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Summary. This paper proposes a validation method for solutions of nonlin-
ear complementarity problems. The validation procedure performs a com-
putational test. If the result of the test is positive, then it is guaranteed that
a given multi-dimensional interval either includes a solution or excludes all
solutions of the nonlinear complementarity problem.

Mathematics Subject Classification (1991): 65KIO

1 Introduction

Let f : Rn --t Rn be a continuous function. The nonlinear complementarity
problem (NCP) consists in finding a vector x E Rn such that

x >0, f(x) > 0, XTf(x) = O.

The NCP models many important problems in engineering and economy.
Moreover, the NCP is a fundamental problem for optimization theory, since
the first order necessary condition for optimality can be formulated as an
NCP. Although there are some general results about the existence of solu-
tions for some classes ofNCPs, it is rather diflicult to verify that a particular
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NCP has a solution. It is even more difficult to verify that an NCP has a so-
lution in a particular region. A comparison of some codes for solving NCPs
developed prior to 1995 is given in [7]. Since then new efficient methods for
solving NCPs have been developed based either on interior point methods
[5,6,25,30,31], or Newton-like methods applied to (non-smooth) reformu-
lations ofNCPs [9, 15,24]. Undercertainconditions, for example ifthe NCP
is monotone and satisfies a scaled Lipschitz condition [25,31] then for any
strictly feasible starting point the interior point method will produce a se-
quence that converges to a solution ofthe problem. However, in practice it is
extremely difficult to find a strictly feasible point. Typically, a primal-dual
interior point method uses a positive starting vector (xO > 0, sO > 0) with
a residual rO = sO- f(xO) and stops when a point (x, s) is obtained such
that

(1.1) x> 0, s > 0, IIs- f(x)11 < E:, xT S < E:,

for a given E:> O.Even if E:is very small this does not guarantee that the
NCP has a solution. In case the NCP has a solution it is very difficult to
obtain reliable bounds on the distance between a solution of the NCP and a
point satisfying (1.1).

In [2, 10] the special case of the so-called linear complementarity prob-
lem (LCP) was considered. In this case the mapping f has the special form
f (x) = Mx + q where M E Rnxn and q E Rn are given. The general case
of a nonaffine f is much more difficult to handle than the linear case.

The present paper describes a computational test that guarantees that a
given multi-dimensional interval contains a solution of the NCP. Our test
also applies for algorithms which have stopping criteria different from (1.1).
The idea is to choose a relatively small multidimensional interval around a
point (x, s) (presumably an approximate solution ofthe problem) and to test
computationally if a certain inclusion holds. Ifthe result ofthe test ispositive,
then the given interval is guaranteed to contain a solution of the NCP. It is
notable that the involved function f is not necessarily differentiable for the
validation. In Sect. 2, we describe a slope for the numerical validation of
the solution of an NCP. In Sect. 3 we give an interval arithmetic evaluation
of the slope. In Sect. 4 we propose an algorithm for testing the existence
of solutions, and report numerical results to illustrate the robustness of the
new method. In what follows we denote an interval by [x]= {x E Rn, X <
X < x}. Thenonnegativeorthantof Rn is denotedby R+.

2 Tbe slope of a NCP

It is weIl known and easy to verify that the NCP is equivalent to the following
system of nonlinear equations
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(2.1) F(x) := min(f(x), x) = 0,

where the "rnin" operator denotes the componentwiseminimumof two
vectors.For the case f is differentiable,the functionF is not necessarily
differentiableat x if fex) = x. F is differentiableon an interval [x] if
fex) > x for an x E [x]or fex) < x for an x E [x].Manyexisting
algorithms for validation of solutions of a system F (x) = 0 of nonlinear
equations assurne that the involved function is continuously differentiable.
Such algorithms are based on the mean value theorem for differentiable
functions and an interval extension of the derivative. For instance, if F is
differentiable on [x],then

(2.2) F(x) - F(y) E F'([x])(x - y), for all x, y E [x],

where F'([x)) is an interval evaluation of the Frechet derivative. The
Krawczyk operator is defined by

