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Abstract

We give an overview on applications of interval arithmetic. Among others we discuss verification methods for linear
systems of equations, nonlimear systems, the algebraic eigenvalue problem, initial value problems for ODEs and boundary
value problems for elliptic PDES of second order. We alse consider the item software in this field and give some historical
remarks. (€ 2000 Elsevier Science B.V. All rights reserved.
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1. Historical remarks and introduction

First, we try to give a survey on how and where interval analysis was developed. Of course, we
cannot give a report which covers all single steps of this development. We simply try to list some
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important steps and published papers which have contributed to it. This survey is, of course, strongly
influenced by the special experience and taste of the authors.

A famous and very old example of an interval enclosure is given by the method due to Archimedes.
He considered inscribed polygons and circumscribing polygons of a circle with radius | and ob-
tained an increasing sequence of lower bounds and at the same time a decreasing sequence of
upper bounds for the aera of the corresponding disc. Thus stopping this process with a circum-
scribing and an inscribed polygon, each of » sides, he obtained an interval containing the number
7. By choosing n large enough, an interval of arbitrary small width can be found in this way
containing 7.

One of the first references o interval arithmetic as a tool in numerical computing can already be
found in [35, p. 346 fI] (originally published in Russian in 1951) where the rules for the arithmetic
of intervals (in the case that both operands contain only positive numbers) are explicitly stated and
applied to what is called today interval arithmetic evaluation of rational expressions (see Section 2
of the present paper). For example, the following problem is discussed: What is the range of the
expression

_a+ b
o {a — b

if the exact values of «. b and ¢ are known to lie in certain given intervals. By plugging in the
given intervals the expression for x delivers a superset of the range of x.

According to Moore [64] P.S. Dwyer has discussed matrix computations using interval arithmetic
already in his book [29] in 1951,

Probably the most important paper for the development of interval arithmetic has been published
by the Japanese scientist Teruo Sunaga [88]. In this publication not only the algebraic rules for the
basic operations with intervals can be found but also a systematic investigation of the rules which
they fulfill. The general principle of bounding the range of a rational function over an interval
by using only the endpoints via interval anthmetic evaluation is already discussed. Furthermore,
interval vectors are introduced (as multidimensional intervals) and the corresponding operations are
discussed. The idea of computing an improved enclosure for the zero of a real function by what is
today called interval Newton method is already presented in Sunaga’s paper (Example 9.1). Finally,
bounding the value of a definite integral by bounding the remainder term using interval arithmetic
tools and computing a pointwise enclosure for the solution of an initial value problem by remainder
term enclosing have already been discussed there. Although written in English these results did
not find much attention until the first book on interval analysis appeared which was written by
Moore [64].

Moore’s book was the outgrowth of his Ph.D. thesis [63] and therefore was mainly concentrated on
bounding solutions of initial value problems for ordinary differential equations although it contained
also a whole bunch of general ideas.

After the appearance of Moore’s book groups from different countries started to investigate the
theory and application of interval arithmetic systematically. One of the first survey articles following
Moore’s book was written by Kulisch [49]. Based on this article the book [12] was written which
was translated to English in 1983 as [13].

The interplay between algorithms and the realization on digital computers was thoroughfully in-
vestigated by U. Kulisch and his group. Already in the 1960s, an ALGOL extension was created and



G Alefeld, G Mayer! Journal of Computarional and Applied Mathematics 127 {2000) 421-464 423

implemented which had a type for real intervals including provision of the corresponding arithmetic
and related operators.

During the last three decades the role of compact intervals as independent objects has continu-
ously increased in numerical analysis when verifying or enclosing solutions of various mathematical
problems or when proving that such problems cannot have a solution in a particular given domaisn.
This was possible by viewing intervals as extensions of real or complex numbers, by introducing
interval functions and interval arithmetics and by applying appropriate fixed point theorems. In addi-
tion thoroughful and sophisticated implementations of these arithmetics on a computer together with
~ partly new — concepts such as controlled roundings, variable precision, operator overloading or
epsilon-inflation made the theory fruitful in practice and effected that in many fields solutions could
be automatically verified and (mostly tightly) enclosed by the computer.

In this survey article we report on some interval arithmetic tools. In particular, we present various
crucial theorems which form the starting point for efficient interval algorithms. In Section 2 we
mtroduce the basic facts of the ‘standard’ interval arithmetic: We define the arithmetic operations,
list some of its properties and present a first way how the range of a given function can be included.
We continue this latter topic in Section 3 where we also discuss the problem of overestimation of
the range. Finally, we demonstrate how range inclusion (of the first derivative of a given function)
can be used to compute zeros by a so-called enclosure method.

An enclosure method usually starts with an interval vector which contains a solution and improves
this inclusion iteratively. The question which has to be discussed is under what conditions is the
sequence of including interval vectors convergent to the solution. This will be discussed in Section 4
for selected enclosure methods of nonlinear systems. An interesting feature of such methods is that
they can also be used to prove that there exists no solution in an interval vector. It will be shown
that this proof needs only few steps if the test vector has already 2 small enough diameter. We
also demonstrate how for a given nonlinear system a test vector can be constructed which will very
likely contain a solution.

In Section 5 we address to systems of linear equations Ax = b, where we allow 4 and b to vary
within given matrix and vector bounds, respectively. The ideas of Section 4 are refined and yield to
interval enclosures of the corresponding set of solutions. As a particularity we restrict 4 within its
bounds to be a symmetric matrix and provide methods for enclosing the associated smaller symmetric
solution set. In both cases we show how the amount of overestimation by an interval vector can be
measured without knowing the exact solution set,

Section 6 is devoted to mildly nonlinear topics such as the algebraic eigenvalue problem, the
generalized algebraic eigenvaluc problem, the singular value problem, and ~ s an application ~ a
particular class of inverse eigenvalue problems.

In Section 7 we present crucial ideas for verifying and enclosing solutions of initial value problems
for ordinary differential equations. For shortness, however, we must confine to the popular class of
interval Taylor series methods.

Section 8 contains some remarks concerning selected classes of partial differential equations of
the second order. We mainly consider elliptic boundary value problems and present an access which
leads to a powerful verification method in this field.

The practical importance of interval analysis depends heavily on its realization on a computer.
Combining the existing machine arithmetic with direct roundings it is possible to implement an
mterval arithmetic in such 2 way that all interval algorithms keep their - theoretically proved -
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properties on existence, uniqueness and enclosure of a solution when they are performed on a
computer. Based on such a machine interval arithmetic, software is available which delivers verified
solutions and bounds for them in various fields of mathematics. We will shortly consider this topic
in Section 9.

In the last 20 years both the algorithmic components of interval arithmetic and their realization on
computers (including software packages for different problems) were further developed. Today the
understanding of the theory and the use of adapted programming languages are indispensible tools
for reliable advanced scientific computing.

2. Definitions, notations and basic facts

Let [a] =[a,a], b= [b, b] be real compact intervals and o one of the basic operations ‘addition’,
‘subtraction’, ‘multiplication’ and ‘division’, respectively, for real numbers, that is o€ {+,—,-,/}.
Then we define the corresponding operations for intervals [a] and [b] by

[a] o [b] ={aobla€[a],b e [b]}, (DO

where we assume 0 ¢ [b] in case of division.

It is easy to prove that the set /(R) of real compact intervals is closed with respect to these
operations. What is even more important is the fact that [a] o [b] can be represented by using only
the bounds of [a] and [b]. The followir.ag rules hold:

[a] + [6] = [a + b,a + b],
[a] - [b]=[a—b,a - b],

[a] - [b] = [min{ab, ab, @b, @b}, max{ab, ab,ab,ab}).
If we define

_[}5_] = {élbe[b]} if 0¢ [5],

then

1

[a]/[P] = [4] Bk

If a=a=a, ie., if [a] consists only of the element a, then we identify the real number a with
the degenerate interval [a,a] keeping the real notation, i.e., @ = [a,a]. In this way one recovers at
once the real numbers R and the corresponding real arithmetic when restricting /(R) to the set of
degenerate real intervals equipped with the arithmetic defined in (1). Unfortunately, (/(R),+,-) is
neither a field nor a ring. The structures (/(R),+) and (/(R)/{0},-) are commutative semigroups
with the neutral elements 0 and 1, respectively, but they are not groups. A nondegenerate interval
[a] has no inverse with respect to addition or multiplication. Even the distributive law has to be
replaced by the so-called subdistributivity

[a]([b] + [c]) < [a][b] + [a][c]. (2)

The simple example [—1,1](14+(—1))=0C[—1,1]-14[—1,1]-(—1)=[—2,2] illustrates (2) and
shows that —[ — 1, 1] is certainly not the inverse of [ — 1, 1] with respect to +. It is worth noticing
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that equality holds in (2) in some important particular cases, for instance if [a] is degenerate or if
(b] and [¢] lic on the same side with respect to 0.

From (1) it follows immediately that the introduced operations for intervals are inclusion monotone
in the following sense:

(e} C [cl.[6] < [d] = [al o [D] & [e] o [d]). (3)

Standard interval functions ¢ € F = {sin, cos, tan, arctan, exp, In, abs, sqr, sqrt} are defined via their
range, i.c.,

o(x]) = {o(x)]x € [x]}. 4)
Apparently, they are extensions of the corresponding real functions. These real functions are contin-
uous and piecewise monotone on any compact subinierval of their domain of definition. Therefore,
the values ¢([x]) can be computed direcily from the values at the bounds of [x] and from selected

constants such as 0 in the case of the square, or 1,1 in the case of sine and cosine. It is obvious
that the standard interval functions are inclusion monotone, 1.e¢., they satisfy

[x]1C€ [y] = o(Ix]) € o([¥])- (5)
Let /- DCR -» R be given by a mathematical expression f(x) which is composed by finitely many
elementary operations -+, —, -,/ and standard functions ¢ € F. If one replaces the variable x by an
interval [x] C D and if one can evaluate the resulting interval expression following the rules in (1)
and (4) then one gets again an interval, It is denoted by f([x]) and is usually called (an) interval
arithmetic evaluation of f over [x]. For simplicity and without mentioning it separately we assume
that f([x]) exists whenever it occurs in the paper.

From {3) and (5) the interval arithmetic evaluation turns out fo be inclusion monotone, ic.,

1€l = D& 7D (6)
holds. In particular, f([x]) exists whenever f{{v]) does for [y] 2 [x]. From (6) we obtain

x€fx]= f(x)€ f(xD), N
whence

RS IxD) € 7(Ix]). (8)

Here R(f;[x]) denotes the range of [ over [x].

Relation (8) is the fundamental property on which nearly all applications of interval arithmetic
are based. It is important to stress what (8) really is delivering: Without any further assumptions

is it possible to compute lower and upper bounds for the range over an interval by using only the
bounds of the given interval.

