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Abstract

We give an overview on applications of interval arithmetic.Among others we discuss veriucation mcthous for linear
systCrn..5üf cquatio!Js, nonlinear systems, the algebruic eigenvalue problem, initial valu<: problems for ODEs and boundary
v;Üu<:lor PDEs of scc\)ud order. \Ve also considcr the itcm software in lhis I1dd <lndgive smne historka.!
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1. Historieal remarks and introduction

First, we try tO give a survey on how ano where interval analysis was deveJoped. Of course, we
cannot give areport which covers an single steps of [his deve!opment. We simp!y try 10 list some
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import3nt steps and publisbed papers whieh bave contributed to it. This sur'vey
influcnced thc gpccial experience ami taste 01'tbc authors.

A famous ana very oId example of an intcrval el1closure is given by thc mcthod due to Archimcdcs.
He considered inscribed polygons and circumscribing polygons 01' a circle with radius 1 and ob-
tained an sequence of Im,Verboun<!s aud al tbc same a dccreasing sequence of
upper bounds for thc aera of the corresponding disco Thus stopping this process \vith a circum-
scribing and an inscribed polygon, eaeh of n sides, he obtained an interval containing thc number
7f..By choosing n large enough, an interval of arbitrary small width can be found in this wa)'
containing n.

One of thc first referenccs to interval arithmetic as a too] in nmnerical computing can already be
found in (35, p. 346 ff] (origina11y published in Russian in 1951) whcrc the mIes for thc arithmctic
of intervals (in thc case that both opcrands contain only positive rmmbers) are explicitly stated and
applied to what 18 caHed today interval arithmetic evaluation 01' rational expressions (sec Section 2
of thc prescnt paper). For example, the 1'oHow1!igproblem is discussed: What is the range of tue
expression

of course, strongly

a+b
x=

if the exact values 01' a, band c are known to lie in certain given intervals. By plugging in thc
given intcrva!s the expression for x detivers a superset of the range of x.

to Moore P.S. has discussed matrix

already in his book [29] in 1951.
Probably thc most important paper for the development of interval arithmetic has been published

by the Japanese scientist Teruo Sunaga (88]. In this publication not only the algebraic rules für the
basic operations \vith can be hut a of the whieh
they ful!11LThe general principk: of bounding the range of a rational function over an interval
by using only the endpoints via imerv'al arithmetic evaluation is aIready discussed. Furthennore,
interval vectors are introduced (as muJtidimensional intervals ) and tbc corresponding operations are
discussed. Tbc idea of an encJosure für the zero of a rea! fU!Jction \vbat is

today called interval Newton method is already presentcd in Sunaga's paper (Example 9.1). Finally,
bounding the value of a definite integral by bounding thc remainder term using interval arithmetic
tools and computing a pointwise enclosure for the solution of an initial value problem by remainder
term enclosing have aJready been discussed there. Althoughw-rlttcn in these results did
not find much attention until toe first book on intcrvai analysis appeared wilieh was written by
Moore [64].

Moore's book was the outgrmvth of his Ph.D. thesis [63] and thereforewas mainly concentrated on
bounding solutions of initial value for equations it eontained
also a whole bunch of general ioeas.

After the appearance of Moore's book groups from different countries started to investigatc thc
tneory and application of interval arithmetic systematicalIy. One of the first survey artieies following
Ivioore's book was \-vritten Kulisch [49]. on the book [12] was wriHen which
was translated to English in ]983 as [13].

Thc interplay between algorithms and thc realization on digital computers was tboroughfully in-
vestigatedby U. Kulisch and his group. Already in the 1960s, an ALGOL extension was creatcd aud

interval arithmetic
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properties on existence, uniqueness and enc10sure of a solution when they are performed on a
computer. Based on such a machine interval arithmetic, software is available which delivers verified
solutions and bounds for them in various fields of mathematics. We will shortly consider this topic
in Section 9.

In the last 20.years both the algorithmic components of interval arithmetic and their realization on
computers (inc1uding software packages for different problems) were further developed. Today the
understanding of the theory and the use of adapted programming languages are indispensible tools
for reliable advanced scientific computing.

2. Definitions, notations and basic facts

Let [a]= [Q,ä],b = [Q,b] be real compact intervals and 0 one of the basic operations 'addition',
'subtraction', 'multiplication'and 'division', respective1y,for real numbers,that is 0 E {+, -,', j}.
Then we define the corresponding operations for intervals [a] and [b] by

[a]0 [b]= {a 0 blaE [a],b E [b]}, (1)

where we assume 0 t!. [b] in case of division.
It is easy to prove that the set I(IR) of real compact intervals is c10sed with respect to these

operations. What is even more important is the fact that [a]0 [b]can be representedby using only
the bounds of [a] and [b]. The follow~g mIes hold:

[a] + [b] = [Q + Q,ä + b],

[a] - [b] = [Q- b,ä - Q],

[a]. [b]= [min{ab,Qb,äQ,äb},max{ab,Qb,äQ,äb}].

If we detine

[~] = {t!bE[b]} if Ot!. [b],
then

1

[a]j[b] = [a] . [b]"

If Q = ä = a, i.e., if [a]consistsonly of the elementa, then we identifythe real numbera with
the degenerate interval [a,a] keeping the real notation, i.e., a ==[a,a]. In this way one recovers at
once the real numbers IRand the corresponding real arithmetic when restricting I(IR) to the set of
degenerate real intervals equipped with the arithmetic defined in (1). Unfortunately, (I(IR),+, .) is
neither a field nor a ring. The structures (I(IR),+) and (I(IR)j{O},.) are commutative sernigroups
with the neutral elements 0 and 1, respectively, but they are not groups. A nondegenerate interval
[a] has no inverse with respect to addition or multiplication. Even the distributive law has to be
replaced by the so-called subdistributivity

[a]([b] + [cD ~ [a][b] + [a][c]. (2)

The simple example [ - 1,1](1+ (-1)) = 0 c [- 1,1]. 1+ [- 1,1]. (-1) = [ - 2,2] illustrates (2) and
shows that -[ - 1,1] is certainly not the inverse of [ - 1,1] with respect to +. It is worth noticing
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that equaHty holds in (2) in some important particular cases, for instance if [al is degenerate 01' iJ
[b] anei [e] jic on the same side with respe<:t to O.

From (1) it follows immediately that ilie introduced operations for intervals are inc1usion monotone
in thc following sense:

<; [b]~:::;Cd] :=> Ca]0 [b] ~ [cl 0 [d).

Standard interva! functions (f>E F = {sin,cos,tan,arctan,exp,In,abs,sqr,sqrt} ure defined via their
range, l.e.,

(3 )

o/({x)) = {<p(x)jx E [x]}. (4)

Apparenlly, they are extensions of the corresponding real functions. These real functions are contin-
uous aud piecewise monotone on any compact subinterval of thcir domain of definition. Therefore,
tl1evalues <p([x]) can be computed direct1yftom the values at thc bounds of [x] and from selected
constants such as 0 in the case of ihe square, 01' 1, 1 the case siue and eosine. It is obvious
timt the standard iuterval funet!o!)s are inc1usion monotone, i.c., they satisfy

[x] ~ [yJ :=> <p([x)) ~ (p([y]). (5)

Let f: D~!R1 ..;. R be given by a mathcmatiealexpressionfex) wbkh is composedhy finitelymany
eiementary operations +, -, .,I ami standard functions q;E F. lf oue replaces the variable x by an
interval [xJ ~ D and if one can evaluate the resulting interval expression following the ruIes in (I)
and (4) then one gets again an interval. It is denoted by f([X)) aud is usual1y caUed (an) interval
mithmetic evaluation 01' f over [x). For simplicily and without it separately we asrmme
that fUx]) exists whcnever it occurs in thc paper.

From (3) aud (5) tbc intcf\lal arithmetic evaluation turns out to be indusion monotone, i.e.,

[x] ~ [y] :=> J([x]) ~ f([yJ)

holds. In partienlar, fUx]) exists whenevcr f([y)) does für [yJ2 [xJ. From (6) wo obtain
x E [x] :=> fex) E f([x]),

(6)

(7)
whence

RU; [xl) ~ J ((x]).

Here R(f; [x]) denotcs thc range 01'J over [x).
Relation (8) is thc fundamental propcrty on wWch nearly a11applications of interval arithmetic

are based. It is important to stress what (8) reaHy is de!ivering: Without anyftuther assumptiü!1s
is jt possible to compute tower and upper bounds for the range over an interval by using only the
bounds of the given interval.

(8)

Example 1. Consider
x

f(x) = ~-~,1-" x

andthcintervalf:r]= [2,3].It is easyto see tlmt

R(f; [x]) = [ -.2, -~],
f([x]) = [ - 3,-1],

which confirm5 (8).

rational function

xi: 1,
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For X # 0 \ve can rcwrite f(x) as

j
'

{
1 -/.. ° ;

x}= 1/ l' Xi , X'f'l;X -

and repiacing X by thc interval [2,3] we get

1 3
= [ - 2,-2] = RU; [x]).

