 4 := (4 ) for 4 € [A], we get

B 4

N 6 4 — o ;
A lb:m(df—ﬁ) with o, g € [-1,1].

Since f = « in the case 4 = AT € [4] one obtains

= (-2, .27,
BE =, }—2 2)T, KW = (11,2,08,2),

ot |
gf)
|
—_
s
l\.)
—
= o
(]
e—
—
Y |
3
LA

where [x]G denotes the vector resulting from the interval Gaussian algorithm
(cf. [1]). The sets

el (st (Yer)

and (see [12])

S = convex hull({(6 6) J2L.9" (18 30) (?2,;—?—)T})

can be seen in Fig. 4.
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Example 5 illustrates that the following properties can occur.
(1) [|Sym # [|S (cf. also [20], p. 95),

(i) [Som # ("

(iii) [S # [°,

(iv) S Z [ (but Sym € (),

) B° € 6] with [ # .

Unfortunately, [x]° C [x]° with [x]° # [x]° can also occur as was shown by an
example in [8].

The second method which we want to recall was introduced by Jansson [15], [16]
and is a modification of the following well-known iterative method for general
linear interval systems

X! =%+ C([B] - [4]%) + (I = C[A)(x]* - %), k=0,1,...,

where C € R™" is any preconditioning matrix and X is any fixed vector from R".
Usually, C is an approximate inverse of the midpoint 4 and x is an approximate
solution of the midpoint equation Ax = b. Exploiting the symmetry of 4 € [4] and
of [4] = [4]" and substituting [x]’z .= [x]* — % finally yields to

Blat = ™™+ 0 = DR, B=0,1,..- (14)

S sym

Y
S

Fig. 4. The solution sets § and Sqym of Example 5
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with
by

n j—1
2™ = Zcz;([b] la];%;) — ZZ(CUE: + cux;)[al;
¢ i

J=1

={(C(b—4x))Jd=A4" € [4],be [p]} fori=1,...,n

Note that the last equality holds by virtue of Theorem 1 . Thus [z]™ is the
interval hull of the set {C(b — 4x)|4 = A" € [4], b € [b]} and is therefore optimal.
The subsequent results were proved in [15], [16].

Theorem 4. Let (Ssym); denote the projection of Ssy, onto the x; coordinate axis and
let [A]* := (I — ClAs. 1f

()G (HR) fori=1,....n

then the following assertions hold.
(@) [4] and C are regular.
(b) Soym CE+ o™ CE+[x]s Sfor k> k.
© %427+ AP <min(Sem); < %k Kfo,

427 4+ AP < max(Sym), <%+ + Ef” O
By Theorem 4 one sees at once that the relations

inf Sgyr € % + 2™ 4 [A],
Sup Sgym € % +29™ + [A]®

hold. Therefore, if rad[A]® is small then the enclosure for SSym is good. This can be

expected, in particular, if rad[4],rad[p] are small, C ~ A~ and ¥ =~ 4~'b. Then
||rad[x]f§° « < 1is possible whence [A]® is quadratically small.

6. The Symmetric Eigenpair Set

Our final section is devoted to the eigenpair sets £ and Egyy from (3) and (4),
respectively. In order to characterize E we apply the Oettli-Prager theorem to the
equation (4 — A)x = 0 which leads to

(T N7 € E e |(4d— A)x| < (rad[A])}x| Ax # 0. (15)
There is a slight difficulty in comparison with Sect. 3 in so far as the matrix 4 — A/

is not fixed but depends on the last component of the vector (x7,1)" tested to
belong to E. This difficulty can be overcome thinking 4 to be arbitrary but fixed.
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Then 4 — Al is a fixed matrix for which Theorem 2 can be applied without any
restrictions. Rewriting (15) as in Theorem 2(f) by means of inequalities shows
that E N O can be characterized by a variety of inequalities which — by virtue of
the Jx term are at most quadratic. That means that E is the union of finitely many
intersections of sets whose boundaries are pieces of hyperplanes and quadrics. We
mention that the inequalities for £ can also be obtained by applying Theorem 3 .
Using any approach of Sect. 4 shows that the symmetric eigenpair set Egym can be
described by means of inequalities with polynomials of order three at most. The
starting point is now formed by the double inequality

(A—ADx<0< (4—A)x

which is equivalent to (4 — Al)x = 0. For details we refer to [6]. We conclude our
paper with an illustrative example for E and Egyp,.

=1y 0)

Example 6. Let

Then E is characterized by

X1 — !le S AJC] S.ﬂ + [x2|

x1-x#0 A .
1% {——|x1|+x2§,1.x2§|x1|+x2

If =1 then any vector (xl,xz):r + 0 occurs as an eigenvector hence £ C R?
contains the plane A =1 punctured at (0,0, I)T. If A#1 then x;-x; #0 and
ol A)T € E if and only if the subsequent statement holds.

2
1.8}
1.61
1.4}
12}

1
0.8}
0.6}
04} -
0.2}

lambda

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 5. Ey := ENP and Egy, N P (dashed) of Example 6
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=
AE T A x93 OA :
+£_

Restricting 4 € [4] to be symmetric yields to any pair (xl,xz)T # 0 as eigenvector
in the case 1 = 1. This is true by virtue of I =17 € [4]. If A # 1 then Eyny, is
described by |x;| = |x2] >0, 0 < 1< 2, 1# 1, which together with E leads to
Fig. 5 in which we intersected these sets with the plane P, : x; = 1.
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