Example 1. Consider the rational function

fEy=2=,  x#L
]l -x
and the interval {x] = [2,3]. It is casy to see that
R(fBD=[-2-3],
SN =(-3,-1]}
which confirms (8).
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For x 5 0 we can rewrite f{x) as

i

flx)= x#0, x31

ljx -1’
and replacing x by the interval [2,3] we get
1
i et 20 9 R PE £ ERTY:
Ty e heil=RU R
From this example it is clear that the quality of the interval arithmetic evaluation as an enclosure of
the range of f over an interval [x] is strongly dependent on how the expression for f(x) is written.
In order to measure this quality we introduce the so-called HausdorfT distance ¢(-,-) between intervals
with which /{R) is a complete metric space:
Let [a] = [a.4], [b] = [&,b], then

4([a), []) = max{|a — b}, |d — bi}. )

Furthermore, we use
dlal =a — q,

[a]| = max{|a| |a € [a]} = max{]a], ]},

0, if 0¢[a),
([a]) = min{|alja € [a]} = { (10)

min{|al,|a]} if 0¢ [4]

and call 4 center, d[a] diameter and [[a]] absolute value of [a].
In order to consider multidimensional problems we introduce m x # interval matrices [4] = ([¢;])
with entries [a;), i = 1,...,m, j= 1,...,n, and interval vectors [x] = ([x;])} with n components

and if A = (a;;)<B = (b;) means a; <b; for all i,j. Since interval vectors can be identified with
# % 1 matrices, a similar property holds for them. The null matrix O and the identity matrix [ have
the usual meaning, e denotes the vector e=(1,1,...,1)" € R". Operations between interval matrices
and between interval vectors are defined in the usual manner. They satisfy an analogue of (6)-(8).
For example,

{dx| A€ 4], xe[x]} C[4]lx] = (Z {%‘H?«}]) e I(R™) (1)

J=1

if [A]Jel(R"*") and [x] € [(R*). It is easily seen that [A][x] is the smallest interval vector which
contains the left set in (11), but normally it does not coincide with it. An interval item which encloses
some set S as tight as possible is called (interval) hull of S. The above-mentioned operations with
two interval operands always yield to the hull of the corresponding underlying sets.
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An interval matrix [4]€ I(R"**) is called nonsingular if it contains no singular real n x » matrix.

The Hausdorff distance, the center, the diameter and the absolute value in (9), (10) can be
generalized to interval matrices and interval vectors, respectively, by applying them entrywise. Note
that the results are real matrices and vectors, respectively, as can be seen, e.g., for

¢((41.[B]) = (q([a;;). [b5])) € R™

if [4], [B]€ I(R™"). We also use the comparison matrix ([A]) = (c;) € R™" which is defined for
[4] € {R"™") by

{ {layly ifi=},
Cy = T
_;Ia{}']l if i ‘:”é g

By int{[x]) we denote the interior of an interval vector [x], by p(4) the spectral radius of 4 € R"**
and by |||l the usual maximum norm for vectors from R” or the row sum norm for matrices from
RB7*7_ In addition, the Euclidean norm |- |l; in R” will be used. We recall that 4 € R"" is an M
matrix if a;, <0 for i # j and if 47" exists and is nonnegative, i.e., 47' > O. If each matrix 4 from
a given interval matrix [A4] is an M matrix then we call [4] an M matrix, too.

Let each component f; of /: DCR” — R" be given by an expression f,(x), i=1,...,n, and let
[x] € D. Then the interval arithmetic evaluation f([x]) is defined analogously to the one-dimensional
case.

In this paper we restrict ourselves to real compact intervals. However, complex intervals of the
form [z] =[a] +i[?] ([a),[6) € I(R)) and [z] = {Z,r) (Z,r € R, r=0) are also used in practice. In the
first form [z] is a rectangle in the complex plane, in the second form it means a disc with midpoint
Z and radius . In both cases a complex arithmetic can be defined and complex interval functions
can be considered which extend the presented ones. See [3,13] or [73], e.g., for details.

3. Computing the range of real functions by interval arithmetic tools

Inclosing the range R(/:[x]) of a function /2 DCR" — R™ with [x] C D is an important task in
interval analysis. It can be used, e.g., for

localizing and enclosing global minimizers and global minima of f on [x] if m =1,

verifying R{ f;[x]) € [x] which is needed in certain fixed point theorems for f if m =n,
enclosing R( f7;[x]), i.e., the range of the Jacobians of f if m = n,

enclosing R(f™®;[x]), i.e., the range of the kth derivative of f which is needed when verifying
and enclosing solutions of initial value problems,

e verifving the nonexistence of a zero of f in [x].

e ¢ ¢ ®©

According to Section 2 an interval arithmetic evaluvation f([x]) is automatically an enclosure of

R(f.[x]). As Example 1 illustrates f([x]) may overestimate this range. The following theorem
shows how large this overestimation may be.
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Theorem 1 (Moore [64]). Let f:DCR* — R be continuous and let [x]C [x)" CD. Then (under
mild additional assumptions)

(RS IxXD, S(ED) <ylldIxY e, 720,
df(Ix]) <dl|dxllc, 020,

where the constants y and & depend on [x]° but not on [x].

Theorem 1 states that if the interval arithmetic evaluation exists then the Hausdorfl distance
between R(f; {x]) and f([x]) goes linearly to zero with the diameter d{x]. Similarly the diameter of
the interval arithmetic evaluation goes linearly to zero if d{x] is approaching zero.

On the other hand, we have seen in the second part of Example 1 that f({x]) may be dependent
on the expression which is used for computing f{[x]). Therefore the following question is natural:

Is it possible to rearrange the variables of the given function expression in such a manner that the
interval arithmetic evaluation gives higher than linear order of convergence to the range of values?

A first result in this respect shows why the interval arithmetic evaluation of the second expression
in Example | is optimal:

Theorem 2 (Moore [64]). Let a continuous function f:DCR" — R be given by an expression
fix) in which each variable x., i=1,...,n, occurs at most once. Then

F(D =R(f;[x]) for all [x]SD.

Unfortunately, not many expressions f(x) can be rearranged such that the assumptions of
Theorem 2 are fulfilled. In order to propose an alternative we consider first a simple example.

Example 2. Let f(x)=x - x%, x€[0,1]=[x]".
It is easy to see that for 0<r< and [x] =[] ~ r,{ +r] we have
RUGEED =15 —7.4]
and

@)= -2r-r +2r -1}
From this it follows
RS D, (f([XD) €yd[x] withy=1,
and
df([x]})<dd[x] with §=2
in agreement with Theorem 1.
If we rewrite f{x) as
x=-xX=1-(x-Hx-1)

and plug in the interval [x]=[5~r, ;+7] on the right-hand side then we get the interval [}
which, of course, includes R(f7[x]) again, and

R = §HrD)=r =)

-3, 4]
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Hence the distance between R(f;[x]) and the enclosure interval [ —r?, 1 + r°] goes quadratically
to zero with the diameter of [x].

The preceding example is an illustration for the following general result.

Theorem 3 (The centered form). Let the function f:DC R — R be represented in the ‘centered
form®

fx)=f(z) + h(x)'(x - 2) (12)
for some z€[xX]C[x]"C D and h(x)eR". If

SUxD) = () + AD ([x] - 2), (13)
then

R(SGIDE SIXD (14)
and (under some additional assumptions)

gRUS D, L)) €xlldiXE.,  x20, (15)

where the constant k depends on [x]° bur not on [x] and z.

Relation (15) is called ‘quadratic approximation property’ of the centered form. For rational func-
tions it is not difficult to find a centered form, see for example [77].

After having introduced the centered form it is natural to ask if there are forms which deliver
higher than quadratic order of approximation of the range. Unfortunately, this is not the case as has
been shown recently by Hertling [39]; see also [70].

Nevertheless, in special cases one can use the so-called generalized centered forms to get higher-
order approximations of the range; see, e.g., [18]. Another interesting idea which uses a so-called
‘remainder form of /7 was introduced by Cornelius and Lohner [27].

Finally, we can apply the subdivision principle in order to improve the enclosure of the range.
To this end we represent [x] € /(R") as the union of k" interval vectors [x], I=1,..., k", such that
dix) =d[x)/k fori=1,....nand I=1,..., k", Defining

Sk = £(=1), (16)
g |
the following result holds:

Theorem 4. Let fDCR* - R
(a) With the notations and assumptions of Theorem | and with (16) we get

GRS ED. SRR L

where 7= y{[dBsY] .
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(b) Let the notations and asswyzﬁ?mm of Theorem 3 hold. Then using in (16) for [{ix]) the
expression (13) with z =2 € [x], 1 =1,....k, it follows that

R, Sl k) < =

2
where # = x|ld[xTII%.

Theorem 4 shows that the range can be enclosed arbitrarily close if & tends to infinity, i.e., if the
subdivision of [x]C [x]’ is sufficiently fine, for details see, e. g., [781.

In passing we note that the principal results presented up to this point provide the basis for enclos-
ing minimizers and minima in global optimization. Necessary refinements for practical algorithms in
this respect can be found in, e.g., [36,37.38,42,44] or [79].

As a simple example for the demonstration how the ideas of interval arithmetic can be applied
we consider the following problem:

Let there be given a continuously differentiable function f:DCR — R and an interval [x]°C D
for which the interval arithmetic evaluation of the derivative exists and does not contain zero:
0 ¢ f([x]°). We want to check whether there exists 2 zero x* in [x]°, and if it exists we want
to compute it by producing a sequence of intervals containing x* with the property that the lower
and upper bounds are converging to x*. (Of course, checking the existence is easy in this case by
evaluating the function at the endpoints of [x]°. However, the idea following works also for systems
of equations. This will be shown in the next section.)

For [x] C {x]° we introduce the so-called interval Newton operator

Sm[x])

Nixl=m[x] — —= mix]€x 17
[x] (x] 7 (xlelx] (17)

and consider the following iteration method:
DI = NP N x)f, k=0,1,2,..., (18)

which is called interval Newton method.
Properties of operator (17) and method (18) are described in the following result.

Theorem S. Under the above assumptions the following holds for (17) and (18):
() If

NIx]C X1 < =), (19)

then [ has a zero x* & {_r] which is unique in [x]°.

(b) If [ has a zero x* & [x)° then {[x)°}e2, is well defined, x* € x1" and lim,_ o [XTF =X
If df"(Ix]) €cdlx], [x] C [x)", then dEA}"“%,«{zi{x] ¥

(€) NxI*N[x]* =0 (= empty wz} Jor some k20 if and only if f(x)# 0 for all x < [x]".

Theorem 5 delivers two strategies to study zeros in [x]°. By the first it is proved that [ has a
unique zero x* in ix} It is based on (a) and can be realized by performing (18) and checking (19)
with [x] = [x]*. By the second — based on (c,) ~ it is proved that f has no zero x* in [x]°. While
the sccond strategy is always successful if [x]° contains no zero of S the first one can fail as the
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In case (b). the diameters are converging quadratically to zero. On the other hand, if method (18)
breaks down because of empty intersection after a finite number of steps then from a practical point
of view it would be interesting to have qualitative knowledge about the size of %y in this case. This
will be discussed in the next section in a more general setting.