From thi$ example it is dear that the quality of the interva1 arithmetic evaluation as an enclosure of
thc range of f ovcr an interval [xl i$ strongly dependent on bow the expression for f(x) i$ \-vritten.
In order to measure this quality we introduce the so-called Hausdorff distance q(.,.) between intervals
with which l( IR) is a compIete metrie space:

Let [al = [g.,ä],[b]= [~,b], then

q([a],[b) = max{ig - 121,lä - bl}. (9)

Furthcnnore, we use

" I
(

'-
)a='if?:Wj-u,

deal= ä - q,

l[a]1= max{ial ja E [an = max{lgl,läl},

{

O,

((a)) = min{!al!a E [an = min{lq!,läl}

if 0E[al,

if 0~ [al
(10)

and call ci center, d[a] diameter and l[all absolute vaIue of [al.

In order to considcr muttidimcnsionalproblems we introducem x 11intcrvai matrices [,1]:::::([au])
\vith entries faul, j = l,...,m, j::::::;1,...,11, and interval vectors [x] = ([x;]) with n components
[Xi], i = 1,...,n. We aenote thc corresponding sets by l(RIi1XJ1)amll(R"), respectivcly. Tdvially,
[A] coincides with thc matrix interval [d,Ä} = {BE R",xn 14~B ~Ä} if d. = (qu),Ä = (äi)) E R",xn
and ifA =(aij)~B = (bij) mean5 aij~bij for an i,j. Since interval vectors can be identified with
11x 1 matrices, a simiLarproperty boLdsfor thcm. Thc null matrix 0 and thc identity matrix I have
the u5uaLmeaning, e denotes thc 'leetor e = ( I, 1,. . ., 1YE Rn. Operations between interval matrices
aud between interval vectors are defined in thc u5ual manneL They satisf'.yan 3.nalogucof (6)--(8).
For example,

{.<xlA E [A], rE [r]} \; [A][x]~ (t, [a'lJ[Xi]) E1(W')

if [A)El(R",xn) and [x]EI(IR"). It is easilyseen tbat [A][x]is the smallestinterval'leetor which
eontains thc 1eftset in (I I), but normally it does not coincidewith lt. An interval item which encloses
some set S a5 tight as possible i5 called (interval) huHof S. The above-mentionedoperations with
two interval opcmndsalwaysyicld to thchuHof thecorrespondingunderlyingsets.

(11)
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An interval matrix [A]E 1(~"X") i3 cal1ednonsingularif it contains no singular realn x n matrix.
The Hausdorff distance, the center, the diameter and the absolute value in (9), (10) can be

generalized to interval matrices and intervaJvectors, respectively,by applying iliem entry\vise.Note
that the results are real matrices and vectors, respectively,as Cß.nbe seen, e.g., for

qUA], IBJ) = (qUa;}), [bij]» E IR"'x"

if [A], [B] E J(iRmx,,). We also use the comparison matrix <[A]}= (ci}) E IR"XI!which i8 defined for

[A] E I(!2nxn) by

{

([aij])

Ci}= -1[ai;)1

if i = j,

if i i=j.

By int([x]) we denote fue interior of an interval vector ~,], by p(A) the spectral radius of A E !R"x"
and by 11.1 the usual maximum norm for vectors from R" or the row sum nonn for matrices from
Rnxn.In addition,the Euclideannonn 11.11:in R" will be used. We recall that A EIR"x"is an M
matrixif a;j~O for i i=j aud if A-1 exists and is nonnegative, i.e., A-J "?-O.If each matrix A from
a given interval matrix [A] 15an M matrix then \ve caU [A] an M matrix.,too.

Let each componeutfi of I; D ~ R'"-+ IR"be givenby an expressionli (x), i = 1,.. . ,n, and !ct
[x] ;. D. Theu the interval arithmetic e\laluationf([xJ) 15defined aualogouslyto the oue-dimensional
case.

In this paper we restrkt ourselves to real compact intervals. However, complex intervals cf the
form [z]=[a]+i[b] «(a],[b]EI(R)) and [z]=(i,r) (i,rE~, r?;?;O)are alsousedin practice.In thc
first form [z] is a rectangle in thc complex plane, in t11esecond fonn it means a dise whh midpoint

i and radius r. In both cases a complex arithmetic can be defined and complex interval functions
can be considcred which extend presented ones. [3,13] or (73). e.g., for details.

3. Computing therange of real functions by interval arithmetic tooI5

Enclosing thc range R(f; [x]) of a function f: [) ~ Rn -+ R'" with [x] ~ D is an importanttask in
interval analysis. H can be used, e.g., tor

\I} localizing ana endosing global minimizers am:!global minima of f on [.tJ jJ In::::::.1,

. verifying R(f; [x1) ~ [x] which is needed in certain fixed point theorems for f if m "'"n,

. cndosing RtF; [xl), i.e., the range of ilie JacQbiansof I if m = 11,

.. enclosingR(fu<);[x]), i.c., the range of tbc kth derivativeof f whichis neededwhenverifying
and enclosing solutions of initial va.lueproblems,

. verifying the llonexistence of a zero of I in [xJ.

According to Section 2 an interval ariilimetic evaluation f(L~]) is automaticall:/ an endosure of
R(f. [x)). As Example I iUustrales f([x]) may overestimate tbis range. Tbe foIlowing theorem
showshow largethis ovcrestimationmaybe.
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Theorem 1.(Moore [64]). Let I:D C ~"_, ~ be coniinuous and let [x]:; [xt (; D. 1I1en (under
mild additional assumptions)

q(R(f; [xn,f([xn)~ylid[xJj i'~O,

df(Ix])~(51Id[x11Ioo, ()~O,

where the constantS y and b depend 011[xt hut not on [x).

Theorem 1 states that ir the intervaJ arithmetic evaluation exists then the Hausdorff distance
betwecnR(f; [x]) and f([x]) goes linearlyto zerowiththe diameterdlx]' SimiJarJythe diameterof
thc intervaJ arithmctic evaluation goes liIlearly to zero if d[x] i5 approaching zero.

On tbe üther hand, we have seen in the secünd part of Example 1 that f([x]) may be dependent
on the expression which i5 used for computing fUx]). Thereforc thc following question i5 natural:

Is it possible to n~arrangetbc variables oi the given function expression in such a manner that the
intervaJ arithmetic evaluation gives higher than linear order of convergence to the range of vaJues?

A first wsult in this respcct shmvs why the intervai arithmetic evaluation the second expression
in Examplc 1 is optimal:

Theorem 2 (Moore [64]). Let a continuous fune/ion f:D c~" '-7 IR be given by an expression
f(x) in which each variable Xi, i = 1,. . ., n, oaurs at most once. Then

f([x])=R(f;[x]) for alt [xJ~D.

Unfbrtunately, not many expressions f(x) can he rearranged such that the assumptions uf
Theorem 2 are fulfiiled. In order to propose an alternativewe consider first a simple example.

Example 2. Let fex) = x - X2, XE [0, 1]= [xt
It is easy to see that for 0 ~ r ~ ~ and [xJ= [! .- r,{+ r] we have~ ~.

R(f
,
[]

'_ [
l 21

]. ,XJ- "4-r'4
and

f([x]) = U - 2r - ,.2,j + 2r - r2J.
From this it toHows

q(R{f; [x]), (f([x]) ~yd[x] with y = I,
ami

df{[x])~bd[x] with ;)=2

in agreement with Theorem 1.
If we rewrite fex) as

2 1 1 i
x- X = 4:- (x - 2")(x - 2)

and plng in the intcrval [x]=[~~r, t+r] on the right-handside then we get the intervaln
which,of course, includesR(f; [x]) again,and

q(R(fj (x]),U- r\ t +r2]) = r2 = i(d[x]f

, ~+1'2]
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Iience thc distance betwccn RU; [x]) and the enclosurc intervaJn - r2, * + 1'2] goes quadmticaUy
to zero with thc diameter of [x].

Thc:preceding example i8 an illustration for thc following general result

Theorem 3 (The centered form). Let the jimctioll f:D ~ ~I! -, IR be represented in the 'centered
!OrJJI'

fex) = fez) + h(X)T(x - z)

for s()me ZE[xJ~[x]o~D anelh(x)E[~II. {f

(12)

f([x]) = fez) + h«(x])T«(X]- z), (13)

1hcn

R(f; [x]) s:::: f((x]) (14 )

and (under same additional assumplions)

q(R(f; [x]),J([x)))~Klld[x]II~, K;:;;:O, (15)

where the constant K depends on [xJo but not on [x] and z.

Relation (15) is called 'quadratic approximationproperty' of the centered form. For rational func-
tions it Is not difficult to find a centercd fonn, see for example [77].