K(x,A, [x]) = x - A-1F(x) + (I - A-1F'([x]))([x] - x),

where A is an n x n nonsingular matrix. If [x]is a multi-dimensional interval
such that K(x, A, [x]) c [x]then it is guaranteed that there is an x* E [x]
such that F(x*) = O. For details see [2]. Since the functionF definedin
(2.1) is in general nondifferentiable, the above validation algorithm does
not apply to OUfproblem. Recently, some methods have been proposed for
general nondifferentiable equations [8,27]. In this paper we give a sharp
and computable interval operator for the special nondifferentiable system
(2.1). Using this interval operator, we can numerically verify the existence
of solutions ofthe NCP . The first step is to define a sIope for F, which is a
mapping 8F : [x] x [x] ~ Rnxn such that for a fixed x E [x]

(2.3) F(x) - F(y) = 8F(x, y)(x - y), for an y E [x].

We assurne that f has a slope 8f : [x] x [x] ~ Rnxn such that for a fixed
x E [x] .

(2.4) fex) - f(y) = 8f(x, y)(x - y), for an y E [x].

Let us use the following notations

si = {x E [x] I fi(X) > xd

Si- = {x E [x] I fi(X) < Xi}

Sp = {x E [x] I fi(X) = Xi}

N = {I, 2,..., n}.

For a vector x E [x]and an i E N, x is in one ofthe three sets. Hence for
any two vectors x, y E [x] and an i E N we define 8Fi(x, y) as shown in
Table 1.
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Lemma 2.1 Let the ith row of t5F(x, y) be defined by Table 1. Thenfor
every two vectors x, Y E [x],

F(x) - F(y) = t5F(x, y)(x - y).

Proof Let i E N be fixed. Since t5Ji is a slope of Ji, we have

fi(X) - fi(Y) = t5fi(X, y)(x - y).

If x E Si u S? and y E Si u S?, then

Fi(X) - Fi(Y) = Xi - Yi = e;(x - y).

If x E Si and Y E S?U Si, or Y E Si- and x E S?, then

Fi(X) - Fi(Y) = fi(X) - fi(Y) = t5fi(X, y)(x - y).

If x E Si and Y E sr, then

(t5fi(X, y) - eT)(x - y) = fi(X) - Xi + Yi - fi(Y) < 0
and

Fi(X) - Fi(Y) = fi(X) - Yi

= fi(X) - Xi + e;(x - y)

(fi(X) - Xi)(t5fi(x, y) - e;)(x - y) T
( )= + ei x - Y

(t5fi(X,y) - e;)(x - y)

( fi (X) - Xi
( ( )

T
)

T

)= (f(x)-f(Y)-X+Y)i t5fi X,Y -ei +ei

x (x - y)

= (ßi(t5fi(X, y) - er) + e;)(x - y).

Finally,if x E Si and y E Si then

(t5Ji(x,y) - eT)(x - y) = fi(X) - Xi + Yi - fi(Y) > 0
and

Fi(X) - Fi(Y) = xi - Ji(y)

= Yi - fi(Y) + e;(x - y)

= (Yi-fi(y))(t5fi(x,y)-eT)(x-y) +e;(x-y)
(t5Ji(x, y) - e;)(x - y)

( Yi - fi (y) T T

)= (f(x) - f(y) - x + Y)i (t5fi(X, y) - ei ) + ei
x (x - y)

= (ai (t5fi(x, y) - er) + er)(x - y). 0
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Lemma 2.2 The numbers ai and ßi defined in Table 1 satis.fY the following
relations

ai E (0,1) and ßi E (0,1).