4. Systems of nonlinear equations

In the present section we consider systems of nonlinear equations in the form

fx)=0 (20)

and
Jlx)y =z, (21

respectively, i.e., we look for zeros and for fixed points of f, respectively. {It is well known that
probiems (20) and (21) are equivalent when choosing f in (21) appropriately.) Using interval
arithmetic we want to derive simple criteria which guarantee that a given interval [x] contains at
least one zero x* of f or a corresponding fixed point. We also list conditions for x* to be unique
within [x], and we show how [x] can be improved iteratively to some vector [x]” which contains x*
and has a smaller diameter.

in the whole section we assume that f:DCR® -+ [ is at least continuous in D, and often we
assume that it is at least once continuously (Fréchet-) differentiable.

We first consider fixed points x™ of f in X]CD. A simple method for verifying such a point is
based on (6)~{8) and Brouwer’s fixed point theorem and reads as follows.

Theorem 6. Let [LDCR —= B he continuous and let

SUxDECx]CD. (22)
Then [ has at least one fixed point in [x] and the iteration

P =[x

[ = £, k=0,1,... (23)
converges to some [x1° such that

BT S CRrF e - S’ =[], (24)

The limit [x]" contains ail fixed points of [ in [x1.

We call an interval sequence {[x]'};*, monotonically decreasing if it fulfills (24).
Theorem 6 says nothing on the uniqueness of x* € [x] nor on the width of [x]". In fact, the simple
example f(x) = —x, [x]={~ 1,1] with [x]' = [x]' = [x] shows that d{x]" > 0 can occur although

x" =0 is the only fixed point of /" in R. For P contractions, however, sharper results can be proved
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by a direct application of Banach’s fixed point theorem. Note that f:D C RB" — R” is a P contraction
on the set /([x]) of all compact intervals contained in [x] C D if there is a matrix P =0 € R*™” with
spectral radius p(P) <1 and

g(S (DS €Pg([y][2])  for all [y], [2] € [x].

Trivial examples are linear functions f{x)=Ax b with D=R", 4R, p(l4]) < 1, b€R" and
P =|d|.

Theorem 7. Let f:DCR" — R" be a P contraction on I{[x]), [x]C D, and ler (22) hold. Then
S has exactly one fixed point x* € [x] and iteration (23) converges to x* for all starting vectors
xI° € [x]. Moreover, x* € [xT, k=1,2,..., if x* € x]° which holds, in particular, if [x]° = [x].

Remark 1. Condition (22) can be omitted in Theorem 7 if f is a P contraction on the whole space
I(R") (cf. [13]). For any [x]° € 7(R*) the unique fixed point x* is then contained in [ —x® — 4,2° +
A}, 4= - P) iq({x], x]").

Remark 1 is interesting since it is not always an easy task to find an [x] such that (22) holds.
There is, however, a method of trial and error which goes back to Rump [81] and which, in practice,
mostly ends up with such an [x] in a few steps. The technique is called epsilon inflation and is a
quite general interval arithmetic tool. It consists in replacing the current interval iterate by an interval
vector which is a proper superset of the iterate and which differs from it by a small parameter &.
This can be done, e.g., in the following way: first compute an approximation ¥ of x* by applying
any appropriate standard method in numerical analysis. Then iterate according to

=%,

XV = f{{x}k +d[x[ ~ 5] + {—wmnle)n k=0,1,..., {25)

where ¢, # are some small positive real numbers. If f is a P contraction on 7(R") then (25) ends
up after finitely many steps with an iterate which fulfills (22). This is stated in our next theorem.

Theorem 8. Let /:D =R" — R” be a P contraction on I(R"). With [x]' being given, iterate by
inflation according 1o

(L = SED + [0, k=0.1....,

where [81 € I(R*) are given vectors which converge to some limit [8]. If 0 €int{{8}) then there is
an integer ky = ko{[x]") such that

S Cint([x).

In ?r'iew of (25) we can try to apply Theorem § with [§]' = (d f[.\'}f;f N —e¢el+[~nnle and {x}f =%
X1 + (@[x]] = &, €]+ [ ~ n, nle. If [8] = lim,_ ~[6]" exists then 0 € int([3]) since 0 & [—n.nleCid]
for ka= 0,100

Theorem 8 was originally stated and proved by Rump [83] for linear functions f. It was gener-
alized to P contractions and contractive interval functions in [58,59] where also the case D # R

M
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is considered and where various examples for epsilon inflations are presented. Unfortunately,
Theorem 8 says nothing on the number of steps which are needed to succeed with (22). There-
fore, other possibilities become interesting which we are going to present in the second part of this
section and in Section 6.

We consider now zeros of a given function f.

A first method is based on a result of C. Miranda (see [62] or Corollary 5.3.8 in [69]) which is
equivalent to Brouwer’s fixed point theorem. We use it in the following modified interval version.

Theorem 9. Let D TR — R" be continuous and let [x] < D,
I‘I]; e ([X! 1: wevy {\ H }s X {xa'é-!}’ ey [“{h})T!
[u}{ == {g}‘-f }» ey [xr- 1]1—‘Eh [.\',' : 333 Tray [.xﬂ} }.[‘

If FAUTY<O0, fu[ul)20 or f{[I])20, f{[u])<0 holds for each i=1,....n then f has at least
one zero in [x].

Combined with subdivisions, lists and exclusion techniques Theorem 9 forms the basis of a simple
but efficient verification and enclosure method for zeros of functions f:DCR" — B™ even if m < n.
Curves and surfaces can thus be tightly enclosed and problems in CAGD like ray tracing can be
handled. We refer to [31,52,68].

Another method for verifying zeros consists in generalizing the interval Newton method of
Section 3 to the multidimensional case. To this end we denote by

IGA([4],[2]),
the result of the Gaussian algorithm applied formally to a nonsingular interval matrix [4] € [(R"™")

and an interval vector [h] € /(R"), see, for example, [13, Section 15]. Here we assumed that no
division by an interval which contains zero occurs in the elimination process. It is easy to see that

S={x=A4""b|d€[A4)], be[b]} CIGA([4],[?)) (26)
holds. By
IGA([4])

we denote the interval matrix whose ith column is obtained as IGA([4],¢') where ¢ is the ith unit

vector. In other words, IGA([4]) is an enclosure for the inverses of all matrices 4 € [4].
Now assume that

fDCR" — R {27)
is continuously differentiable. If x, y € [x] C D then

f&) =~ f()=J(rx)x - ), (28)

where

J(px)= jg £+ tx = y)dt. (29
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Note that J is a continuous mapping of x and y which satisfies J(y,x)=J{(x, y). Since 1 €[0,1] we
have y + H{x — y) € [x] and therefore

J(y.x) € f([x]), (30)
where f7([x]) denotes the interval arithmetic evaluation of the Jacobian of f. For fixed y € [x] we
obtain from (28) and {30)

px)=x=J ' (3x)f(x) =y = I (3x) (3 €y~ IGA(S (X)), (). (31)

If x€ [x] is a zero of f then (31) implies x € y — IGA(S'([x]), f(»)). This leads to the following
definition of the interval Newton operator N[x] which we introduce in analogy to (18): suppose that
mlx] & [x] is a real vector. Then

N[x] = m[x] — IGA(/"([x]), f(m{x])). (32)
The interval Newton method is defined by
Y =N Y, £=0,1,2,.... (33)

Analogously to Theorem 5 we have the following result.

Theorem 10. Let f:DCR" — R" be continuously differentiable and assume that IGA(Sf"(Ix]"))
exists for some interval vector [x]° C D: (This is identical to assuming that the Gaussian algorithm
is feasible for f'(Ix1°). In particular, f([x]°) is nonsingular in this case.)
() If
Nix] & 4]
for some [x]C [x]° then f has a zero x* in (x] which is unique even in [x]°.
Assume that

pA) <1, where A= - IGA(S(I5I") ST (34)
(b) If f has a zero x” in [x]° then the sequence {1}, defined by (33) is well defined, x™ € [x)}
amj limy o X = x”. In particular, {[x}}2, is monotonically decreasing and x* is unigue in
IxT".
Moreover, if
df (g <alldix]lles 220, 1<ij<n (33)
Sor all [x]C{x]" then

Halx]* oo < 7M1, 7220, (36)
(c) N[xI* N {x]° =0 for some ky>0 if and only if f(x)#0 for all x¢ [x]°.

The proof of (a) can be quickly done by applying Brouwer’s fixed point theorem to p of (31) The
results of (b) and {c) can be found in [9].
Note that in contrast to the onedimensional case we need condition (34) in cases (b) and (c).
Because of continuity reasons this condition always holds if the diameter d[x]° of the given
interval vector (‘starting interval’) is componentwise small enough (and if f’([x]°) contains no
singular matrix) since because of Theorem 1 we have 4 = O in the limit case d[x]’ = 0. Schwandt
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[86] has discussed a simple example in the case p(4)>1 which shows that for a certain interval
vector (33) is feasible, x* € [x]¥, but limy .o [x]F # x*.

In case (a) of the preceding theorem we have by (36) quadratic convergence of the diameters of
the enclosing intervals to the zero vector. This is the same favorable behavior as it is well known
for the usual Newton method. If there is no solution x* of f{x)=0 in [x]’ this can be detected by
applying {33) until the intersection becomes empty for some 4. From a practical point of view it
is important that &, is not big in general. Under natural conditions it can really be proved that & is
small if the diameter of [x]° is small:

Let N{x] = [n,7] for the interval Newton operator (32). It is easy to prove that

Nixinxl=9

if and only if for at least one component iy either

(i—x), <0 (37)
or

(F~n) <0 (38)
holds. Furthermore, it can be shown that

- n<O(ldx]|5)e + 47 £ () (39)
and

i~ 2 <O(lldfxIR e — 4' £ (x) (40)

provided (33) holds. Here 4! and 4% are two real matrices contained in IGA(f([x]°)). Furthermore,
if f(x)# 0, x&€[x], then for sufficiently small diameter d{x] there is at least one iy € {1,2,...,n}
such that

(A f(x)) #0 (41)
and

sign(4' £(x)), = sign(42 /() (42)

Assume now that sign(4’ f(x)});, = 1. Then for sufficiently smalil diameter d[x] we have (i—x), < 0
by (40) and by (37) the intersection becomes empty. If sign(4' f(x)), = —1 then by (39) we obtain
{X —n);, < 0 for sufficiently small d[x] and by (38) the intersection becomes again empty.

If N[xJ° n{x] =8 for some k, then the interval Newton method breaks down and we speak of
divergence of this method. Because of the terms O(]|d[x]||%.) in (39) and (40) we can say that in
the case f(x) # 0, xe[x]’, the interval Newton method is quadratically divergent.

We demonstrate this behavior by a simple one-dimensional example.

Example 3. Consider the polynomial
f)=x"+x' —11x* - 32 4 18

which has only simple real zeros contained in the interval [x]°=[~3,6]. Unfortunately, (18) cannot be
performed since 0 € f7([x]"). Using a modification of the interval Newton method described already
in [3] one can compute disjoint subintervals of [x]” for which the interval arithmetic evaluation does
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not contain zero. Hence (18) can be performed for each of these intervals. If such a subinterval
contains a zero then (a) of Theorem 5 holds, otherwise (b) is true. Table 1 contains the intervals
which were obtained by applying the above-mentioned modification of the interval Newton method
until 0 ¢ f'([x]) for all computed subintervals of [x]" (for simplicity we only give three digits in
the mantissa).