After having introduced the centered form it is natural to ask if there are farms which deliver
highcr than quadratic order of approximationcf thc range. Unfortunately,this is not the case as has
been showli recently by Hertling [39]; see also [70].

Nevertheless, in special cases one can uso the so-caHedgeneralized centered forms to get higher-
order approximations 01'thc range; see, e.g., [l8J. Another interesting idea which uses a so-calIed
'remainder form of f' was introduced by Cornelius and Lohner [27].

FinaHy, we can apply the subdivision principle in order to improve thc eucloSL1re01'the range.
To this end wo rcprescnt [xJEJ(~~") as thc union of kn iuterval vectors [Xli, 1= l,...,k", such that
d[Xi]!=d[Xi]/k for i= 1,...,TI and!= I,...,kn. Defining

k"

f([x]; k) = Uf([x]\
hd

(16)

thc foHowing resul! holds:

Theorem 4. Let f:D ~ !H;" R
(a) FViththe notations and a.ssumptionsof Theorem 1 emd ivith (16) we get

q(R(f; [x]),J([xJ; k)~~,
, ~ 'I lf ]

0,
wnere 'j'= YII' LX I
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is considered and where various examples for epsiJon inflations are prcsented. Unfortunately,
Theorem 8 says nothing On the number of steps which are needed to succeed \vith (22). There-
fbre, other possibilities become intercsting which we are going to prescnt in the second part 01'this
section and in Section 6.

Vie consider HO\Vzeros cf a givcn fUHction f.
A first method is based on a resuH of C. Miranda (see [62J or Coroliary 5.3.8 in [69]) which is

equivalent to Brouwer's fixed point theorem. We use it in the fol1owingmodified interval version.

9. Let s:;;:IT~"._, be continuOlIS and [x] s:;D,

[lJ = ([x,],..., [Xi-I],,Ij,[xi+d,..., [x,,]f,

[' 11- ( 1'
] [

.
]

-
) r ])TUj .- lXi 'H" X"..j ,Xh ."'" X". .

1f !,(UY) ~O, fi([Un~O 01'f;([lJi) ~O, f;([un~O holdsfor each i= 1,... ,n then f has at least
Ollezero in [xl

Combined subdivisions, lists and exclusiontechniques 9 the basis of a simple
but efficient verification and enclosure method for zeros of functions .r:D s:;; Rn-. R'"even irm < n.
Curves and surfaces can thus be tightly enc10sedand problems in CAGD like ray tTacingcan be
band1cd.We refer TO[31,52,68].

Anothermetbod for verifying zeros consists in generalizing the interval Newton method
Section 3 to the multidimensional case. To this end we denote by

IGA([A], [b)),

the result of the Gaussian aJgorithm appIied forrnaHyto a nonsingular interval matrix [A]E )
and an intervaI vector [biE l(~]f), see, for example, [13, Seetion 15]. Hefe we assumed that 110
division by an interval which contains zero occurs in the elimination process. It 1Seasy to see that

S ,,;:;c;{x = A

hoIds. By

IA E [A], b E [bns:;;:IGA([A), [b]) (26)

IGA([AJ}

we denote thc interval matrix whose ith column i5 obtained as IGA([A], tf) where e" 15thc ith uni!
vector. In other words, IGA([Al) is an cnclosure for thc inverses of aU matrices A E [Al

Now assume thai

!:D C 11(" .--.... (27)

is continuously differentiable. 11'x, y E [x] ~ D then

J(x).. f(y) = J()', (28)

where

J(y,x)= lt f'(y + tex~ y)dt,
(29)
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Note that J is a continuoHsmapping x and y which
have y + tex - y) E [x] and therefore

J(y,x) E r([x)), (30)

where f'([x]) derlOtesthc intel,la1arithmetic evaluationoI' thc Jacobian of f. For fixed y E ~'"]we
fron: (28) and

p(x) = x - J-'I(y,x)f(x) = Y - J-l(y,x)f(y) E Y - IGA(f'«(x]),f(y». (31)

If x E [x] is a zero of f then (31) implies xE y - IGA(f'([x]),f(y». This leads to thc following
definition of the interva! Newton operator N(x) whien we introduce in analogy to (18): suppose that
mLt'](: [x] is areal vectOLThen

N[x] = m[xJ- IGA(f'([x]),f(m['\:]».

The interval Ne\vton method is deftned by
f. ]k+! - N

'

( ]
k

[ J
k k - 0 1 'I!x- x n x, -" '-,... .

J(y,x)::;;: y). Since t E:[0, IJwe

(32)

(33)

AnaJogously to Theorem 5 we have thc folloviingresuH.

Theorem 10. Let f: D ~ R" -+ ~" be continuously differentiable and assume that IGA(j'([x]o»
exists for some intervaJlJector [x]o<;:D: (This is identical to assuming that the Gaussian algorithm.

f
'l ,,

[
,

]0, (I (
,

[ Jo, . .
)IS . (x ). J X) 1S m case.

(a) Jf

N[x] S;;; [x]

for SOfne[x]~ [x]othenf has a zerox~ in [x]whiehis uniqueeven in [xt
Asswne

p(A) < 1, where A = il - IGA(.f'([xt»f'([xt)l. (34)

(h) 111 Irasa :ero x' in [\'t then the sequence {[xt}~o defined by (33) is well defined, x' E [xt
ami '""x'.. In , {is (mdx' is uniquein
[x}o..

More(n'er, II

df'([X])ij~Cllid[x]Ii=, cc;;?;O, l~i,j~1!

all (x] ~ [xJo

ild[xt+iIL)C~Ylld[xt!l~, y;;?;O.

(e) N[xto n [xte>= (/}for same ko;;?;Oif and only (f fex) i= 0 lVi all xE [xt

(35)

(36)

The proof of (a) can bc quickly done hy applying
resuitsof (h) and(c) canbe foundin [9].

Note tl1at in contra...':;tto the onedimensional case we need condition (34) in cases (b) and (c).
Because of continuity reasons this condition always holds if thc diameter d[x]o of the given

interva1 vector ('starting interval') is componemwise smaU enough (and jf j'([x]o) contains no
singular 1 we A ::ce 0 in the limitcase d[xJo= O.Schwandt

iixcd point to P (31) The
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has sho;vs that for a ccrtain interval

H 1Seasy to prove

n ;c;;;: 0
'1'L if at least one iij

<0
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<0

hold8. it can be

","
x f1~

11 ~:S; AI

are two real matrices contained in
smfdJ diameter thcre 113at

ySO

and

-..,

3. the

18x

m



436 G. Alefeld. a. /o.1ayer!Journal 01 CompUlationalflud Applied A1athematics 121 (2000) 421464

not contain zero. Hcnce (18) can be performed for cach of these inteITaJs.If such a subinteITaI
contains a zero then (a) of Theorem 5 holds, otherwise (b) is true. Table 1 contains the intervals
which were obtained by applying thc above-mentionedmodificationof thc inteITal Ne\vton metbod
until 0 f/:f'«(x)) tor all computedsubintervalsof ~"(]D(for simplicitywe only give three digits in
thc mantissa).

Thc subintcrva!s which do n01 contain a zero of f are markcd by a star in Table 2. Thc number
in the second line exhibits thc uumber of steps untHthc intersection becorne:;empty. For n =9 we
have a diameter of approximate!y 2.75, which is not smaH,and after only 3 the intersection
bccornes empty. The imervals wÜhthe numbers 11=1,2,3,6,8 each contain a zero of f. In the sccond
1ine the number of steps are given which have to be perfonned until the lower and tipper bound
can be no longer improved on thc computer. These numbers confirm the quadratic convergence 01'
the diameters 01'the enclosing inteITals. (For n = 3 thc enclosed zero is x* = 0 and we are in thc
underflow range.)

For more details concerning thc speed of divergencesee [8].
Thc intcITalNewton method has the big disadvantagcthat cven if the interval arit'luneticevaluation

f'([xt) cf the Jacobian contain$ no singular matrix il,>feasibiEtyis not guarantC\.--d,IGA(f'([X]o),
f(mf.x]o) can in generalonly be computedi1'd[x]o is sumciently s.maJI.Fm this reason Krawczyk
(48] had thc idea to introduce a mapping which today is ealled the Krawczyk operator:

Assume again that a mapping (27) with the correspondingproperties is Then analogously
to (32) we consider thc so-caHedKrawczyk operator

K[xJ= m[x] - Cf(m[x]) + (1'"'' C.t([x]))([x] - m[x]), (43)

Tab!e!
Thc modified interval Nc\vton method ap-
plied 10 I from Example 3

_~m_««,,-

n
--''''''---'-'''---''-'''''''' """'"''''-'''''''''

m.""<."".""""--""-,,,,,~--,,-,,,,-,,---

Tab!e 2

The interval Newton mcmod applied 10f from Example 3
-~-'-"-"""""'-"""-"""""'''''''''''_._,---''''-'''<".