Proof Notice that ai is used when x E Si and Yi E Si. Then from
Yi - fi(Y) > 0 and fi(X) - Xi > 0, we have

ai = Yi - fi(Y) E (0,1).
(Yi - fi(Y)) + (fi(X) - Xi)

Since ßi is used when X E Si and Yi E Si, we have fi (X) - Xi < 0 and
Yi - fi(Y) < 0, so that

ß' = fi (X) - Xi E (0 1)
Z (fi(X) - Xi) + (Yi - Ji(y)) ,. 0

We now discuss the nonsingularity of 8F(x, y). The nonsingularity of
8F(x, y) depends on the properties of 8f(x, y). An n x n matrix A is
called a Po matrix if all principal minors of Aare nonnegative. A matrix A
is called a P matrix if all its principal minors are positive [13]. Using some
results from Gabriel and More [15] we obtain the following proposition.

Proposition 2.1 1. If 8f (x, y) is a P matrix, then 8F (x, y) is nonsingular.
2. If 8f (x, y) is a Po matrix and si contains X o.rYfor every i E N, then

8F(x, y) is nonsingular.

Proof 1. By Lemma 2.1 and Lemma 2.2, 8F(x, y) can be written as

8F(x, y) = 1+ D(8f(x, y) - I),

where D =diag(di) is a diagonalmatrixwith 0 < di < 1. Hence by
Theorem4.4 in [15],8F(x, y) is nonsingular.

2. If Si containsx or Y for everyi E N, then

8F(x,.y) = 1+ D(8f(x, y) - 1),

where D =diag(di) is a diagonal matrix with 0 < di < 1. Hence by
Theorem 4.3 in [15], 8F(x, y) is nonsingular. 0

Table 1. Slopeof the function F

(y - f(Y»i (J(x) - X)i
ai= ßi=

(J(x) - f(y) - x + Y)i' (J(x) - x + Y - f(Y»i.

8Fi(x, y) y

s-!- s-:- S9t t t

S7- e'!' ai (Ci fi (x, y) - ei) + er e'!'t t t

X S-:- ßi (8!i (x, y) - ei) + er 8!i(x, y) 8!i(x, y)t

S9 eT 8!i(x, y) e'!'t t t
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If f is an affinefunction,say fex) - Ax + c, then A = 8f(x, y). If A
is a Po matrix and we choose x E sr, then according to Proposition 2.1
8F (x, y) is nonsingular for all y E Rn.

Definition 2.1 A mapping f from an interval [x] in Rn into Rn is said to
be

1. a Pofunction on [xl iffor all x, y E [x]with x -=Fy, there is an index i
such that

Xi -=F Yi and (fi(X) - fi(Y))(Xi - Yi) > 0;

2. a P function on [xl iffor all x, Y E [x] with x -=Fy, there is an index i
such that

Xi -=F Yi and (Ji(x) - fi(Y))(Xi - Yi) > 0;

3. a uniform P function on [xl iffor some "( > 0

If::3ff(fi(X) - Ji (y)) (Xi - Yi) > "(llx - yll for all x, Y E [x];

4. a monotonefunction on [x]iffor all x, Y E [x],

(f(x) - f(y))T(x - y) > 0;

5. a strictly monotone function on [x] iffor all x, Y E [x],

(f(x) - f(y))T(x - y) > 0;

6. a strongly monotone function iffor some "( > 0

(f(x)-f(y))T(x-y) > "(lIx-yll forallx,YE [x].

It is easy to verify that every monotone function is a Po function, every
strictly monotone function is a P function, and every strongly monotone
function is a uniform P function. For a Frechet differentiable function f,
the following results are known [16,23]:

1. If f'(x) is a P matrix for all x E [x],then fis a P function on [x];
2. If f is a uniform P function on [x], then f'(x) is a P matrix for all

x E [x];
3. fis a Po function on [x]if and only if f' (x) is a Po matrix for all x E [x].

For a semismooth locally Lipschitzian function f, Song, Gowda and Ravin-
dran [29] showed that f is aPo function on [x]ifand only ifthe Bouligand
subdifferential aBf (x) consists of Po matrices at all x E [x].Notice that the
mean value theorem does not hold for aBf. Moreover,foraPo function,the
Clarke generalized Jacobian af(x) = co aBf(x) may consists ofa matrix
which is not Po. Hence we consider that f is a monotone function in the
following theorem.
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Theorem 2.1 Suppose that f is a locally Lipschitzianfunction. Then there
is a 5f(x, y) Eco8f(xy).