The subintervals which do not contain a zero of f are marked by a star in Table 2. The number
in the second line exhibits the number of steps until the intersection becomes empty. For n =9 we
have a diameter of approximately 2.75, which is not small, and after only 3 steps the intersection
becomes empty. The intervals with the numbers n=1,2,3,6,8 each contain a zero of /. In the second
line the number of steps are given which have to be performed until the lower and upper bound
can be no longer improved on the computer. These numbers confirm the quadratic convergence of
the diameters of the enclosing intervals. (For n =3 the enclosed zero is x* = 0 and we are in the
underflow range.)

For more details concemning the speed of divergence see [8].

The interval Newton method has the big disadvantage that even if the interval arithmetic evaluation
F(IxT’) of the Jacobian contains no singular matrix its feasibility is not guaranteed, IGA(/"([x]"),
f(m[x]’)) can in general only be computed if d[x]° is sufficiently small. For this reason Krawezyk
48] had the idea to introduce a mapping which today is called the Krawczyk operator:

Assume again that a mapping (27) with the corresponding properties is given. Then analogously
to (32) we consider the so-called Krawczyk operator

K[x] =m[x] = Cf(mlx]} + (I ~ CS([xD))([x] = m[x]), (43)

Table 1
The modified interval Newton method ap-
plied to f from Example 3

=

[~0356-10", —0.293- 10"
[—0.141-10', —0870-10%
[—0977-10°  0499-10"
[0.501-10°,  0.633.10%
[0.140- 10",  0.185.10")
[0.188- 10", 0212-10%)
[0.265- 10", 0.269 - 107
[0.297-10", 0.325- 10"
[0.327 10",  0.600- 10"

- B SR R T

Table 2
The interval Newton method applied lo / from Example 3

E l 2 3 4" 5" 3 7 3 9
3 &
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where C is a nonsingular real matrix and where m[x] € [x]. For fixed C we define the so-called
Krawezyk method by

[ =K Nl k=0,1,2,... . )

For this method an analogous result holds as was formulated for the interval Newton method in
Theorem 10:

Theorem 11. Let f:DCR" — R" be continuously differentiable and assume thar the interval
arithmetic evaluation f'([x]") of the Jacobian exists for some interval vector [x}a c D
(a) If
K[x]C[x] (45)
for some [x)C[x)° then f has a zero x" in [x].
If (43) is slightly sharpened 1o
KixDiclx1Cx]® fori=1,....n, (46)
then p([I = Cf(IxD1) < 1 holds, f'([x]) is nonsingular and x* is unique in [x].
Let m[x] be the center of [x] and assume that
p(B) <1 where B=1I - Cf({x]")l. (47)

(b) If f has a zero x* in [x]° then the sequence {[x]'};%, defined by (44) is well defined, x* € [x]*
and limy .o [x)* = x*. In particular, {xV}i, is monotonically decreasing and x* is unigue
in [x]°. Moreover, if C = C; varies with k such that it is the inverse of some matrix from

ST, and if

df' ([xDy<afldx]]|<, 220, 1<ij<n (48)
Sor ail [x]C[x)° then
o <o IR 730 (#9)

(c) K[x]* N [x]* = 0 for some ky 20 if and only if f(x)# 0 for all x& T3

Proof. (a) Consider for the nonsingular matrix C in K[x] the continuous mapping
g:DCR" - R

defined by
g(x) = x — Cf(x).
It follows, using (28) and the assumption,
glx) = x — Cf(x)
= x = C(f{x) ~ f(mlx]}) - Cf(m[x])
= m[x] + (x = m[x]) — CI(m[x]. x)(x — m[x]) — Cf(m[x])
€ mx] = Cf(mx]) + (I = Cf(DNIx] — mlx])
=KE]Ckx], xelx).
By Brouwer’s fixed point theorem ¢ has a fixed point x € [x]. This fixed point is a zero of s 8
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If (45) is replaced by (46) then |/ — Cf'([x])|d[x] <dK[x] < d[x]. Therefore,
Y = Cf (xDlydlx))
et dlx]
which is equivalent to
W6~ — CLEDIDN < 1.

Here, D is the diagonal matrix with d; =d[x,], i = 1,...,n. Therefore,

< 1

A 1

oI = CLED) = oD 1 = CAGNIDIKID™ I = CF QDD < 1.

If f'([x]) contained a singular matrix 4 then / — C4 would have the eigenvalue 1 and we would
get the contradiction

1<p(i = CAY<p([f —~ CANLp( = CA (DD < L. (50)
Therefore, f'([x]) is nonsingular. If / had two zeros x*, y* € [x] then (28) and (30) would imply

- i1,

(b) By (28) we have
fGT) = fmlx]) = J(mlx].x" )x™ = mlx])
and since f{x"}) =0 it follows
x* = mx] = Cf (m[x]) + (I — CJ(m{x],x" )}x" — m[x])
€ mx] - Cf(mlx]) + I — Cf(xDXIx] — m[x])
= K[x].

Hence if x* € [x]® then x* € K[x]" and therefore x* € K[x]’N[x]°=[x]'. Mathematical induction proves
x* € [x}, k=0.

For the diameters of the sequence {[x]'}, we have dlxT <dK[x) <Bd[x]", where the
last inequality holds because we assumed that m[x] is the center of [x]*. Since p(B) <1 we

have lim; ... d[x]" =0, and from x* € [x]* it follows lim;.,[x]' = x'. In particular, x* is unique
within [x]°.

Analogously to (a) assumption (47) implies that f([x"]) is nonsingular. Since it is compact
and since the inverse of a matrix M € R"™" depends continuously on the entries of M the set
{M | Me f/([x]")} is bounded by some matrix C. The quadratic convergence behavior {49)
follows now from

dixI < I = G f'(x)ldIx)
<IGICGT = SNl
< CLA(1) = T
= Cdf'(Ix] )Y
by using (48).
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(c) Assume now that K[x]g" N [x]° =0 for some ky>0. Then f(x) # 0 for x&ix]’ since if
F(x") =10 for some x* € [x]" then Krawczyk’ R m@thod is well defined and x* € [x]*, £>0.
If on the other hand f(x) # 0 and K[x]* N {[x]* # 0 then {{x]'} is well defined. Because of
p(B) < | we have d[x]' — 0 and since we have a nested sequence it follows limy . [x] = £ € R,
Since the Krawczyk operator is continuous and since the same holds for forming intersections we
obtain by passing to infinity in (44)
X=Kinx=K5=7%~ Cf(X).

From this it follows that f(X) =0 in contrast to the assumption that f(x) # 0 for x ¢ [x]".
This completes the proof of Theorem 11,

Remark 2. (a) When we defined the Krawczyk operator in (43) we required C to be nonsingular.
We need not know this in advance if (45) or (47) holds since either of these two conditions implies
the nonsingularity by an analogous argument as in the proof for (a).

(b) It is easy to see that in case (a) of the preceding theorem all the zeros x* of f in [x] are
even in Xlx].

{c) If m[x] is not the center of [x] but still an element of it the assertions in (b), (¢) remain true
if (47) is replaced by p(B) < i.

(d) Assertion (47) certainly holds if (34) is true with C € IGA(/'([x]")).

In case {¢) of the Theorem 11, that is if K[x}*N[x)* =0 for some &, we speak again of divergence
(of the Krawezyk method). Similar as for the interval Newton method %, is small if the diameter of
[x]” is small. This will be demonstrated subsequently under the following assumptions:

(i) /'(1x]°) is nonsingular,

(i1} {48} holds,

(ii1) C = C; varies with & such that it is the inverse of some matrix from f'([x]").

Note that these assumptions certainly hold if the assumptions for (49) are fulﬁ]led

As for the interval Newton operator we write K[x] = [£,&]. Now K[x] N [x] =@ if and only if

x—%k), <0 (51)
or
(k~x), <0 (52)

for at least one i € {1,2,...,n}. (Compare with (37) and (38).)
We first prove that for K[x] defined by (43) we have the vector inequalitics

_______ k <O(||dx]1E e + CA(E) e
and

k ~ x<0(|ld[x)|]%,)e - Cf(x), e
where again e = (1,1,....1)T e R".

We prove (54). For [x] € [x]° let f'([x])=[F",F'] and set C=M"" with some matrix M € f([x]).
An easy computation shows that

1-Cf'([x]) = CIM ~ F'\M ~ FIC|CIIE' - F,F - F1<[ - L1)Cdf (1))
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where C is any upper bound for the set {|M~'||M € /’([x]")}. Therefore
K[x) C mlx) ~ Cf (nlz]) + [~ 1, 1ICdf([x]) - [(x] ~ mlx]].
Hence,

F—x < mlx] - x ~ Cf(m[x]) + Cdf'([x])dlx]

< Jd[x] = Cf (mlx]) + Ol e,
where we have used (48) and m[x] € [x].
Choosing x == m[x], y=1x in (28) we obtain

It follows that

k- x < Ydx] - Cf(x) — 1CJ(x. mlx])d[x] + O(lld[x]| 12, Je

= (I = CJ(x.m[x]))d[x] ~ Cf{x) + O(l|d[x]|[3, Je.
Since

I = CJ(xmlx]) = CC™" = J(mlx)) € G () = £(x])) = Caf'([x)).
the assertion follows by applying (48).
The second inequality can be shown in the same manner, hence (53) and {54) are proved.

(Cfx) #0 (33)

and
sign (Cf (%)), = sign (Cf(x))s,- (56)

This can be seen as follows: Since x € [x] we have f(x) # 0 and since C is nonsingular it follows
that Cf(x) # 0 and therefore (C/(x)), # O for at least one iy & {1,2,...,n} which proves (55).
Using again (28) with x = X. y=x we get

It follows
C/X)=Cfx)+ CJx,x)x — x).

Since the second term on the right-hand side approaches zero if d[x] — 0 we have (56) for suffi-
ciently small diameter d[x].

Using (53), (54) together with (55) and {56) we can now show that for sufficiently small diameters
of [x] the intersection X[x] M [x] becomes empty. See the analogous conclusions for the interval
Newton method using (41), (42) together with {39) and (40). By the same motivation as for the
interval Newton method we denote this behavior as ‘quadratic divergence’ of the Krawezyk method.

Part (a) of the two preceding theorems can be used in a systematic manner for verifying the
existence of a solution of a nonlinear system in an interval vector. Besides of the existence of a
solution also componentwise errorbounds are delivered by such an interval vector. We are now going
to discuss how such an interval vector can be constructed.
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For a nonlinear mapping /D C R* — R we consider Newton’s method
Hlamt — Y (R, &k=0,1,... . (37)
The Newton-Kantorovich theorem gives sufficient conditions for the convergence of Newton'’s method
starting at x°. Furthermore, it contains an error estimation. A simple discussion of this estimation
in conjunction with the quadratic convergence property (36) which we have alse proved (under

mild additional assumptions) for the Krawczyk method will lead us to a test interval which can be
computed using only iterates of Newton’s method.