[ 0.356 " 101, -0.293. 101]
"

[ - 0.141 . 101. -0.870. 10(1)L.

3 r - 0.977 . 10(1, 0.499. J0°]
4 [0.501. !0°, 0.633 ' Wo]
5 [0.140. 101, 0.185.101]
(; [0.i88. 101, 0.212. IOJ]
7 [0.265.10\ 0.269 . 101]
8 [0.297 . 101, 0.325 . 10']
<) [0.327 101, 0600. JOI)

11 J 2 3 4" 5' 6 ." g 9I

5 6 9 j 2 6 1 5 3"--.-,,-
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where C is a nonsingularreal matrix and wherem[xJE[x]. For fixed C we definethc so-cal1ed
Krawczyk method by

[l:t;-] =K[x]kn[x]tt, k=O,1,2,..,. (44)

For this method an analogous result hoIds as was formulated for the interval Newton method in
Theorem 10:

Theorem 11. Let f: D ~ Rn ---) 1I-4"be conÜnuous!ydifferentiable and assume that the interval
arithmetic evaluation f'Ux]o) of the Jacobim1 exists for same interval vector [x]o~Do.
(a) Ir

K[x]; [x]

for !Jome(x] S;;[x]o then I lIas a zero x' in (x}.
If (45) is slightly sharpened !O

(K[x]);c(Xj];[x;]o lvI' i= 1,...,n,

tlIen p(lI - Cf'([x])i) < 1 hold,>,f'([x]) is fUJnsingular(md x? is unique in [x].
Let m[x] be the center of [x] (md asswne that

p(B) < 1 whereB = 11 -- C('([x]o)l, (47)

(b) Ifi has a zero x. in [x]o [hen the sequence {[x]t}?;,odefined by (44) is weil defined,x' E [xt
and limk-oo[xt = x'. In particular, {[xt}0;:o is I1wlwtonical(vdecreasing anti :c* is unique
in [x]o.MoreotJer, if C = Ck varies rvithk such tilat it t<;the int1erseof some matrix from
f'([xt), and tf

df'([xn;::s;\Xlld[xJllx, ,x;:;:O, 1~i,j~n (48)

for all [x] ; [xt then

j
i
d[ ]k+!j! ;::::.,i!d fv ]

kl
j2 -<>- 0: x ii='-'iiiV": 'x' j"".

(e) K[x]h n [xt" ::c:'0for somekü;:;:Oif and on/y if fex) .;;j;0 for all xE [xt

(45)

(46)

(49)

Proof. Ca) Consider for the nonsingular matrix C in K[x] thc cOlltirmousmapping
fJ : D ; ~" --. [Rn

defined by

g(x) =x ,.. Cf(x).

It foUows, using (28) and the assumption,

g(x) =:c' Cf(x)

= X ,- C(f(x) ~. f(m[x]) - Cf(mfx))

= m[x] + (x - m[x]).- CJ(m[x],x)(x - m[xJ).- Cf(m[xJ}

E m~r] ~ Cf(m[x]) + (1- Cf'([x]»([xJ m[x])

=K[xJ~[x], XE[X].

ßy Brouwcr'sfixedpointtheorem9 hasa fixedpoint E [x]. Ihis fixedpointis a zeroof f.
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If (45) is replaced by (46) then 11- Cf'([x))ld[xl~dK[x] < d[x]. Therefore,

2::;"'.1 j1- Cf'([XDIi.jd~tj]max _C'm ..- < I
i "'-d;" d~'(d

which is equivaIent to

IIDjjl- Cf'«x])!DIL"" < L

Here,D i$ the diagonalmatrixwith du :::::d[Xi], i = 1,...,11.Therefore,

p(iI - CP([x])D = p(b"; 11- ct([x])ID)~lIb-!11 - Cr([x])IDli", < 1.

IJ j'([x]) contained a singular matrix Athen 1 - CA wou1d have thc eige:nvalue 1 and we wou!d
get thc contradiction

1~p(I - CA)~p(lIm CAi)~p{lf - Cj'([Xlm < L (50)

Therefore, .f'([x]) is nonsingular. If f had two zeros x", y' C [x) thcn (28) aud (30) would imply
x' .;;;;~y'.

(b) By (28) we have

fex') - f(rn(x}) =J(m[x],x*)(x' - m[x])

and since .f{x') = 0 it f01l0W$

x~ = m(x) - Cf(m[x]) + (f - CJ(mrx],x~»(x' - m[xJ)

E m[X]m Cf(m[x]) + (f - cj"([x])([x]- m[x])

::::: XIx].

Hencc if x' E [xt tl1el1x' E K[xt and therefore x' E K[xtnrxt=[x]!. Mathematica1 inductkm provcs
x' E [x]"', k ~O.

Für thc diameters of tbc sequcnce ([xt we nave ~dK[x]k :S;Bd[x)', wherc thc
last inequality hülds because we assumed that m[xt is the center of [xl". Since p(B) < 1 we
have hUlk-"""dfx)" = 0, and from x' E [x]* it fo!iows limk"(.>J[xJ*:;:::;;x', particlllar, x' is llnique
wÜhin [xt

AnalogotJsly to (a) assumption (47) irnplies that j'([x\)]) is nonsingular. Since it is compact
and sincc thc inverse of a matrix lv/ E !F%"xndepcnds continuously on the cntries of M tbc sct
UM-'i i :'-'1E .f'Hxt)} is bounded by some matrix C', Thc quadratic convergenee beoavior (49)
fülJows now from

d[xt;- J ~ 11- Ckf' ([xt )Id[xt
? Ic "C-J

f
l
([ J

k
)

.

1

J
[

"
~ l AH k x t1 Xj

~ CIP([xt) - I'([x]k)!d[xl'

= C clf' ([xJA)d[xt

by using(48).
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where C is any upper bound for thc set {jM-! I i111E f' (Lx]tI)}. Therefore

K[x] <;;;;m[x] ,,- Cf(m[x)) + [ -- 1,1](; df'([X]) -I(x] m[x]j.

Hence,

l: -"! ~ -. 0:- Cf(m[x]) + Cdf'([x])d[x]

~~d[x] - Cf(m[x]) + O(!ld[xll1;,)e,

where we have used (48) and m[x]E [x].
x = y =! in (28) we

f(m(x]).~ ItÖ=J(,!,m[x])(rn[x) - ~J.
It foJiows that

k --! ~~dlx) "W. - ~C J(bm[x])d[x] ";'-O(iid[x]1

= ~(I - CJÜ,m[x]»d[x)- Cf,<!)+ O(lld[x]II~)e.

I ~ C.J(,!,m[x)) = qc-1 -J(~,m[x]))E C(f'((x]) - f'(~\')))= Cdf'([x)),
the assertion foHowsby applying (48).

Thc second can be shown in samemanner, hence (53) and (54) are
If I(x) 'F 0, x E ~'(]and 4r] i5 sufficientiysmaH,thcn there exists an iüE {I, 2, . H, 11}such that

(Cf(!));~ 'I: 0 (55)

and

sign(Cf(.i»iÜ= sign(Cf{!»)io- (56)

This can be seen as folIows: Since ! E [x] wc have f(,!) ::/:0 and siace C is nonsingular it foHows
that C.f(:sJ 'I: 0 ami thercforc (Cf(:s) )i'j ;J::0 for at Dne iüE {I, 2,..., which proves (55).

aga!n with x .Y,y =! wo gei

fex) - f(J.) = J(bi)(x - J:).
1t follO\V$

C.f{.i) = c.f(!) + CJ(,r,i)(.f '-,!).

Sinee thc second renn on the right-hand side approacheszero if d[x-] -> 0 we have (56) for suffi-
ciently small diameter d[x].

Using (53), with (55) and (56) we can now show suffidcntly sman diameters
of [x] the intcrsection K[x] n [x] becomes empty. See thc analogous conclusions for the interval
Nc\-vton rnethod llsing (41), (42) together with (39) and (40). By the same motivation as for the
interva] Newton method we denote tl1isbehavior as 'quadrati<: divergence' cf method.

Part ($1) 01' thc t\vo preceding theorems can be used in a systematlc manner J:"()rverifying the
existence of a solution of a nonlinear system in an interval vector. Besides of the existence of a
solution also cornpommtwise crrorbounds are delivered by such an interva! vcctor. We are now going
10 hows11chanimervalvectorcanbcconstructcd.
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Theorem 14. Let [A]= [M]- [N] E I(WX"), [b]E l(~") wilh [M] being a nonsingular l(Jwer trian-
ffular interval matrix:
(a) Iteration (68) isoequivalent to

(

;.-! "

)
/

[xaktJ= [b;] - I)mi;][x,fiJ+ 2:)l1ij][Xit / im;;], i= I,...,n.
J=J j~l !