1. If fis a strongly monotonefunction, thenfor any 5f(x, y) Eco8f(xy),
5F(x, y) is nonsingular.

2. If f is a monotone function and Si contains x or y for every i E N,
thenfor any 5f(x, y) Eco8f(xy), 5F(x, y) is nonsingular.

Here co8f(xy) denotes theconvex hull ofall points Z E 8F(u)foru E xy,
and xy denotes the line segment between x and y.

Proof According to Proposition 2.6.5 in [11], there is a matrix 5f(x, y) E
c08 f (xy) such that

f(x) - f(y) = 8f(x, y)(x - y).

1) Since f is a locally Lipschitzian function, f is differentiable almost every
where. Moreover at a point z E [x] where f is differentiable, f'(z) is a
strongly monotone matrix. By definition, the Clarke generalized Jacobian
at y is defined by

8f(y) = co{ lim f'(zk) : zk -+ y, fis differentiable at zkJ.
k--+00

Since f'(zk) is a strongly monotone matrix, the limit limzk--+yf'(zk) is a
strongly monotone matrix. Moreover, the convex combination of strongly
monotone matrices is still a strongly monotone matrix. A strongly monotone
matrix is a P matrix, so that by using Proposition 2.1, we deduce that
8F (x, y) is nonsingular. The proof for Part 2 is similar. 0

3 Interval evaluation

Weassume that f has an interval arithmetic evaluationofthe slope 8f (x, [x])
for fixed x E [x] and all y E [x], i.e., 8f(x, [x]) is an n x n-matrix with
interval entries such that 8f (x, y) E 8f (x, [x]),for all y E [x].For different
aspects relating to the notion of an arithmetic evaluation of a slope of a
nonlinear map see [19]. To define an interval arithmetic evaluation for 8F,
we consider the following nonlinear programming problems

(3.1)
min Yi - fi(y)

s.1. Y E [x]

and

(3.2)

max Yi - fi(y)

s.1. Y E [x].



8 G.E. Alefeld et al.

Let yi,l and yi,2 be solutions ofthe nonlinear programming problems (3.1)
and (3.2), respectively (see Remark 3.1). For a fixed x E [x], let

(yi,2 - f(yi,2))i. i2 i2

ai = (f(x) - x + yi,2 - f(yi,2))i If (f(x) - x + Y' - f(y' ))i =I-0

and

ß (f(x) - X)i 'f (f( )
i 1

f(
i 1

)) ~ 0
i = (f(x) - x + yi,l - f(yi,l ))i 1 X - X + Y' - Y' i I .

Then we can define the following interval arithmetic evaluation:

8Fi(x, [x])
T

ei ,
8fi(X, [x]),
[0,ai](8Ji(x, [x]) - er) + er,
(ßi, 1](8fi(X' (x]) - er) + er,

Theorem 3.1 For ajixed x E [x],we have

yi,2 E S-!- U S9. z z
Yl,l E S-:-u S9z z
x E S-!-u S9 Yi,2 E S-:-z . z' z
x E S-:- Yl,l E S -!-

z , z .

F(x) - F(y) E 8F(x, (x])(x - y), forall y E (x].

Proof 1) First we suppose yi,2 E si U S? Then for all y E [x],

Yi - fi(y) < y? - fi(yi,2) < O.

That is, y E si U S? for all y E [x].In particular x E Si u S? Hence

Fi(X) - Fi(Y) = Xi - Yi = er(x - y) = 8Fi(x, [x])(x - y).

2) Now we suppose yi,l E Si u S? Thenfor all y E (x],

Yi - Ji(y) > y~,l- h(Yi,l) > O.

It follows that y E Si- US? for all y E [x].In particularwe have x E Si US?
Hence

}i(x) - Fi(Y)= fi(X) - fi(y)

= 8fi(X, y)(x - y)

E 8fi(X, (x])(x - y)

= 8Fi(x, [x])(x - y).