Theorem 12 (See Ortega and Rheinboldt, [71, Theorem 12.6.2]). Assume that [:DCR" — R js
differentiable in the bail {x|ix — x|l <r} and that

LG = (0o LI ~ plloc
Sor all x, y from this ball. Suppose that {'(x°)~" exists and that || f'(x°Y "] £ Bo. Let
“xt o xgiw o ”f»,»{x@}M; ) f(xu)sioe = Ho

Then the Newton iterates are well defined, remain in the ball {x|||x — £°||.« <1y} and converge to

a solution x* of f(x) =0 which is unigue in D N {x|{jx — x°|| < n} where

(38)
holds.

Since by < ;, the error estimate (38) (for £ = 0,1 and the oc-norm) leads to

e — 2l € 200 = 2" = XL,

{{e" i . - G
”x """" A %;*x & Z}EE,??“ S:‘;«’h‘ S EE" = X {ees

This suggests a simple construction of an interval vector containing the solution x*. If x° is close
enough to the solution x* then x' is much closer to x* than x® since Newton’s method is quadratically
convergent. The same holds if we choose any vector (5 x*) from the ball {x]|jx — x||o <o} as

starting vector for Newton’s method. Because of (36) and since x* € K[x] it is reasonable to assume
that

Kisl=x' = /GO fix) + (T = 6O LD ~ ) S [¥]
for

[x] = {x ||l = ¥'{|xc <10} (59)



442 G Alefeld G. Mayer! Journal of Compuiational and Applied Mathematics 121 (2000) 421464

The important point is that this test interval [x] can be computed without knowing B and L. Of
course all the preceding arguments are based on the assumption that the hypothesis of the Newton-
Kantorovich theorem is satisfied, which may not be the case if x° is far away from x*.

We try to overcome this difficulty by performing first a certain number of Newton steps until we
are close enough to a solution x* of f{x)=0. Then we compute the interval (39) with x**" instead
of x'. Using the Krawczyk operator we test whether this interval contains a solution. The question
of when to terminate the Newton iteration 1s answered by the following considerations.

Our general assumption is that the Newton iterates are convergent to x°. For ease of notation
we set

[pl=x**" = )T )+ = £ AN = 2,
where

[x)={xe R —xlle <mi},

M = [ = oo (60)
for some fixed k. Our goal is to terminate Newton’s method as soon as

Zisa 1

%ﬁ”ﬂ& <eps (61)

holds where eps is the machine precision of the floating point system. If x* € [x] then x* € [y] so
that for any y € [y] we have

" — Yoo < e[ 7)o
s

oo e llee

L d

x

Since {lx"|| differs only slightly from ||x**!{]_ if x**! is near x", condition (6!} guarantees that
the relative error with which any y € [y] approximates x* is close to machine precision. Using (35)
it ¢can be shown that

[l (x Dl <LUd )
and
e l¥hee SIS dlldlx]
where L = max{Z,L}, and since {{d{x]l|.c = 2n: the inequality (61) holds if

iij’{xé ..... E“xir]f
4%“;@;::;?5: ““““““ <eps (62)
is true.
From Newton’s method we have

N —xt = fETHAE) - ST - T -2}
and by 3.2.12 in [71] it follows that

AT TACS I
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Replacing the inequality sign by equality in this relation and eliminating || //(x* )|l in (62) we
get the following stopping criterion for Newton’s method:

o <P o

Of course, this is not a mathematical proof that if (63) is satisfied then the interval {y] constructed
as above will contain x* and that the vectors in [y] will approximate x* with a relative error close
to eps. However as has been shown in [11] the test based on the stopping criterion (63) works
extremely well in practice.

Some of the ideas of this section have been generalized to nonsmooth mappings by Chen [24].

Nonlinear interval systems, ie., systems of nonlinear equations with parameter-dependent input
data, have been considered, e.g., in [58].

A very important point is also the fact that for the verification of solutions of nonlinear systems
one can often replace the interval arithmetic evaluation of the Jacobian by an interval arithmetic

enclosure of the slope-matrix of f. In this connection slopes have first been considered in [3], see
also [75].

5. Systems of linear equations

Given [4] € I{R**"), [5] € I{R") we want to characterize and to enclose the solution set

= {x € R'| Ax = b, A€[4], be[b]} (64)

and the symmetric solution set

Sym ={xER| Ax=b, A=A"€[A]=[4]', be[b]}. (65)

These sets occur when dealing with systems of linear equations whose input data are afficied with
tolerances (cf,, e.g. [13,69] or [84]). This is the case when data 4 € R***, he R" are perturbed by
errors caused, e.g., by measurements or by a conversion from decimal to binary digits on a computer.
Assume that these errors are known to be bounded by some quazztztles AA€R™ and Abe R” with
mmnegazwe entries. Then it seems reasonable to accept a vector ¥ as the ‘correct’ solution of Ax=45
if it is in fact the solution of a perturbed system Ax = b with

Ac[Al=[4d - A4, A+ A4},  be(b]l=(b~ Ab,b+ Ab].

The characterization of all such ¥ led Octtli and Prager [72] to statements (2) and (b) of the following
theorem.

C{%zeorem 13. For [A)e (R™™), [b] € {(R") the following properties are equivalent:
(a) x

{b) ui}:w bl < s(dADIx] + d([BD);

() [N [b] #6;
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(d)
H
b~ D _a;% <0
I"_}f ? 1 = 1’ ?}I‘,
—b+ Y a;x<0
where a;; and a;; are determined by the equality

la;,a;] if x;20,

{{gj_;'» 55)} = {

[a},a;] if x; < 0.

The inequality in (b) relates the midpoint residual to the diameters of [4] and [#], {(¢) is a short
mterval version of (b) due to Beeck [22] and (d) characterizes § in each orthant as intersection of
finitely many half spaces. This last property shows, in particular, that S cannot easily be described.
Therefore, one often encloses S by an interval vector {x]. According to (26) such a vector can
be computed, e.g., by the Gaussian algorithm performed with the interval data as in Section 4. It
i$ an open question to find necessary and sufficient conditions for the feasibility of the Gaussian
elimination process if [4] contains nondegenerate entries. For instance, IGA([4],[b]) exists if {{4])
is an M matrix as was shown in [4]. Other sufficient conditions can be found in [13,55,60]. See
also the references there.

lterative methods can also be used for enclosing S. Two simple ones are the interval Jacobi
method

# !
[ = ([_b;] -3 {a‘-}}[xj]&) / [l =Tk (66)

sk

i

and the interval Gauss—Seidel method

) = {Eé;} = Zg@}{x}:}“‘ ~ E {a;;;}{x;}}"’} / (@), i=1,...,n (67)

with 0¢ [¢,] for i=1,...,n They can be modified by intersecting the right-hand sides of (66) and
(67) with [x,]* before assigning it to £ 7
Denote by [D], ~[L] and ~[U], respectively, the diagonal part, the strictly lower triangular part

and the strictly upper triangular part of [4], respectively. Then [A] = [D] ~ [L] — [U], and the
unmodified methods can be written in the form

D = f(x)) with £([x]) = IGA(IM], [N][x] + b)), (68)

where [4] == [M] — [N] and where we assume that IGA([M]) exists. For [M] = [D] we recover the
Jacobi method (66) and for [M] = [D] — [L] the Gauss-Seidel method (67). The following result
holds for these two cases and for a slight generalization concerning the shape of [M]:
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Theorem 14. Let [A] = [M] — [N]€ (R™*), [b] € (R") with [M] being a nonsingular lower trian-
gular interval marrix:
(a) Ireration (68) is equivalent to the iteration

[x ] = ({fn] = f{mr-,&ix;?"" +Z[nzg1[x,,-3*) ;/ [m), i=1...n (69)
Ju=l jeel

iz

(b) Iteration (68) is convergent to some limir [x]° € (R") (i.e., each sequence {[x}'}3, of iterates
defined by (68) is convergent to [x1") if and enly if p({IM}'[N]) < L.
In this case § C [x]". ~

(¢) If [4] and (M) are M matrices and if N =0 then p({IM])'|[N]) = p(M ~'N) <1 and [x]"
from (b) is the hudl of §.

(d) Let [x]el(R"). If f(Ix]) from (68) satisfies (f([x)):<Cx] for i = 1,....n, then
pUIMT) NI < 1.

Proof. {(a) follows by induction with respect to i taking into account that for lower triangular matrices
the ith elimination step of the Gaussian algorithm changes only the ith column of [4].

(b) Let P = {{M])'[N]l. Since [M] is triangular, {[3/]) is an M matrix, hence P2 O.

‘=" From (69) we get

i n
dix]' > (Z Imyldlx ) +Z%n.sf-fd{x,;}*) / Imad)y i=1l.....m, (70)
J=l J=1
which is equivalent to {(M]d[x]" 2 NJld[x). From this, d{x]*"' 2 Pd[x]*, and, by induction,
d[x]* = P*d[x]’ follow. Choose [x]° such that d[x]° is a Perron vector for P with d[x,]" < d[x,]’
for some index iy. If p(P)=1 then
d{‘r-'(u]k Bp(P)’éd{'rée}(}?d{xm}Q > {]Exraj&

and k — oc yields to a contradiction.

‘e": Let f([x]) = IGA([M],[N][x] + [6]). From (69) we get

o@D SO S s (Z [l g G AL + 3l gl i’y;})) :
iy S J J

whence ([M]g(f([x]), Ay <|IN]lg(Ix], [¥]) and g(/([x]). f(Iy]) < Pq([x].[¥]). Hence [ is a

P contraction, and Theorem 7 together with Remark 1 proves the convergence.

Let now (68) be convergent for all [x]° and choose ¥€S. There are A€ [4], be[b], Me [M],
N €[N] such that Af =5, A=M ~ N and ¥ =M (N + b). Then %€ IGA([M),[N]F + [b]). Start
(68) with [x]° =%. Then £€[x]* for k=0,1,..., hence £ € [x]'. This proves S C [x]".

(c) The assumptions imply that 4==M — N is a regular splitting of 4 and that 4™ = O. Therefore,
24.17 in [71] guarantees p({{IM) NN =pM 'N) < 1.

in order to prove the hull property let [x]” be the limit of {638), define

m., = * =
i - - -
iy if X > 0,

m if x>0
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and let A" = M* — N*. Then 4° € [4], and from (69) with k — o0 we get A"x* = b, hence x* & 5.
Analogously one can show that ¥ € S.

(d) Replace {:c_,-}’t by {x;] and [xT" by f([x]): in (70). Together with the assumption this yields
to Pd{x]<d f([x]) < d[x], and analcgously to the proof of Theorem 11(a) we get p(P) < 1. O

For the Richardson splitting [4] =17 — {7 — [4]) parts of Theorem 14 were already stated and proved
in [61]. Most of its present form can be found in [69, Chapters 4.4 and 4.5].
We now apply the Krawczyk operator (43) to the function Ax — b and replace 4 € R, be R”

by [4]€ I(R**"), [b] € I/(R"). Then we get the modified Krawczyk operator

Kinoalx] = m[x] + C([6] ~ [d]m[x]) + (/ — C[AIN[x] — m[x]) 1)
with some nonsingular matrix C € R"" and any vector m[x] from B*. For K,.[x] and for the
iteration

[ = Knoalx] 0 2] (72)
with fixed C the following analogue of Theorem 11 holds.