(b) Iteration (68) i3 convergent 10same limit [xr EI(R") (i.e., each sequence ([xt}::G o[ iterates
dejined by (68) is to) if ami onl)' if p«[A1]}'1 < L
in this case S:; [xr .

Ce) 1f [,1] and [M] are M matrices and (f !i?;O then p«[M1)-!I[NJI) = p(M..1il) < 1 and [x]*
fron? (b) i3 the hull of S.

(d) Let [x]EI(IR"). lf J([x)) from (68) satisfies (f([X])iC(X,] Jor i = l'H..n, then
p({[MJ).-lj[N]I) < 1.

iteration

(69)

Proof. (a) follows by induction with respect to i taking into account that for lower triangular matrices
the itn elimination step of the Gaussian algorithmchanges on!y thc ith eolumn of [,1].

(0) Let P = ' Since [M] is triangular, {[M]) is an M matrix, hence P?; O.
'~': From (69) we get

(

I.., i1

)/
'

.I:+j ""'''''r ,icH" "I: ![ '- 7

d[x,] ?; ~lmij!dlXj] T~lnij,d[Xj] \lfnu]),I-1,...,n, (,0)

which is equivalent to {[1vf])d[xT"'?; I[N]ld[x]*. From this, d[xt+' ~Pd[X]k, and, by induction,
d[xt ~ pkd[x]o follow. Choose [xt such that d[x]Üis a Perron vector for P with d[x;"r < d[X0]o
for some index io. If p(P)?; 1 theu

d[Xi.t ?; p(pl d[Xi.]O?; d[x;,,]o> d[x,.r

and k -~ 00 yields to a contradiction.
'~': Let lUx))::::::IGA((M], [N][x] + [b]). From (69) we gel

C
,
J(f{

"

[x}) ( 'f) '])
'
) ,:;:: _._1_..

(
81 [m' l!q{( (

'

[x' J) ((I'v
,,

' ]» ,f. ~ 1[111, ]lo([x, ] [
'

) '
,

,

j
1

»)
, ',,'.,\ '''I

[ J" L' Ij" J'},'. ..1, 'Li ,v 1 ';.'} ,
\ m" i
) iI )=, j=!

i = 1,...,11,

whence {[M])q(f{[x)),f([y]))~ I[N)lq([x),[y]) and q(f([x]),f([y])~Pq([x],[y]). Henee [ is a
P contraction, and Theorem 7 together with Remark 1 proves the convergence.

Let now (68) oe eonvergcnt for aH [x]o and ehoosc ii E S. There are AE [A], bE [b],i}f E [M],- , ~ -. ~ ~ ~ .,,! - -

N E [,V] such that Ai = b. A ::::M - N and i =M (N.i + b). Then i E IGA([M], [NJi + [b]}. Start
(68) with [xJG= .i. Then i E [xt fOTk = 0, 1,..., henee i E [xr. This proves S<:::;[x]*.

(c) Thc imply that d. ,::,= .- is a regular of 4 and that 4-.1~ O. Therelore,
2.4.17 in [71] guarantees p«([M])'j[N]!)= p(lvr'Fi) < 1.

In order to prove the hull property let [xr be thc limit of (68), define

{

In,').. if ~ 0,

{

iii
, i j1' ~ 0,~ ..m..= 11..='.I - . " 'J ."

mij If Z./ > 0, t!ij If ~j > 0



446 G. Ah:(eld. G. Mayerl.foumal ()fC()mputati()nal and Applied Alalhemalics 121 (2()()O)421464

auel let A~ =U"' - . Then A* E [A], and from (69) with k ..,CX) we gei = Q, ES.
f\nalogously one can show that i* ES.

(d) Replace [x;t by (x}) and [X;]k+!by f([xDt in (70). Together with the assumption this yields
to Pe/lx]~d f(~:r]) < d[x], and analogously to the proof of Theorem 11(a) we get pCP) < 1. 0

For thc Richardson splitting [A]=1- (1- [A]) parts of Theorem 14 were a!ready
in [61]. Most of its present form can be found in [69, Chapters 4.4 and 4.5].

We now apply the Krawczykoperator(43) to the functionAx -. band repiaceA ERnx", bE
b)' [A] E1(lRnx,,),[b]Ei{R"). Tnen we get the modifiedKrawczykoperator

Km<>d[X]= m[x] + C([b] [A]m[x]) + (1 - C[A])([x] - m[x])

an<! proved

(71)

with some nonsingular matrix CE 1R"x" and any vector ml'C] from ~n. For Kn"''''[x]and for the
iteration

[xt+! = KmOd[Xt() [X]k

with fixed C the fol1owing analogue of Theorem 11 holds.

(12)

Theorem 15. Lei [A]EI(~iJX"), [b]E l(~"):
(a) !f

p(ll C[Am < 1, (73)

then [A] is nonsinfJular, Le., each linear system Ax = b with A E [A] and bE eh] is uniquely
!jolt'able. Ij; in addition, S ~ [x]o t/zen the sequence {[X)k}~o defined by (72) is weN defmed,
s<; [xt (md limk-<,,)~tt = [x]' "2 S. In particular, ([xtH~o is mOJ1otonically decreasing.

(b) !f

K,,1txt[x] <; (x] (74)

for SCIlJle(xJ Cl(!H:") theil each linear system Ax =b wilh A E [A] amj bE [lf] has a solution
x' E [x].
Jf (74) is 10

(K",<",[x]);c[xd for i= 1,...,n,

then p(ll - C[AJI) < 1, i.e., the properties in (a) hold with Sc [x].
(e) If

(75)

1111- C[Alll1x < 1, (76)

tllen the properries in (a) hold In addition,

S ~ [f] = [i - tie,i + !Xe], (77)
where

!IIC([b] - [A]l)! 1100:x- ~..........._._.._--
. - 1 - I! 11 - C[A]III"" .

Therefore, (he second part vi (a) holdsfor ({ny G-rt ;2[.i].
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Proof. (a) Can be proved via an analog of (50) and by using the representation

;:;:: m[x]-+ C(h- Am[x])+ - CA)(x' m[x]) E Km()d[X]

for x' = A-1b, AE [A], OE [b].
(h) 15 a:nalogously to part (a) of Theorem 1L
(e) Since the assertion implies p(il - C[AJI) < I aU properties of (a) hold. Let X' ES. Then thcre

are A E [Al b E [b] such that Ax' = b. Hence
~.: 'iA.-J' l A

~

)
" -"

111
'

J (I C A
)}

""

-.-;n =11 ~)._. 'X.lloo~! l-' . ... /1 .

where we used the Neumann series for the last inequality. 0

(78)

'. Ai)II(~ ~.Ct,

Remark 3. (a) As in Remark 2 it i8 not necessary to know whether C is nonsingular if (73), (75)
or (76) hold. Either of these assumptionsguaranteesthc nonsingularityof

(h) If(74) or (75) holds then S:;;;;K"K>d[X].
(e) If [Al aud [b) are degenenüc, i.c., (A] := A, [b] := b then thc assumption p(lI - CA!) < 1 in

Theorem15 imp!ies

!im [xt =x',k-=
\vhere Ax' ::::::0,

Rcmark 3(b) leads to the question how good the enc10sures are which one gets as iterates obtained
). Thc foJ!owing result is duc to [82] ,md answers this question if (75) holas, To this

end we define Si as the pmjection of S to the ith coordinate axis, i.e.,

S,= IXE: R (79)

For l1onsinf,'l.dar[A] Crarner's rute shows that x, depends coutinuously on A E [A] a:nd bE [b]. Since
[A] and [b] are connected and compact, the sets Si are compact intervals.

Theorem 16. Lel [A]EJ(iR"XJi),[b]E f(i!f'), Si as in (79). Compute KmoJ[x]fram (71) with (my
=.x c; tM;" any CE tM;'L-<",(md let

[z] = C([bi - [A].i), [b] == U - C[A])(fx]- .t).

1l (KmOiJ[:rj), [XiJ for i::::: 1,...,11

.ii + f.j + fi, ~minSi ~.ii + +-i-+ Ji>

:\';-+fi'i+ i~maxSi -+ Zi -+ t5j,

(80)

(81)

i.e., cl [c5]is a measure f01" the ouerestimation 01 S by K""'d[X],

Proo!. Thc left inequality 0[(80) and the right inequality of (8l) follow direct1y from Remark 3(b).
In order to prove the t\vo remaining inequaHtiesnote that thc interva! [z;] is thc il1tervalarithmetic
evaluation the function f:~II+n --4II which is deflnedby f(A,b)=(C(b-A.f));. In f(A,b) each
variable occurs only once. Therefore, Theorem 2 implies

f([A], [b]) = WJ; [A], (82)
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i.c., there are some A' E[A], b' E[b] such that ~i=J(A',b"). From (78) for x" ={A'ylb* ES and
vvith ()' = (f. Cl' I(x' i) we

min Si ~x; = .r:i+?'i + 0; ~ii + ?i + Di,

which shows the right inequality of (80). Thc left inequality of (8I) is proved analogously. 0

Remark 4. Let (75) holds with C beiog thc inverse of the center of [A] and let i be a good
approximation of some element of Assume that d[A), d[bJ are smaH and that (75) hOlds for
seme (x) with m[x] = i E [x]. Then d[z] = ICI(d[b] .+drAll) ean he expeercd to be smaHanti from

[15] = ICj[- ld[A), ~d~4]]([x] - .1') = ICj[- ~d[A], ~d(A]JI[xJ - il,

,;ve d[b]~ ICld[A]d[x]. if d[x] is also (w'hichcao be expected if some A E [A] is not
iH-eonditioned) then d[c5]i5 quadraticaHy small, i.c., d[6]~d[zl This indicates a smaH overestimation
of S by Kmod[X).