3) Finally we suppose that yi,2 E Si and x E si U S? Let y E [x]. If
y E Si u S?, then

Fi(X) - }i(y) = e;(x - y)

E ([0, ai](6Ji(X, [x]) - er) + er)(x - y)
= 8Fi(x, (x])(x - y),
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where we use the fact that 0 < ai < 1. If y E Si, then by Lemma 2.1, we
have

Fi(X) - Fi(Y)= ((f(X) ~if(~i~)x + Y)i(J/;(x, y) - er) + er) (x-y).

Since yi,2 is an optimal solution of (3.2), we have

-r ( ) i,2 -r ( i 2 )
0 < Yi - J i Y < Yi -:J i Y' . = ai < 1.

(f(x) - f(y) - x + Y)i - (f(x) - f(yl,2) - X + yl,2)i -

Therefore,

Fi(X)-Fi(Y) E ([0, ai](8!i(x, [x])-er)+er)(x-y) = 8Fi(x, [x])(x-y).

4) The case x E Si, y;,l E si can be treated in a similar fashion.

Remark 3.1 In general it is a non-trivial problem to find solutions yi,l and
yi,2 of (3.1) and (3.2), respectively. However, in some practical important
examples yi,l and yi,2 can easily be found. See Example 10fthis paper, e.g.

Furthermore the following interval arithmetic evaluation can be considered
as a simple but overestimated interval arithmetic evaluation:

G(x,[x]) = [0,1](8f(x, [x]) - I) + I.

Fo11owingthe discussion above, we can show that

8F(x, [x]) C G(x,[x])
and

F(x) - F(y) E G(x,[x])(x - y) for a11 x, y E [x].

Proposition 3.1 1. If8f(x, [x]) consists of P matrices at all y E [x],then
everyelementin G(x, [x]) is nonsingular.

2. If 8f(x, [x]) consists of Po matrices at all y E [x]and x E Si for all
i E N, then every element in 8F(x, [x]) is nonsingular.

Proof The proof for the part 1is similar to the proof of part 1 ofProposition
2.1. For part 2, by Theorem 4.3 in [15], we only need to show 8fi(X, [x]) is
not in 8Fi(X, [x]) for every i E N. Since x E Si and

. 1 .
y;' - fi(yl,l) < Xi - fi(X) < 0,

we haveyi,l E si. Hence

8Fi(x, [x]) =I- 8fi (x, [x])

and

8Fi (x, [x]) =I-[ßi, 1](8fi (x, [x]) - er) + er.
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This implies that

JFi(x, [X)) = [0,ai](J fi(X, [x))- er) + er,

where ai is a number between 0 and 1. Now we show that ai =1= 1. If
Yi,2 E S-J-u S9 then a. = O' If y i,2 E S-:- then from x E S-J- we havez z' Z, l' l'

fi (x) - Xi > 0

and
i,2

f ( i 2)0 < . = Yi - i Y' < 1
az (f(x) - f(yi,2) - X + yi,2)i .

Theproof is complete. 0

4 Algorithm and numerical tests

Based on the results in [3,8], we propose the following validation method.

Algorithm 1 Let r > 0 be a given tolerance and let x > 0 be an approximate
solution ofthe system (2.1). Calculate

(4.1) [x] = x + r[-e, e]

where e = [1,..., l]T and choose a nonsingular matrix A. Compute

(4.2)

- If

L(x, A, [x))= x - A-1 F(x) + (1 - A-1JF(x, [x]))([x] - x).

(4.3) L(x, A, (x]) C [x],

then there is a solution x* E (x] of (2.1).
- If

(4.4) L(x, A, (x]) n [x] = 0,

then the interval [x]contains no solution of(2.1).

The algorithm is tested using the following two examples.

Example. Consider the following equilibrium problem for an unknown func-
tion u(y, z)[20]:

(4.5)
{

u = [u+ 6u - cjJ(u) - q(y, z)]+, (y, z) E n = (0,1) x (0,1)
u = 0, (y,z) E an,

where cjJis a monotone function and q is a given function.
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Applying the centered five point difference approximation to (4.5), we obtain
a system of nonlinear equations

(4.6) x = (x - Mx - g(x) - c)+

which is equivalent to

F(x) = x - max(O, x - Mx - g(x) - c) = rnin(x, Mx + g(x) + c) = O.