Theorem 15. Let [A]€ I(R™"), [b]€ I(R"):
(@) If

ol ~ ClA)) < 1, (73)

then [A] is nonsingular, ie., each linear system Ax = b with A€[A] and b (b] is uniquely
solvable. If, in addition, S C{x)° then the sequence {[x]*}, defined by (72) is well defined,
SCIx) and limg.., [x) = [x]' 2. In particular, {[x}}2, is monotonically decreasing.

(b) If
Kooa[x] € [x] (74)

Jor some [x]€ I{R") then each linear system Ax = b with A € [A] and be [b] has a solution
x*elx}
If (74) is slightly sharpened to

(Kaaal)): Clxl Sfori=1...n, (75)
then p(|I — C[4)]) < 1, ie.. the properties in (a) hold with § C [x).
() If
I - Cldllll < 1, (76)
then the properties in (a) hold. In addition,
SCX] =[X — ae, X + ze], n
where

_ HEAB) = (419 [l
1= ([} = ClAll e

Therefore, the second part of (a) holds for any [x]’ 2 [].
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Proof. {(a) Can be proved via an analog of (50) and by using the representation
x* == mfx] + C(b — Am[x]) + (I — CA)x" ~ mlx]) € Kpoa[X] (78)

for x* = A7'b, A€[4], be[b].

{b) Is proved analogously to part {(a) of Theorem 11.

(¢) Since the assertion implies p(|/ — C[4]|) < I all properties of (a) hold. Let x* € 5. Then there
are A €[4}, b< [H] such that Ax" = b. Hence

" = &l = |47 (0 — AD)| | {7 = (1 = CA} | HCh ~ AD | €2,

where we used the Neumann series for the last inequality. O

Remark 3. (a) As in Remark 2 it is not necessary to know whether C is nonsingular if (73), (73)
or (76) hold. Either of these assumptions guarantees the nonsingularity of C.

(b} If (74) or (75) holds then ST K q{x].

(¢) If {A] and [b] are degenerale, i.e., (4] = A4, [b] = b then the assumption p(|/ ~ C4}]) < | in
Theorem 15 implies

A_lim [x} =x°,

where Ax" = b,

Remark 3(b) leads to the question how good the enclosures are which one gets as iterates obtained
by (72). The following result is due to Rump [82] and answers this question if {75) holds. To this
end we define S, as the projection of S to the ith coordinate axis, i.e.,

5 ={x|xeS}CR (79)

For nonsingular [4] Cramer’s rule shows that x; depends continuously on 4 € [4] and b € [h]. Since
[4] and [b] are connected and compact, the sets S, are compact intervals.

Theorem 16. Ler [A)e I(R™"), [B1€ I(R"), §; as in (79). Compute K,oo[x] from (71) with any
mix] =X R" and any nonsingular C & B, and let

[z] = C([6] ~ [4]%), [0] =] — C{A]X[x] — ).
I {Kpalxlh Clxd for i=1,...,n then

%4z +9,<minS; <% 42, +9, (80)

4%+, <max S <& + 5 + 5, (81)

Le., d[0) is a measure for the overestimation of § by Kialx].

Proof. The left inequality of (80) and the right inequality of (81) follow directly from Remark 3(b).
In order to prove the two remaining inequalities note that the interval [z;] is the interval arithmetic
evaluation of the function f:R™*" — R which is defined by f(4,5)=(C(b—A4%)).. In f(4,b) each
variable occurs only once. Therefore, Theorem 2 implies

J(AL1b]) = R(f:[41.[b]), (82)
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i.e., there are some A* €[4), b €[b] such that z,= f(4",b*). From (78) for x* =(4")"'»" €S and
with & = ({ ~ CA")(x* — %) we get

minS; <x! =%, +z, + 0 £X; +z, + 9,

which shows the right inequality of {80). The left inequality of (81) is proved analogously. Ul

Remark 4. Let (75) holds with C being the inverse of the center of [4] and let X be a good
approximation of some clement of S. Assume that d[4], d[b] are small and that (75) holds for
some [x] with m[x] = %€ [x]. Then d[z] = [C(d[b] + d[4}X) can be expected to be small and from

[6] = [CI[ - 4d[4), LdAIIx] - %) = [C[ - LalA], dA])][x] - ),

we get d[0] < Cld[4]d[x]. Hence if d[x] is also small (which can be expected if some 4 € [4] is not
ill-conditioned) then d[d] is quadratically small, i.e., d[6] <€ d|z]. This indicates a small overestimation
of § by Kealx]. B _ ‘ ~

If, in fact, at least d[5)<d[z] holds then z + 6 <2+ § and [x]™ = ¥, ] =X+ [z + 6,7+ 9] is
an interval vector which satisfies min S, <x™ é.fi.“‘ <max S; for i = 1,...,n. Such a vector is called
an inner enclosure of § by Rump [84]. If an inner enclosure of § is known one can estimate the
quality of an enclosure (in the set-theoretical sense) of § in a straightforward way. Inner enclosures
and related topics are considered for instance in [84,87].

Now we address to the symmetric solution set S, from (65), i.e., we are interested in linear
systems Ax = b with symmetric matrices 4 € [4] € [{R"). For simplicity, we assume

(4] =[4]". (83)
Otherwise the subsequent resuits hold for the largest interval matrix which is contained in {4] and
which has property (83).

Trivially, Sy is a subset of S. Its shape is even more complicated than that of §: Curved
boundaries can occur as the following theorem indicates.

Theorem 17. Let Sy be defined for a given nonsingular interval matrix [A] = [A]" € I{*") and
a given interval vector [b]€ I(R"). Then for any closed orthant O CR* the set S, N O can
he represented as the intersection of finitely many closed sets whose boundaries are guadrics or
hyperplanes. These sets can be described by inequalities which result, e.g., from a Fourier—-Motzkin
climination process.

The proof of this theorem can be found in [15], corresponding properties on classes of matrices
with more general dependencies in [16,17]. For the Fourier-Motzkin elimination see, for instance,
[85].

We want to enclose S, by an inferval vector. Trivially, each method for enclosing S delivers
such a vector. But the symmetric solution set often contains much less elements than S. Therefore, it
is useful to look for methods which enclose S, but not necessarily S. Such a method is the interval
Cholesky method which is defined by applying formally the formulas of the Cholesky method to
the interval data [A]=[4]" and []. It produces an interval vector which we denote by ICh([4L[b)).
In the algorithm the squares and the square roots are defined via (4). We assume that no division
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by an interval occurs which contains zero. If {[4]) is an M matrix with g, > 0 for i=1,...,n then

ICh([A], [b]) exists. This was shown in [19] where the interval version of the Cholesky method was
introduced and studied in detail. See also [21].

Another method to enclose S, was considered by Jansson in [41]. He starts with a modification
of Kpea[x] from (71): Let
Kma[x] = m[x] + [z]*" + (I — C[4])[x] — m[x]), (84)
where [z]®7 = ([z]"™) € I(R") is defined by

[z = Z"‘u([bj} — [a;}(m{x]);) — ZZ(%‘(”‘{I] )+ ca{mlx]); )[a};f-
fual

el fasl

Iterate analogously to (72) with K'7[x] replacing Kea[x]. Since by the same reasoning as above
Theorems 15 and 16 hold with S, [z] being replaced by Sy, [2]77.

6. The algebraic eigenvalue problem and related topics

In this section we look for intervals [A] €I(R) and interval vectors [x] € {R") such that [}]
contains an eigenvalue 2* € R and [x] contains an associated eigenvector x* € B\ {0} for a given
matrix 4 € R*". We restrict ourselves only to real eigenpairs. Complex ones have also been studied;
cf. [56,57], e.g., for an overview.

We start with the mild nonlinear equation

—_ Ax — Ax
Jx.2)= =0, (85)

where iy is a fixed index from {1....,n} and & 3 0 is a constant. It is obvious that (x*,4*) is a
solution of (R5) if and only if (x*,4%) is an eigenpair of 4 with the normalization x; = x of the
cigenvector x*. Expanding f into a Taylor series at an approximation (£, /) of (x*,2") yields to

. A, X\ [Ax A2 Ax _
X, A)= X, A) T — - '
- (eh})) )'1‘ 0 ( AL ) 0 ) (86}

where Ax =x ~ %, Ad =4 — 4, I; is the k x k& identity matrix and ¢’ is the i;th column of 7.
Multiplying (86) by a preconditioning matrix —C € R"* V"1 and adding ((Ax)",A%)" on both
sides results in the fixed point equation

Ax R . A-A, —-i-Ax Ax
A =9g(Ax A = ~CfR A+ Ly~ C , i (87)
Al (ehn}}T 0 Al

1s due to Rump [81].
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Theorem 18. Let AcR™, 1R, £ R, Ce R0 and define g by (87). Let X be normal-
ized by %, = a # 0. If g fulfills the inclusion
([ Ax], [A2) € int([Ax]", [AL]) (88)
then the foilowing assertions hold:
{a) C is nonsingular.
(b) There exists exactly one eigenvecior x” € X + [Ax] of A which is normalized by x; = 2.
(¢) There exists exactly one eigenvalue i* € /. 4+ [AZ] of A.
(d) Ax* = A*x* with x* from (b) and i* from (c).
(¢} The cigenvalue A° from (d) is geometric simple.

() If (£.2) is a sufficiently good approximation of the eigenpair (x*.2") from (d) then it can be
guaranteed that .° is algebraic simple.
(g) If one starts the iteration

[Ax]! .
([-_\,:;]f**) =g([Ax],[AAT), k=0,1,..., (89)
with

([Ax]", [A4) = ([Ax).[A])
from (88) then the irerates converge satisfving

(A AL Y CA)F. [AA), k=0,1,...
and

("2 € FA) + (AL (AT, k=01,
Sfor the eigenpair (x*,4") from (d).

Interval quantities [x]. [4] with (88) can be found, e.g., via &-inflation; cf. [58] or [59]. Another
way was indicated in [6] by the following theorem.

Theorem 19. With the notations of Theorem 18 define

IBETEPIAY | A~ -3
2 = ,C' i G = IH"?'E - o » = |§Ci|<"‘- (90)
i 0 - Cad 0/l
and assume
ag<l, A=(1=g)y=4pr>0 {91)

Then the munbers

- pw HeY = 20
B =(1 -0 —V4)/(21) T

B*=(1 -6 +VA)/(21)

are nonnegative, and the condition (88) of Theorem 18 is fulfilled for ([Ax]",[A/]) =~ B.Ble €
IR0+ soith arbitrary Be (B~ B%). In particular, all the assertions of that theorem hold
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If B is restricted to (B~ . (B~ + B7)/2) then the iterates of (89) converge to the error {‘ij I3

In [58] it is shown how (87) can be reduced to an n-dimensional problem which, originally, formed
the starting point in [6]. It is also indicated there how (87) has to be modified if the normalization
x; =« is replaced by ||x"{|; = L.