!f,infact,at d[b]~d[zlholdsthen~+3 +Qand = ,iJ:!] =.r-+ [g+ +{~]is
an interval vector which satisfies min Si ~-!:nt:,;;X:"i:,;;max Si for i = 1,..., n. Such a vector is called
an inner enclosure of S by Rump [84]. If an iImer cl1dosure of S is known one can estimate thc
quality of an encJ.osnre(in the of S in a vvay. Inner cndosurcs
and relatcd topics are considered tor instance in [84,87].

Now we address to fhe symmetrie solution set S,yn, from (65), i.e., we are interested in linear
systems Ax= b with symmetrie m.atricesA E [A]El(IR'1X").For simplicity, we assume

(A]= [At. (83)

Othcr.visc subsequent hold für the largest matrix is contained in [A] and
which has property (83).

TriviaIly,S,ymis a subsct cf S. Hs shape i5 cvcn more complicatcdthan that of S: Curved
b(HlfHJariescau occur as the folio,\,vingtheorem

Tbeorem 17. Let Ssymbe definedfo1' a (livenNonsingularinterval matrix [A]=[AlTE I(~l1X")and
a (liven interval vecto1' [b] E ). Jor any dosed orthant 0 C;;;;!Rr;the set n 0 can
be represented as ihe intersection oJ finite/y many c/osed set:; whose boundaries are quadrics 01'
hyperplanes. These sets cml be described by inequalities which result, e.g.,.fl'om a Fourler-Motzkin
elirninatiol1 process.

Thc proof 01'this theorem cau be found in [15], correspondingpropertics on c1assesof matrices
witil more general dependendes in [16,17]. Fm tbc Fourier..Motzkinelimination see, instance,
[85].

We want to enclose S,ymby an interval vector. TriviaHy,each rnethod for enclosing S delivers
such a vector. Eut the symmetrie solution set ofteu contains rnueh lesE;elements than S. Therefore, it
is usefu! to look tor methods ,"vhiehenelose S'Y11lbut not necessarilyS. Such a method is the iuterval
Cholesky metl10d which i5 defined by applying formaIIy the formuJas of thc Cholesky mcthod to
tbe intervaJ data [A) = [A]1' and [b]. It produces an interval vector whieh we denote by ICh([A],[b]).

thealgorithmthc squaresandthegquare rootsaredennedvia (4). We assumethat no division
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by an interva! occurs which contains zero. If ([A]) is an M matrix with l1;i > 0 for i = 1,...,n then
ICh([A), [b]) exists. This was shown in [19] where fue version of the method was
introdnced and stndied in detail. See also [21].

Another mcthod to endose Ssymwas considered by Jansson in [41]. He starts with a modification
of J): Let

K~;~~[x)= m[x] + (z)"m + (I - C[A])(~t] - m[x)),

where [z]'Y'"= ([Zi]'Yffi)(':l(lhn 1S by

(84)

n " j-I

[Zi)'ytn = I: c;J«(bj] -- [aj.J(m[x]}.f) - I:L (c;.r(m[x])! + cil(m[x])j )[a]jI'
F"! l~! I"~,

Iterate analogonsl)' to (72) with K:~~[x] replacing Km<0~t].Sinee by the same reasoning as above

[z;o],y-n) {(C(b »; Ac::ATE[A],bE[b]},

Theorems 15 and 16 hold with S, [z] bcing replaced by Ssy"" [z]"1I\.

6. Thc algebraic eigenvaJueproblem ami related topies

In this section we look for iutcrvals UJE I(!R) aud interval vec10rs [x}E 1(!Rn) such 1hat [J,]
an J: E !R and ccmtains an x' E !R:"\ {O} a given

matrix A E !R;"XJI. We restriet ourselves only to real eigenpairs. CompJex ones have also been studied;
cf [56,57], e.g., for an overview.

We start with thc mild nonlinear

/ Ax - ).x \
f(x,),) = ( . I= 0,\ Xi" :x)

wnere io is a fixed index from {1,...,n} and a:f.: 0 is a constant. lt is obvious that (x"I.') is a
solution of (85) if and only if (x*, J,') is an eigenpair of A with the normal1zation x70= ~ of thc

x'. Expanding finto a at an (.-?" ;.*) 10

(85)

f(x,),)= f{ .x ) -+
(

A Xl"
, ., /. .

\ -:) (Ax) - (~;"Q&).
(86)

whcre D.x ::::::r- i, D.),:::::).'- I, lk i8 the k x k identity matrix and C(id is the lvth coiumn of I".
MuJtiplying (86) by a preconditioning matrix -,CE!R{",J}>tt,,+l)and adding {(f1.xyr, )T on ooth
sides results in the fixed point equation

(
ßX

)
. . . " ,

{

,

(
A - }Jn - Lll

)
1

(

D..X

)D..4 .. ,"" = A) T l"H ,. C (e(ld)1' 0 f L;.), '

for the error (Lll, A).) =(D..r" A).")=(x' -.if, I,' .- 2) of an eigenpair (x*, },*). Thc following theorem
is to Rump [81].

(87)
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Theorem 18. Let AE !)i!!X",it:: xE !R", CE !RltJ+1)X(,,+1i,and dejine fJ by (87). Let.\' be norrnal-
i::.edby = :i =J O.1f g fidjill.s rhe inclusion

g([fu], [A),]) C int([Ax]T, [Ai.])T (88)

then the assertions
(a) C is nonsinyular.
(h) Thae exists extlctly one eigenveClorx' Ex + [.6.;\:]vI A which is normal/zed by x~,= ':L.
(e) Thae exists exactly one eigenvalue i: E i + [A;,]01A.
(d) Ax* = }:x* with x~ fmm (h) and ;: frmn (e).. .

A IS ~ .

(f) lf Ci,),) is a sufficiently good approxi1natiol1 o{ the ei{jenpair (x*,;:) jiwn (d) Ihm it can be
guaranteed IlIat ).* is algebmic sinlple.

(g) rr one starts the iteration

(..,

j

)
'. "'"u( [AJ; Jk,

[A),j*+1 ,) .
), k :::;:;0, 1,..., (89)

wilh

([~,\:]{J,[Alt) = ([Ax], [A),])

) ihen the iterates emI1H::'rge

([~\:tH, IA;,jk+1) C([fu( [A2t), k = 0,1,...
and

,I:) E

j()j' flic eigenpair

-+

,),' )

, [A),t),

(d).

k ==0, 1"..

Imerval quantities [xl, [}.] \vith (88) can bc found, e.g., via [:-inf1atl0n;cf. [58J or [59]. Another
way was indicated in [6] hy thc folio'Ning theorem.

Theorem 19. W'jth rhe notations of l11eorem 18 dejine

j! (
Ai -li

)1

1! Ii.
(

A-21"
(J = dC

I

' ü = '
l

'Iu+1 .- C .'

.
"""

11 0 ! (>~('O» '

11 xc.1 ,v

lmd assume

~i) IIC
"

-r= i \Ix (90)

ü<l. i1 = (1- er)' - 4pr;;?-O. (91)

Thcn Ihe numbers

6'-. ( ! .. (
-

I ""'. j
( 1

ß' :=(1 - (J + v'~i)/(2-r)

are nonnegalive, and tlu..'conditioll (88) vI Theorem 18 i5ji.tljilled for ([fu]T, [A)])f = [ ""'11,ßle E
) w:,J. >...1-:,.",.." pI)
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If ß is restricted 10 (ß-, (ß- + ß+)/2) [hel! the ilerates oJ (89) COl1l7erge[() the error (~;.: ).

ln [58] it lS shown how (87) can be rec!uced to an n-dimensional problem whkh, originaHy, formed
the starting point in [6]. It is also indicated there how (87) has to be modified if the normalization

x~= rx IS replaced by IIx"112= L
A second methoc! for encJosing starts the centen~d

f e x J) - j
'

(
- c;-

)

(

A - F
J' ,-'0 "-, X, I, ,+ rUn

-i ~ Lu) (Lu)

It is obviousthat the subdivisionprinciplediscussedin Section3 can be appliedto anyinitialdomain
([x]o P,]\)) chosen by the user. The crucial problem remains to verify that 0 E J( [.i], [in yields to
f(x",},'")= 0 in a subdomain ([.i],[i])~([x]o.[Ar~).