In particular, for <p(u) = eU, we have

1

M= h2

H -1

-1 H '.
E Rnxn ,

'. '.-1

-1 H

4 -1

-14
ERvnxvnH=

. ".-1
-14

and

g(x ) = (ex! eX2 eXn
)
T

, , . . . , .
Let

f(x) = Mx + g(x) + c.
Then

f'(x) = M + diag(eXi).

Defineh(x) = x- f(x). Thenitis easytoseethatforx E R+.andl < i < n
it holds

8hi 4 x.
-= 1 - - - e t < 0,
8Xi h2

8hi
{O

I
} . -I- . h 8hi O . -I- .

8x. E , h2 '~TJ; ence 8x. > '~TJ.J J

From this it follows that we can define the global optimal solutions of(3.1)
and (3.2) as folIows:

i,l -

{
Xj if i = j

Yj - Xj otherwise '
and

. 2

{
X, if i = j1, - -J

Yj - x j otherwise .
We have chosen

x* = (0,1,0,1,..., I)T



Example 2 (U. Schäfer, Karlsruhe) Let

f(x) = Mx + q+ s(x),
where

122...2
012...2

00 1 ". :M=
: :'. '. 2.. . .
00... 0 1.

and s(x) =diag(si(xi») with Si(Xi) = (Xi + 1)3- i, i = 1, .., n;
.

h h h *
(

* * *
)
T . hqlSC osensuc t at x = xl,x2,...,xn Wlt

x~ =
{

o ifirnod7 = 0
~ i otherwise

is an exact solution of (2.1).

In our nurnerical experiment, we choose

"=
{

i-(Mx*+s(X*))i ifimod7=O
q~ . -(Mx* + S(X*))i otherwise.

12 G.E. Alefeld et al.

Table 2. Numerical results for Example 1,x* E [x]

a n=9 n= 25 n= 36 n= 64 n = 100

-0.75 r 10-2 10-3 10-3 10-3 10-4

r. 10-16 10-16 10-16 10-16 10-16

-0.5 r 10-1 10-2 10-4 10-3 10-3

r. 10-16 10-16 10-16 10-16 10-16

-0.25
r 10-2 10-3 10-2 10-4 10-3

r. 10-16 10-16 10-16 10-16 10-16

0
r 10-1 10-2 10-4 10-4 10-4

r. 10-16 10-16 10-16 10-16 10-16

0.25
r 10-2 10-2 10-2 10-3 10-3

r. 10-16 10-16 10-16 10-16 10-16

0.5
r 10-2 10-2 10-3 10-2 10-4
r. 10-16 10-16 10-16 10-16 10-16

0.75 r 10-2 10-2 10-3 10-2 10-3

r. 10-16 10-14 10-16 10-15 10-16

and

. - {(MX'), + 9'(X') ifx, > 0Ci- - (M X*)i + gi (x*) - i otherwise '

where i is a randorn nonnegative nurnber. Obviously, x* is a solution of
(4.6). Moreover, F is not differentiable at x* ifthere is an i such that i = O.

0
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Of course, there are also other choices possible for qi. Note that M is a
P matrix and s'(x) =diag(3(xi + 1)2). Hence it is easy to see that f is a
uniform P function for any choice of q. It is known that an NCP with a
uniform P function always has a solution which is unique in Rn. 0

Let x* be an exact solution. We choose as an approximation

*
x = x - rae,

where a E (-1, 1) and r > O.
As a test interval for AIgorithm 1 we try

[x] = x + [-r, r]e,

wheree = (1,..., l)T. Thischoiceof[x] guaranteesthatforalla E (-1,1)
and r > 0 the inc1usion

x* E [x]

holds. Varying a and r shows how sensitive OUTalgorithm is with respect
to these parameters. If lai> 1 then [x]does not contain x* for any r > O.
For lai> 1 we keep ar (and therefore the center x ofthe test interval [x])
constant. Therefore by enlarging lai we have to diminish the halfwidth r of
the components ofthe diameter of [x].Table 2 (for Example 1) and Table 3
(for Example 2) contain the numerical results for the case that x* E [x](that
is for a E (-1, 1)). r denotes the largest r < 10-1 for which the validation
(4.3) was performed successfully.