A second method for enclosing eigenpairs starts with the centered form

e 1) = 115 Ty A-11, —-F-Ax) {Ax
flx, A= f(X,A)+ (T ; L

1t is obvious that the subdivision principle discussed in Section 3 can be applied to any initial domain
([x1°,1/]°) chosen by the user. The crucial problem remains to verify that 0 € f([x], [i}) yields to
F{x",A")=0 in a subdomain ([£],[4]) S(x]°,[A]°).

A third method is due to H. Behnke and F. Goerisch. It assumes A4 to be symmetric and is based
on a complementary variational principle. For details see, ¢.g., [23, Section 6], and the references
there.

Symmetric matrices can also be handled by an access due to Lohner [54]. First 4 is reduced to
nearly diagonal form using Jacobi rotations and a sort of staggered correction. Finally Gershgorin's
theorem is applied in order to obtain bounds for the eigenvalues. A theorem due to Wilkinson allows
the enclosure of eigenvectors.

There is no problem to generalize the ideas above to the generalized eigenvalue problem Ax =
AiBx, x # 0, B B"™" nonsingular. The analogue of (83) reads

Ax — )-.Bx)

Xy — &

Flx, A) == (

In a similar way one can treat the singular value problem for a given m x n matrix 4 with
m>=n. Here, we look for orthogonal matrices U € R, ¥ € R™"” and for a diagonal matrix X =
diag(ay,...,0,....,0, 1€ R with the singular values 6, 26:2 -+ 26, > 6,4 =0=--- =0, r=
rank(A4), such that 4 = ¥XU". One starts with

Au — ov
Awu —~ oo .
= A'v—-o'u
f(u,v,6)=1] A'v — ou or with  f{uv,6,6) = .
" wu—1
TR |
o1

In the first case a zero of f satisfies v'v = 1, in the second one gets ¢ = o', In ecither of the cases
u is a column of I/, v a corresponding column of ¥ and ¢ a singular value of 4 associated with u
and v. For details, additional remarks and references to further methods for verifying and enclosing
singular values see [7,57].

We also mention verification methods in [14] for generalized singular values (¢”,s") of a given
matrix pair (4,B8), 4€R?**, B R?", which are defined as the zeros of the function f(c,s) =

det(s"A™4 — ¢*B'B) restricted to ¢, s 20, ¢* +s* = 1. For applications of generalized singular values
see [33].
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The methods and results of the Sections 4-6 can be combined in order to study the following
inverse eigenvalue problem:

Given n+ 1 symmetric matrices 4; € B, i=0,1,...,n. Find » real numbers ¢, i==1,...,n, such
that the matrix A(c) =4y + >, ¢, ¢ = (¢, ) ERY, has for ¢ = ¢" = (¢} ) prescribed cigenvalues
<A< < (92)

Here one starts with the function f(c)=i(c)~ A" € R, ¢ sufficiently close to ¢*, where the compo-
nents A(c) of i{c) are the eigenvalues of 4(c) ordered increasingly, and where A" = (4) is defined
with (92). One can show that the equation for Newton’s method reads
(FEN 4G = )= ~(Uc") = 2, (93)
x'(c*) are the eigenvectors of 4(c¢*) associated with the eigenvalues J(¢*) and normalized by
(M) X)) =1, sign(x (¢*)) =1 for some fixed index iy€{1,...,n}.
In a first step approximations of x'(¢*), 4(c*) are computed for i = 1,....n. With these values
Eq. (93) is formed and solved. This is done for k =0,1,... up to some 4. In a second step the

verification process is performed using the interval Newton method and results from Section 6 which
are generalized from point matrices to interval matrices. For details see [10,20] or {57].

7. Ordinary differential equations

Many contributions fo verification numerics refer to initial value problems for ordinary differential
equations

Y= f(y), (%94)

y(xe) = )", (95)
where we assume that f:D CR" — R is sufficiently smooth and that (94) has a unique solution
in some given interval [x;,x + 71 for any initial value »° € [y*]1C D. For ease of presentation we
choose (94) to be autonomous. This is not a severe restriction since any nonautonomous initial value
preblem can be reduced to an autonomous one by introducing the additional component y,..; =x, the
additional differential equation y;,, =1 and the additional initial value y,. (xy)=37,, =x,. We shall
use a grid xp < xy < - < xp <0 < xp=xy+ T with grid points x; and stepsizes by =xp. — X 10

be determined later on, and we shall consider (94) with initial values y(x;) from some intermediate
interval vectors {*]. To this end we introduce the set

o x, YD = {00 ¥ = f(¥), yix) € ¥} (96)

of all solutions of (94) with initial values in [3*]. In the sequel, we shall need the following auxiliary
result.

Theorem 20. If [¥] + [0, /([F])C[3] for [ from (94) and some h >0, [F)C{$|CD, then
Y Z PN CIP] for all x€ [, %+ h).

Proof. For fixed &[] apply Banach’s fixed point theorem to the Picard-Lindeldf operator (7u){(x)=
7 ~I|~f_\: Flu{z))de, to the set U={ujue COl%,E+h] and u(x) € [¥] for x € [£, £+ 4]} and to the metric
i = maxecreron {6 | u(x) [} with any 2> || [0/([F/] [l
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One of the most popular methods for verifying and enclosing solutions of initial value problems
is known as interval Taylor series method. It goes back to R.E. Moore and was modified in various
ways — cf., for instance, [30,53], and overviews in [26,66,80]. In order to describe this method
we assume that we know the grid point x; < xx and an enclosure [3*] of y(xi:xo,[¥°]). Such an
enclosure is given for £ = 0. The method consists of two major steps:

In the first step a new stepsize s, > 0 and a rough a priori enclosure [ ] is computed such that

yx;x, VD CM for all x € [xy, i + il (97)

To this end let [$*] be any vector which contains [y*] in its interior and choose /; > 0 so small that
F1+10, A1 (F D C [$]. Then (97) is guaranteed by Theorem 20. With A, we know x;., =x, +h;,
and from (97) with x = x;,, we see that [§*] is a candidate for [y**'].

In the second step of the method this candidate is improved in the following way: consider any
particular solution y* of (94) with y*(x;)€ [*]. Using (94) and the Taylor expansion of y* at x;
we get for a fixed peNand i=x—x,

Yx)=glh, y (x)) + rp(h, y7) (98)
with
2 i
Wby =y + 3 =g, gty =

jal

e fOF J 222

and with the remainder term r,(h, y*)€h?*' f t7+1([$*]). Throughout this section we assume that
the Taylor coefficients fU)(y*(x;)) exist. They can be computed recursively by means of automatic
differentiation which is described, e.g., in [34] or [76]. Obviously,

¥ 20, YD € 905 20, D S WA IF D) + 1P ] for x Sx S (99)

By virtue of diy(h:,[y*]) =4d[)*] the right expression in (99) with A= A, seems not yet to be suited
as a good candidate for [y**'] since its diameter dominates d[v*]. Therefore, we represent y(k, y)
as centered form

Wik y) = (b 5) + {HZM{; 7 7Y )}(y~ ) (100)
H
Hd - Weli
eyh,7) + {wzwii‘%@}(m—m (101)
J=1 ‘

where v.7 ¢ [1*] and where J(y,z; f) is defined as J(y,z) in (29) using the third argument as
underlying function. With y* as in (98} and

F i ) )
S =1+ HJO 751, (102)

[5.] Mmz,e cZh(t8)}

5 (103)
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(7] = e, 3 + R D) (104)

for k =0,1,...,K ~ 1 we therefore get
¥ (er) = Ylhe, 7 + rplhe, y*) + S107 () = 7) (105)
e+ S0 - 7). (106)

The partial derivatives in (101) and (103) can again be computed using automatic differentiation or
by differentiating the code list of fV!. Formula (105) represents the basis for most variants of the
interval Taylor series method as long as they differ in their second step. Obviously,

}’(xkl—l-;x{)s [y ]) g ,V{xt,lsxt-[}" ]) c [—*‘H] + {Sk}({}’t} == .;-’k)! {107)

so that the right expression is a candidate for [**'], this time with 4[v**']<d[*] being possible.
The successive constrmtion of [3**1] via (106) is called mean value method. Since 0€ [S;}([H*] -
), we get [# '] C[»*'']. Therefore, we can assume for the succeeding interval [x;.;,x;2] that
e[y in (100) is chosen from {y‘t 1] — preferably its midpoint — which justifies our notation.

Unfortunately, y(x;.1:x;,[)*]) is not necessarily an interval vector. Therefore, [y**'] can overes-
timate this set and, consequently, (xz:1; 0. [¥°]). This phenomenon which occurs at each grid point
xi. k > 0, is called wrapping effect. Its existence is an intrinsic feature of interval arithmetic and
does not depend on the particular method. Its size, however, is strongly influenced by the choice of
the method. In order to reduce this size the original mean value method often has to be modified.
If 7, > 0 is small and p is large one can expect that the second summand [S;J([»*] ~ ) in (106)
contributes most to the wrapping effect. It can be influenced by preconditioning with a regular matrix
Ay € R™" which vields to the fnilowina variant of the mean value method:

» Choose 7 €[] and let [P} =[1°] - §°, 4o =1 e R,
Fork=0,1,....K —~ 1 do the foﬂowmg steps:

e Compute {S} [7*'] as in (103), (104).

e Choose 7**' e [#*].

s Choose 4;., < R™" {regular) as described below.
® Compuie

A = {4 ISP T + A (T - 7, {108)
[/ =[5+ ([Sd40)1) (109)
Before we consider particular choices of matrices 4, we prove an analogue of {107).

Theorem 21. Let ¥, [#), AL [ 4; be defined for k=0,1,....K as in the preceding variant

of the mean value method and let, formally, x_, =xy, [y~ '1=[°). Then for k=0,1,....K we get

Yxsxe-L DN E D] (110)

AT () = 7)€ ] for any solution y* of (94) with y*(xe.) €[V ). (111
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Proof. The assertion is true for k =0 by the definition of x_,, [y~'] and by 4, = /. Let it hold
for some k¥ < K and let y* be a solution of (94) with y*(x;) € [»*]. From (105), (111) and (109)
we get

Y Eea) T+ SO0 = 7)) = 1+ 44T O () - 7)) (112)

CHF* 1+ S0 = (113)

hence (110) follows for &+ 1. Since (112) implies y*(x.1) — FH e [#H - F +8: () - 7)
we obtain

AT @) = P € 4L - T + AR Si 44T O () - 7))

C A =D + QLS4 = 1],
where we used (111) and (108). T

An easy induction shows that one can retrieve the mean value method from its variant above if
Ayl for k=0, 0K

If Ap.y € [Silde then 1€ 4.0 ,([Si M), and (4, [S:]4:)[7*] = [#*] can be expected if 4, is not
ill-conditioned (cf. {66, p. 32]). Therefore, the wrapping effect should not lead to large overesti-
mations in this case. Unfortunately, 4, 1s not always well-conditioned. So, other choices for 4,
become important. R. Lohner starts in [33] with Ape1 €[S:]4; and performs a QR-decomposition of
Ay (eventually after having permuted the columns of this matrix), i.e., Ayy; = QceiRi-;. Then he
chooses A;., == Q. which effects a rotation of the coordinate system. For details cf. {53] or [66].