A third method is due to H. Behnke and F. Goerisch. It assumes A to be symmetrieand is based
on a complementary variational prindple. for details see, c.g., [23, Section 6], and the references
there.

Symmetrie matrices can also be handled by an access due to Lohner [54]. First A is reduccd to
nearly diagonal form using Jacobi rotations and a sort of staggered correction. FinalJyGersbgorin's
theorem is applied in to bounos the A theorem due to aikrlNs
the enclosure of eigenvectors.

There is no problem to generaiize thc ideas above to the generalized eigenvalue problem Ax =
}.Bx,x y60, B c: Tbe 01'(85) reaos

(

AX - I.BX

)
f(x, ;e)=

.

= O.
- ,';I,

In a similar way one can treat the singular valuc problem for a given m x 11matrix A. with
m ??:-n.Hefe, we look for orthogonal matrices U E Rnxn, V E R>11Xmand for a diagonal matrix Z =
diag(Gt, ... ,CI"... ,<In)E IF&"'/nwith va!ues G] ??:-Ci'2;;-).,. :;'~Gr > Gr+l= 0=... = G",r =
rank(A), such that A = Vl:UT. One starts with

l

/ ,;: = :~~
orwith !(u.'V,(;,a')=

. ..

'

U1U- 1

urv - I

In thc first casc a zero of f satisfies vTv = 1, in the secand Olle gets (j = (;1.In either of thc cases
u is a of U. u a column of V (J a singular 01'A associated with u
and 1J.For details, additional remarks and references to further methods for verifying and enclosing
singular values see [7,57).

We verification methods in [14] ) ()f a
matrix pair (A,B), A E IRPx",Be iR'Ix",which are defined as thc zeros cf the function f(c,s) =
det(,~ATA - c2BTB) restricted to c, S ;::0, c2 + S2 == 1. For appHcationsof generalizedsingular values
see (33].

(

"-CL?

)f(u,v,(J) = . ATv - (JU
t?u 1
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Thc

inverse -
Given n 1

the matrix

4-6 can 1'(1 tü

1, .. . , lL 11real
for c ::::::cf = i

, i 1, . . . ,r1, such

* < <>..< *

nent<;
v.,Iith

thc

') is

)

are

""
f .

to to

),

wherc we
we

\'alw.;

tü

XA.

aB
resuJL

we shan

f same h > 0, ~ ~
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One of thc most popular methods for verifying and enciosing solutions of initial value problems
is known as Taylor memod. 1t goes back to and was in
ways - cf:, for instance, [30,53], and overviews in [26,66,80). In order to dcscribe this method
we assume that we know the grid point Xk< XKand an enclosure (I] of y(x,,;xo,(yOD.Such an
enc10sure i8 given for k = O. Thc method consists cf two major steps:

In thc first stel' a new stepsize flk :>0 and a rough a enclosure Ui] i$ computed such that

y(x; Xb[I]) S;i/] for all xE [XhXk+ hk]. (97)

To thisend let Lv!<]beanyvector '1I'hichcontains[I] in interiorandchoose11,:>0 so smaHthat
[I] + [O,hk]f([/]) r; Li'l (97) i3 guaranteed Theorem 20.With Weknow Xk+!=Xk+11*.
and fTom(97) with x =Xk+1we see that Li'] is a candidate for [)'*+1].

ln thc second stel' of the methodthis candidate is irnl'roved in the fol1owingway: consider any
particular solution of (94) with y'(x;} E Ei]. Using (94) and the Taylor expansion of y' at Xi<
we gei a fixed p E N and h ==X - Xi<

y'ex) = tjI(h,Y"'(Xk»)+ rp{h,)I*)

with

(98)

p . . 1 J! I 1 (jfU-li

tj;(h,y)=y+ I:>r'fUJ{y), jIlJ=j, jV1=-:(fu-,]) =-:-afforj~2j=! J .I Y

ane with the remainder term rp(h, ) E hp i! f1p+!JulD. Throughout this secHon we assume that
thc Taylor coefficients IfJJ(y*(xk» exist. They can be computed recursively by meanS of automatie
differentiation which is described, e.g., in [34] 0.1'[76]. Obviously,

y{x;xo,[yOnr;y(x;Xk>[lDr; 1!t(h,[ln + ) XI: (99)

By virtue of dl/t(hk,[/n~d[yk] the right expressionin (99) with h=hk seerns not yet to be suited
as a good candidate for [)'*+I] since its diameter dominates dEi]. Therefore, we represent tjI(h,y)
as centered form

"'(h,y) ~ "'(h,i)+ {I + t,1! J(y,y';/JJ)}(y -I)

E "'(h,y')+ {I + t,1! iJjV:<yD } ([/] - y'),

y, E:Lv*]and J(y,z;l) is denned as J{y,z) in (29)
underlying functioll. With y' as in (98) and

( 100)

(101)

third argument as

f'

s; =1 + I:hiJ(y*,jl;fUJ),
f=1

[Si J = I + t Ir{af(j~LV:])
/~d oy'

Cl02)

(103)
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[
-k+l

)
'
(
'I -I<

) .L I 1>"I
}

,'[{>--,1]([
' >k

)Y = Iji t1., Y T fti: . . y

for k = O,l,...,K -- 1 we therefore get

y'CXk+l)= tJ;(hh5,k)+rp(hby') + S;(Y'(Xk)- i')

(104)

(105)

E I) + [S.)([/) -- yk). ( 106)

Thc partial derivatives in (101) and (l 03) can be computedusing differentiationor
by differentiating the code list of jU]. Formula (105) represents tbc basis for most variants of thc
interval Taylor series method as 10ng3'<,they differin their second step. Obviously,

Y(Xk+l;Xo,[yo]) ~ Y(Xkfl;Xj;, [lD ~ [pk+l]+ [St]([l] - .Vk), (107)

50 that the fight is a candidate for ), this time with d[),x+J]
The successive construction of [I'" \] via (106) is called mean value method. Since 0 E [Sd([Y"] -
j/), we get ri-+-J] S;;;[i' I]. Thereforc, wo can assumc far thc succeeding that
yki-I E [iH] in (100) 15 chosen from Lyk+\]- preferably its midpoint - which justifies our notation.

UnfQrtunately, Y(Xk,q; XI;,[1']) is nQtnccessarilyan interval vcctor. Thcrefore, [1'+\] can ovcres-
timatc this set and, cO!Jsequently, Y(XkH; xo,[yO]). This phenomenon which occurs at each grid point
Xk, k > 0, is called wrapping effect 1t8 existence is an intrinsic feature of interval arithmctic and
cloes not depend on the particlilar methocl. Hs 15strong!y influenced by the choke of
the method. In order to reduce this size the original mean va!ue method often has to be modified.

If hk > (} is smaJ1 and pis large ane can expect' that the second summand [S;j(LlJ .- J;k) in (106)
contributes most to tIle wrapping etIect It can be infiuenced by preconditÜming wirh a regular matrix
Ak E jR"X"which yiclds to the following variant of the mcal1 value methocl:

t'> C1100seyfJ E [yO]and let [rO]= [li] - y'!, Ai)=I E RtJX".

For k = 0, l,. .. ,K -. 1 GOthe foUowing steps:

4) Compute [Sir], [iCH] as in (103), (104).
Ch -k+1

[
-
, k+\l

0 ,oose y EY'.J.
,0 Choose Aktl E Rn'l1 (regular) as described below.
,0 Compute

[rb I] = {Ak~l([Sk]Ad}[rk] +A;1t<ly*+I] ), (108 )

[
k""

} [
-k"'l

]
.

([
" ,JA '[ ~

]y , '"'' y - +-. .)k" k J r .. (109)

Before we consider particu!ar choices of roatrices Al: we prove an analogue of (107).