r denotes the smallest r > 10-16 for which the validation (4.3) was
performed successfully. In OUTnumerical experiments we have tested the

Table 3. Numerical results for Example 2, x* E [x]

a n=5 n= 10 n=20 n= 50 n = 100

-0.75
r 10-2 10-2 10-3 10-3 10-3

r. 10-14 10-14 10-13 10-12 10-12

-0.5
r 10-2 10-2 10-3 10-3 10-3

r. 10-14 10-14 10-13 10-13 10-12

-0.25 r 10-2 10-2 10-2 10-3 10-3

r. 10-14 10-14 10-14 10-13 10-12

0
r 10-2 10-2 10-2 10-3 10-3

r. 10-16 10-16 10-16 10-16 10-16

0.25
r 10-2 10-2 10-2 10-3 10-3

r. 10-14 10-14 10-14 10-13 10-12

0.5
r 10-2 10-2 10-2 10-2 10-3

r. 10-14 10-14 10-14 10-13 10-12

0.75
r 10-1 10-1 10-2 10-2 10-2

r. 10-14 10-14 10-13 10-12 10-12



algorithm starting with r = rand decreasing the radius r successively by
multiplying it with 10-1 until we reached r..

Table 4 (for Example 1) and Table 5 (for Example 2) contain the numer-
ical results for the case that x* ft. [x](that is for lai> 1). In these tables "y"
means that the test (4.4) was successful, "n" means that it was not successful.
We choose ar = 5 and obtain the results in Table 4 and Table 5.

The above numerical results as weIlas other numerical experiments show
that our validation algorithm is robust and can be used to prove numerically
that a certain multidimensional interval centered at an approximate solution
contains an exact solution ofthe NCP.

Acknowledgement. We are grateful to U. Schäfer for performing the numerical tests for
Example 2. Furthermore aseries of valuable comments by an to us anonymous referee
helped to improve the paper.

References

1. G. E. Alefeld, Bounding the slopes of polynomial operators and some applications.
Computing 26, 227-237 (1981)

2. G. E. Alefeld, X. Chen, F. A. Potra, Numerical validation of solutions of linear com-
plementarity problems. Numer.Math. 83, 1-23 (1999)

3. G. E. Alefeld, A. Gienger, F. A. Potra, Efficientnumerical validation of solutions of
nonlinear systems. SIAMJ. Numer.Anal. 31, 252-260 (1994)

14 G.E. Alefeld et al.

Table 4. Numerical results for Example I, a.r = 5

r n=9 n= 25 n=36 n=64 n=100

0.5 y Y Y Y Y
I Y Y Y Y Y
1.5 Y n n n n
2.0 n n n n n

Table 5. Numerical results for Example 2, a.r = 5

r n=5 n= 10 n= 20 n=50 n = 100

1 Y Y Y Y Y
2 Y Y Y Y Y
3 y y y y Y
3.5 Y Y Y Y Y
3.6 n y y y Y
3.7 n y y y Y
3.8 n y y y Y
3.9 n n y y y
4 n n y y y
4.7 n n n n y
4.8 n n n n n
4.9 n n n n n



Numerieal validation of solutions of eomplementarityproblems 15

4. G. E. Alefeld, J. Herzberger,Introduetion to Interval Computations,Aeademie Press,
New Yorkand London, 1983

5. E.D. Andersen,Y.Ye, A eomputationalstudy ofthe homogeneousalgorithrnfor large-
seale eonvexoptimization. Comput. Optim. Appl. 10,243-280 (1988)

6. E.D. Andersen,Y.Ye,On ahomogeneousalgorithmforthe monotoneeomplementarity
problem. Math. Programming 84, 375-399 (1999)