We also mention variants due to Eijgenraam [30] and Rihm [80] and Lohner’s implementation
AWA. For further reading we recommend [66] in which an interval Hermite-Obreschkoff method is
considered, and [67] in which an enclosure method for the solution of linear ODEs with polynomial
coefficients is given.

Based on the preceding ideas boundary value problems can be handled via the well-known shooting
method as it was done in [53]. '

The stability of the Orr—Sommerfeld equation for different parameters was investigated in [S1] by
enclosure methods.

ODEs are closely related to integral equations. Therefore, it is interesting to ask for verified
enclosures of such equations and of definite integrals. Due to space limit, however, we must refer
the reader to the literature, for instance to [25,32,43] and to various contributions in [1].

8. Partial differential equations

Like the theory of partial differential equations the verification methods in this field are very
heterogeneous. As in many cases in the previous sections they are mostly based on fixed point
theorems and on particular function spaces. In order to give a taste of some ideas we outline a

method due to Plum [74] which applies for second order elliptic boundary value problems of the
form

~ Au+F(x,u,Vu)=0 in Q, {114}
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Blu]=0 on &Q, (115)

where QC R?*, n€ {2,3}, is a bounded domain whose boundary ¢Q is at least Lipschitz continuous.
The boundary operator B is defined by

u on I i3

Bluj=4 5
i gﬂ-vu on 80\ I’y
with Iy € éQ being closed and with v denoting the unit outward normal vector. The function F
is given by F:Q x R x R" — R with |F(x, »,2)|<C(1 + ||z||}) for some C>0 and all x€ 0,
yeR, lyl<a, z€R". We assume that F and its derivatives F, = 0F/0y, F, =(0F/éz,,...,0F/éz,),
are continuous.

square integrable functions) the boundary value problem —Au + 6u =r in Q is uniquely solvable

in HE =cl{ue C*(Q)| Blu] =0 on 3Q} where ‘cl’ means the closure in the Sobolev space H*(Q).
We start with a function w € H2() which can be thought to be an approximation of a solution

u* of {114), (115), although — at the moment — we do not know whether such a solution exists.
We will apply the operator L: H3(Q) — L*(Q) given by

Lil=-Au+b-Vu+cu b=F(,0,Vo), c=F(,0 Vo). (116)

In order to guarantee the invertibility of L needed later on we assume Vi € (L2} and we have
to check numerically that all eigenvalues of L on H}(Q) are nonzero. In addition, we suppose that,
for some Banach space X' 2 H2(Q) with some norm || - ||x:

(a) the function

@:{A - LY9Q),

(117)
#u o+ b Vu-dcu—F(.uVu)
is continuous, bounded on bounded sets, and Fréchet differentiable at @ with ¢'(») =0,
{b) the imbedding H}(Q) — X is compact.
As fixed point operator we choose the simplified Newton operator
Tu=u—F' () Fu) (118)

with F{u) = —Au + F{-,u. Vu), with the Fréchet derivative #’ of # and with ® as above. Since
F(w)=L and —Au = L{u]l — b- Vu — cu we obtain
Tu=u~L"[ - Au+F(u,Vu)]=L"b- Vu+cu~F(,u,Vu )] = L™ &(w)]. (119)

Due to our assumptions it can be shown that 7:X — X is continuous, compact and Fréchet dif-

ferentiable at @ with T'(w}= 0. If we can find some closed, bounded, convex function set U CX
such that

el (120)

then Schauder’s fixed point theorem guarantees the existence of some fixed point u* €U of T
which, by virtue of (119), is a solution of (114), (115). In order to construct U we first apply a
shift u — v=u — @ which yiclds t0 a set ¥ = U ~ « and which emphasizes the approximative
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character of . Moreover, it follows the lines of centered forms which we exploited successfully
already several times. From u” =Tu" and v* =u" —~ 0 €X we get

"= T — 0+ {T(w+v*) ~ Tw} = L7 - 8] + o(v")] (121
with
dlal=—Aw+ F,0, Vo),

o(v) = ~{F(, 0+ v,Vo+ V)~ F(,0,Vo)-b- Vv —cv} {122)
If we replace (120) by
L'~ dwl+ oM CV, {123)

then Schauder’s fixed point theorem applies again vielding to a fixed point ¢* such that &' =+ ¢’
is a solution of (114), (115). We now construct a closed, bounded, convex set ¥ which satisfies
{123). Since 77(x)=0 by definition of w, we have T{w+v)— T'{@)=T"(w)v]+o(llv]lx)=0o(llvile ),
hence, by virtue of (121}, ¢” can be expected to be small if @ is a good approximation of a solution
#* of {114), (113). Therefore, we assume V 1o be some small ball

Ve f{veX |y <a} o

with some 2 > 0. In [74] X is suggested to be the space H'4{Q) with the norm

Wull = mmx [l oo 711 Vel L} -
and with
Hudf, s {__,._,_1 ------- - ‘-L‘(X)!'ﬁdx}%f? ReRRea
P meas(R) Jo '

here and in the remaining part of this section. The constant y > 0 is adapted such that
L' Uy <K\rlls  for all r e L(Q) (126)
with a computable constant X > 0. Due 10 @'(w) = 0 we have

Ho(e)lh = ||P(w + v) — d{w)]

2= oflfelly) for [ullx ~ 0.
Let G:{0,00) — [0,00) be a majorizing monotonically nondecreasing fonction such that

Ho(e) <G(jvily) forallveX (127)
and

G{1y=o(t) fort-— +0. (128)
Such a function can be found explicitly via an ansatz according to the lines in [74]. The following

theorem is then crucial in view of (123).

Theorem 22. With the noration and the assumptions above let |[6[wlly <8 for some §> 0. If

B< ; ~ G(a), (129)
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then V from (124) satisfies (123), ie., there exists a solution u* & Hz(Q) of (114), (115) with
iU (Ql;,l{g\a.

The proof follows immediately from
L7 - 8] + o)y <KS[o)ll: + llo(o)]) SK(B + Gllellx)) <K(B + Gla)) <

for each v & V. Note that the right-hand side of (129) is positive for small «, hence (129} can be
fulfilled if w is a sufficiently good approximation of «* which makes the defect é[w] small. Some
care has to be taken when computing the constants for the inequalities. It is here, among others,
where interval arithmetic comes into play. For instance, in order to obtain the constant K in (126)
and to check the invertibility of L (on H3(£)) one has to verify 4; > 0 for the smallest eigenvalue
2y of the eigenvalue problem (in weak formulation)

ue HAQ), (LIl LIgD = Aluy)  for all e HAHQ
A } ¥ = Ll & b3 V, ‘?’( B

with {-,-) denoting the canonical inner product in L°(£2). By means of interval arithmetic one is able
to provide verified bounds for 4, and K. Details on the method including the computation of the
approximation @ via finite elements can be found in [74] and in papers cited there.

While Plum’s method can be characterized as an analytic one there are other methods for elliptic
differential equations which use intervals in a more direct way. Thus for the Dirichlet problem

....... ‘.:lu joe f{y} i .{?,
TR ] on 3&2,

Nakao {631 works with some set I/ which has the form

where $C Hi(Q2) is a finite-dimensional (finite element) subspace, $* is its orthogonal comple-
ment in ), {¢i...., ¢, + forms a basis of S and « is some constant which has to be determined
numerically.

We also mention verification methods for hyperbolic equations ~ ¢f. for instance [28,47] and the
literature there.

The investigation of old and the introduction of new ideas for the enclosure of solutions of
differential equations is still a very active part of research.

9. Software for interval arithmetic

Interval arithmetic has been implemented on many platforms and is supported by several pro-
gramming languages. The extended scientific computation (XSC) languages provide powerful tools
necessary for achieving high accuracy and reliability, They provide a large number of predefined
numerical data types and operations to deal with uncertain data.

PASCAL-XSC [46] is a general purpose programming language. Compared with PASCAL it
provides an extended set of mathematical functions that are available for the types real, complex,
interval and cinterval (complex interval) and delivers a result of maximum accuracy. Routines
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for solving numerical problems have been implemented in PASCAL-XSC. PASCAL-XSC systems
are available for personal computers, workstations, mainframes and supercomputers.

Similar remarks hold for the languages C-XSC [45] and FORTRAN-XSC [89].

ACRITH-XSC [40] is an extension of FORTRAN 77. It was developed in a joint project between
IBM/Germany and the Institute of Applied Mathematics of the University of Karlsruhe (U. Kulisch).
Unfortunately, it can be used only on machines with IBM/370 architecture that operates under the
VMCMS operating system. It is a FORTRAN like programing library. Its features are dynamic arrays,
subarrays, interval and vector arithmetic and problem solving routines for mathematical problems with
verified results.

In the last section of the paper [50] one can find a general discussion of the availability of the
necessary arithmetic for automatic result verification in hardware and suitable programming support.
A detailed information of latest developments in the group of U. Kulisch can be found under
http://www.uni~karlsruhe.de/” iam.

Via http://interval.usl.edu/kearfott one can get an overview on software written in the
Computer Science Department of the University of South Louisiana, Lafayette, under the guidance
of R. Baker Kearfott. Here is a short outline of available software:

e INTBIS (FORTRAN 77 code to find all solutions to polynomial systems of equations),

e INTLIB (ACM TOMS Algorithm 737 — A FORTRAN 77 library for interval arithmetic and for
rigorous bounds on the ranges of standard functions),

o INTERVAL ARITHMETIC (A FORTRAN 77 module that uses INTLIB to define an interval
data type).

Programmer’s Runtime Optimized Fast Library (PROFIL) developed at the Technical University of
Hamburg-Harburg (S.M. Rump) is a2 C-++ class library which has available usual real operations
and the corresponding ones for intervals. Presently, the following data types are supported: int,
real, interval, vectors and matrices for these types and complex numbers. For more details see
http://www.ti3.tu-harburg.de/Software/PROFIL.html.

Recently, Rump announced the availability of an interval arithmetic package for MATLAB, calied

“INTLAB — A MATLAB library for interval arithmetic routines”. Elements (toolboxes) of INTLAB
are

e arithmetic operations for real and complex intervals, vectors and matrices over those, including
sparse matrices,

rigorous (real) standard functions,

automatic differentiation including interval data,

automatic slopes including interval data,

multiple precision including interval data,

rigorous input and output,

some sample verification routines.

e & € e ¢ ©

All INTLAB code is written in MATLAB for best portability. There is exactly one exception to that
statement, that is one assembly language routine for switching the rounding mode of the processor
(provided for some hardware platform).

Major objective of INTLAB is speed and ease of use. The first is achieved by a special concept
for arithmetic routines, the second by the operator concept in MATLAB,
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INTLAB code is easy to read and to write, almost as a specification. INTLAB is available for
WINDOWS and UNIX systems, prerequisite is MATLAB Version 5. For more details and down-
loading see http://www.ti3.tu-harburg.de/rump/intlab/.
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