Theorem 21. Let y, U:/'], [lJ, [r.\'],Akbe defmedfor k = 0, 1,... ,K as in !he preceding variant
(d' tlte mean vaiue method ami/eI, fimnally, X-I =X(),[y-J] = [)/i]. ThenJor k =0,1,... ,K we get

.( '. [
k-"l

])
_

[ ;1) X",Xk-l, Y >= ) j, (110)

Akt(y4(X;;} - l) E (r"] jor any solution y' of (94) with Y~(Xk,;) E Lrk- J]. (I 11)
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Proof. The assertion is true für k '" 0 by the definition 01'X..!, [f!J and by Au==1, Let it hold
for some k < K and let y* be a solution of (94) with y*(xJ;)E [lJ. From (105), (111) and (109)
we get

y~(Xk+j) E [:yk+ll+ S;(y*(xd - yK) = [yK+!) + (S;Ak){Ak!(Y*(Xk) - yKn

~ Lvk+!] + ([SkJAk)[rk] = [yl:+1],

I.
( '1 0'$::

11
' f

.
k 1 S

"

(
1 12)

' I' * ( )
~k,jj

[
~H,l l!lenee i.') 10 OWS. or '+'" ,mee 1 ImplleS y Xk+l," Y 'E Y '. ,-

we obtain

(112)

-I-

(113)

)-y:)

)
~k+1

) e , [
-;;+1

)
, I ( .{-I S~;/

){
' .-J (

"
( )

~i:
)}""" },. <;: \ y, ) .."" )1k':1 k/1); '1"1i: Y Xx'- Y

~ Ai:,:,UyK+'] - y*+I) + (A;}j[SkJAk)[,.*] = [,.*+1],

wherc we used (111) and (108). 0

A'.I
.'1k +!

An easy induction shows that ODecan retrieve tbe mean value method from its variant above if
Ak=l fork=O,l,...,K.

Ir 1 E [8k]Ak thcn 1 E ), and )[,-1']~ [rk] cau be if Ai: is not
iH-conditioned (cf, [66, p. 32]). Therefore, the wrapping effect should not lead to large overesti-
mations in th1S case. Unformnately, is not always well-c,onditioned. So, other choker; for At
becomc important. R. Lohner starts in [53] wiili Akt1 E [Sk]Ak and performs a QR-decomposition of
Äk-H (eventua!1yafter havingpermutedthe columnsof this matrix» i.e.,Äk+1=Qk+tRk-+Then he
cbooses Ak,q = Qk+l",'>'hieh a rotation of the coordinat0 system. For details cf [53] or [66].

\Ve also mention variants duc to Eijgenraam [30] and Rihm [80] and Lohner's implementation
A\VA. For further reading we recommend [66] in whkh an interval Hel111ite~ObreschkoffmethoGis
considered, and [67] in which an enc10suremethod for the solution of linear ODEs with polynomial
coefficicnts is given.

Based on the preceding ideas boundary value problemscan be handled via the well~knownshooting
methodas it was done in [53]. '

of the Orr-Sommerfeld equation for different
endosure methods.

ODEs are close1y re1ated to integral equations. Thereforc>it is interesting to ask for ve.rified
endosures of such equa.tionsund cf definite integrals. Duc to space limit, however, we must refer
the reader to the literature, for instance to [25,32,43]and to various contributions in (1].

was investigated in [51] by

8. Partial differentialequatiol1s

Like the theory of partial differential equations the verification methods in this field are ver)'
heterogeneous. As in many cases in the previous sections they are mosdy based on fixed point
theorcms and on particular function spaces. In order to give a taste of some ideas we outline a
method duc to Plmn [74J which applies for seconGorder eUiptic boundary problems thc
fonn

D.U+-F(x,u, vu) =0 in Q, (1l4)
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B[u] =0 on va, (115)

where a ~ IR", I!E {2,3}, is a bounded domain whose boundmy 0$2 is at least Lipschitz continuous.
Thc boundary operator B is de11nedby

{

u on T",

B[u] = iJu
-;::-= V. Vii on cD \ Tc
dv

with T ()~ BQ bcing c:losed and with v denoting thc unh outward normal vector. Tbc function F
is givcn by F:Q x R x R" -- i!« with IF(x,y,z)i~C(l + iizllD for some C~O aud a1\ XEQ,
y E IR, IYI~!X, z E . We assrnue that F aud its derivatives Fy = aFiey, F~= (BF/fJzJ,. H,aF/vz,,)',
are continuous.

ln view of the for 14) wo assume that for some (TE ':R,md rE set of

square integrablc fuuctious) thc boundary value problem --D.U+ (TU::::::r in Q is uniquely solvable
in Bi = el{ u E C2(Q) I B[u] = 0 on c!)} where 'cl' means thc closurc in thc Sobolev space }f2(Q).

We stm1 with a function W E H~(Q) which can be thought to bc an approximation 01'a solution
u* of (114), (115), a1though - at the moment - wo do not know whether such a solution exists.

We will apply the operator L:H~(a) -0' L2(f::J) by

L[u]:::::-D.U+b. Vif +cu, b = Fk,m, vW), c = F,.(-,ro, \7(1)- (116)

In order to g'Jarantee the invertibilityof L needed later on we assume VW E ([""(Q))" aud we have
to check numericaHy that a11eigenvaIues of L on H§(D) are nonzero. In addition, we suppose that,
for some space X d Hl(Q) with some norm 11. 1Ix:

(a) thc function

{.

,X
<P:

u

-+ L2(Q),

b.vu+cu-F(-,u,Vu)
(117)

!--t

is continuous, bounded on bounded set<;,and Frechet differentiable at w with <P'«(J)) = 0,
(b) thc imbedding H;(Q) "-> X is compact
As fixed point operator we choos!.':tile simplifiedNe\\1on operator

Tu = u - ,~I(wr'!.'F(u) (118)

with ~(u) = -ß.u + Pe-. 1.1.,\7u), with the Frechet derivative ,~I of ~ and with (f) as abovc. Sincc
.~'(w) = L aud -D.u = L[u] - b. \71.1.- cu we obtain

Tu= u- L-1[ - D.U + Fe.,u, Vu)] = r-I[b. Vu +cu - F(-,u, \71.1.)) = L-![<P(u)]. (119)

Due to our assumptions it can be shown T:X -Cf X is compact anel dif-
ferentiable at (j) with T!(w) = O.If we can findsomeciosed,boundcd,convexfunctionset U~X
such that

TU~ U, (120)

then Schauder's fixed point theorem guarantees thc existence of 50111Cfixed point u' E U 01' T
which, by virtue of (119), is a solutton of (114), (115). In order to constrnct U we first apply a
shift U M V=U - w wilicnyidds to a sct V ::::U - Cf)aud
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for solving numerical problems have been implementea in PASCAL-XSC. PASCAL-XSC systems
are available für personal computers, workstations, mainframes ana supercomputers.

Similar remarks hold for the languages C-XSC [45] and FORTRAN-X SC [89].
ACRlTH-XSC [40] is an extension of FORTRAN 77. Ir was developed in a joint project between

lBM/Germany an.d tbe Institute AppHed Mathematics of IJniversity of Karlsruhe KuHsch).
Unfortunately, it can be used only on machincs with lBM/370 architeeture that operates under the
VMCMS operating system. It is a FORTRAN like programing library. Hs features are dynamic arrays,
subaITays, intcrval and vector arithmetic and problem solving routines for mathematical problems with
verified result$.

In the last section of the paper [50] one can find a general diseussion of the availabi1ity of the
necessary arithmetic for automatie result verification in hardware and suitable programming support.
A detailed information of latest developments in the graup of U. Ku1isch can be faund under

://www .1.:mi-karls:ruhe .der i241\.,

Via http://interval.usl.edu!kea.rfott one can get an overview on software written in the
Computer Scicnce Department of the University of South Louisiana, Lafayctte, under the guidance
of R. Haker Kearfott. Here 1S a short ontline of available software:

CI INTBIS(FORTRAN codeto finda!l solutionsto polynomialsystemsof equations),
0 lNILlB (ACMTOMSAlgorithm737 - A FORTRAN77 Jibraryfor intervalarithmeticand for

rigorous bounds on the ranges of standard functions),
(I INTERVAL ARITHMETlC (A FORTRAN 77 module

data type).

Programmer's Runtime Optimized Fast Librmy (PROFIL) developed at the Technical Universityof
Hamburg.~Harburg(S.M. Rump) i8 a C+ + dass library which bas avai!ab!e usual real operations
ami the corresponding öues intervals.Presem!y, the fö!lowing data types are supported: int,
real, interval. veetors and matrices for these types and complex numbers. For more details sec

http://www.ti3.tu-harburg.de/Software!PROFIL.html.
Recent!y, Rump announced the availabilityof an interval arithmetic package for MATLAB, caJ!ed

"!NTLAB." A MATLAB lihrary fbr interval arithmeticroutines". Elements (toolboxes) of INTLAB
are

uses INTUB to an interval

.. arithmetic operations for real and complex:imervals, vectors and matrices over those, inc1uding
sparse

;9 rigorous (real) standard functions,. automatie differentiation including inter va! data,. automatie sJopes including intervaJ data,
Q multipleprecisioninduding data,
.. rigorous input and output,. some sampie verifieation routines.

AU INTLAB code 1Swritten in MATLAB for portability.There i$ Olleexception to that
statement, that 18one assembty Ianguage routine for 8witchingthc rounding mode of the processor
(provided for same hardware platfonn).

Major objective of INTLAB is speed and ease of use. The first is achieved by a special concept
for routines. the second thc operator conccpt in MATLAB.
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