7. S.c. Billups, S.P.Dirkse" M.C. Ferris, A eomparison of large seale mixed eomple-
mentarity problem solvers. Comput. Optim. Appl. 7, 3-25 (1997) nonlinear

8. X. Chen, A verifieationmethod for solutionsofnonsmooth equations. Computing 58,
281-294 (1997)

9. X. Chen, Smoothingmethods for eomplementarityproblems and their applieations: a
survey. 1.Oper.Res. Soe. Japan 43, 32-47 (2000)

10. X. Chen, Y. Shogenji, M. Yamasaki,Verifieationfor existenee of solutions of linear
eomplementarityproblems, to appear in Linear Algebra Appl

11. F. H. Clarke, Optimization and Nonsmooth Analysis, Jonh Wiley & Sons, Ine., New
York, 1983

12. M. C. Ferris, J. S. Pang, eds., Complementarity problems: State of the art, SIAM
Publications, Philadelphia, 1997

13. M. Fiedler, V. Ptak, Some generalization of positive definiteness and monotonicity.
Numer. Math. 9, 163-172 (1966)

14. A.Frommer,G.Mayer,On the R-orderofNewton-like methods for enclosingsolutions
ofnonlinear equations. SIAM J. Numer. Anal. 27,105-116 (1990)

15. S. Gabriel, J. MonS,Smoothing ofmixed complementarityproblems, in: M.C. Ferris
and J.S. Pang,eds., Complementarityand VariationalProblems:Stateofthe Art, SIAM,
Philadelphia, Pennsylvania,(1997), 105-116

16. D. Gale, H. Nikaido, The Jacobian matrix and global univalence ofmappings. Math.
Annalen 159, 81-93 (1965)

17. R. Hammer,M.Hocks,U. Kuliseh,D. Ratz,NmnericalToolboxforVerifiedComputing
I., Springer Verlag,Berlin, 1993

18. E. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, Inc., New
York, 1992

19. R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer Academic Pub-
lishers, Dordrecht, 1996

20. C.T. Kelley, E.W. Sachs, Multilevel algorithrns for constrained compact fixed point
problems. SIAM J. Sei. Comput. 15,645-667 (1994)

21. R. Klatte, U. Kuliseh, M. Neaga, Ch. Ullrich, PASCAL-XSC - Language Reference
with Examples. Springer-Verlag, Berlin, 1992

22. R. Krawczyk, A. Neumaier Interval slopes forretional functions and associated centered
forms. SIAM J. Numer. Anal. 22, 604-616 (1985)

23. J. More, W. Rheinboldt, On P- and S- functions and related classes of n-dimensional

nonlinear mappings. Linear Algebra Appl. 645-68 (1973)
24. J. S. Pang, L. Qi, Nonsmooth equations: motivation and algorithrns. SIAM 1. Optim. 3

443-465 (1993)
25. F. A. Potra, Y. Ye. Interior-point methods for nonlinear complementarity problems. J.

Optim. Theory Appl. 88,617-647 (1996)
26. S. M. Rump, Verification methods for dense and sparse systems of equations, in J.

Herzberger (ed.), Topics in Validated Computations - Studies in Computational Math-
ematics, Elsevier, Amsterdam, 1994, pp. 63-136

27. S. M. Rump, Expansion and estimation of the range of nonlinear functions. Math.
Comp. 65,1503-1512 (1996)



16 G.E. Alefeld et al.

28. G. W. Stewart, The efficient generation of random orthogonal matrixes with an appli-
cation to condition estimators. SIAM J. Numerical Analysis 17,403-409 (1980)

29. Y. Song, M. S. Gowda, G. Ravindran, On characterizations of P- and Po properties
in nonsmooth functions, Research Report, Department of Mathematics and Statistics,
University ofMaryland, Baltimore County, Baltimore, Maryland 21250, 1998

30. S. 1. Wright, Primal-Dual Interior-Point Methods, SIAM Publications, Philadephia,
1997

31. Y. Ye, Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley and Sons, 1997


