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1. Introduction

In this paper we start in section 2 with an introduction to the basic facts of
interval arithmetic: We introduce the arithmetic operations, explain how the
range of a given function can be included and discuss the problem of overesti-
mation of the range. Finally we demonstrate how range inclusion (of the first
deriva.tive of a given function) can be used to compute zeros by a so-called en-
closure method.
An enclosure method usually starts with an interval vector which contains a
solution and improves this inclusion iteratively. The quest ion which has to be
discussed is under what conditions is the sequence of including interval vectors
convergent to the solution. This will be discussed in section 3 for so-called
Newton-like enclosure methods. An interesting feature of inclusion methods is
that they cau also be used to prove tha.t there exists no solution in an interval
vector. It will be shown that this proof needs only few steps if the test vector
has already a small enough diameter. In the last section we demonstrate how
for a given nonlinear system a. test vector cau be constructed which will very
likely contain a solution.
A very important point is, of course, the fact that all these ideas can be per-
formed in a safe way (especially with respect to rounding errors) on a computer.
We can not go into auy details in this pa.per and refer instead to the survey paper
[14] by U. Kulisch and W. Miranker .
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2. On Computing the Range of Real Functions by Interval Arithmetic
Tools

Let [al = [al,a2],b = [bI, b2] be real intervals and * one of the basic opera-
tions 'addition', 'subtraction', 'multiplication' and 'division', respectively, that
is * E {+, -, x, /}. Then we define the correspondingoperations for intervals
[al and [b]by

[a]*[b]={a*b I aE[a],bE[b]}, (1)

where we assume 0 1:.[b]in case of division.

It is easy to prove that the set I(IR} of real intervals is dosed with respect to
these operations. What is even more important is the fact that [al* [b]can be
represented by using only the bounds of [a]and [bJ.
The following rules hold:

[al+ [b] = [al + bl, a2 + b2],

[al- [b] = [al - b2, a2 - bd ,

[al X [b] = [min{albl,alb2,a2bl,a2b2},max{albl,alb2,a2bt,a2b2}].

Ir we define
1

{

I

[b] = b I b E [b]}
if 0 1:. [bl,

then
1

[a]/[b]= [al x [b].

From (1) it follows immediately that the introduced operations for intervals are
inc1usion monotone in the following sense:

[al ~ [cl , [b] ~ [d]=> [al * [b] ~ [c]* [d] . (2)

Ir we have given a rational function (that is a polynomial or a quotient of two
polynomials), and a fixed interval [x], and if we take an x E [x] then, applying
indusion monotonicity repeatedly, we obtain

x E [x) => f(x) E f([x)). (3)

Here f([x)) denotes the interval which one obtains by replacing the real variable
x by the interval [~] and evaluating this expression following the rules of interval
arithmetic. From (3) it follows that

RU; [x))~ f([x)) (4)

where RU; [x)) denotes the range of f over [x]. f([x]) is usually called (an)
interval arithmetic evaluation of f over [x].
(4) is the fundamental property on which nearly a11applications of interval arith-
metic are based. It is important to stress what (4) rea11yis delivering: Without
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any further assumptions is it possible to compute lower and upper bounds for
the range over an interval by using only the bounds of the given interval.
The concept of interval arithmetic evaluation can by generalized to more general
functions withüut principal difficulties.

EXAMPLE 1.

Consider the rational function

x
J(x)= I-x ,

x:f:l

and the interval [x]=[2,3]. It is easy to see that

R(f; [x]) = [-2,-~]
J([x)) = [-3, -1] ,

which confirms (4).
For x -# 0 we can rewrite J(x) as

1
J(x) = 1 - 1 'x

x-#O,x#1

and replacing x by the interval [2,3] we get

1

[
I - = -2 3

!2.3J - 1 '-2] =RU; [x]).
0

Fromthis exampleit is dear that the quality ofthe interval arithmetic evaluation
asan enclosure of the range ofJover an interval [x] is strongly dependent on
how the expression for J(x) is written. In order to measure this quality we
introduce the so-called Hausdorff distance between intervals:

Let [a] = [al, a2] , [b] = [bl, b2], then

q([a], [bJ) = max {laI - bII, la2 - b21} .

Furthermore we use

d[a] = a2 - aI

and calld[a] diameter of [a].

How large is the overestimation of R(f; [x])by J([x]) ?
This question is answered by the following
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THEOREM 1. (MOORE[17})

Let there be given a continuous function f : D C IR and assume that the interval
arithmetic evaluation exists tor all [x} ~ [%Jo ~ D. Then

q(R(f; [x)),f«(x])) :s; I' d[x}, I ~ 0,
df([x]) :s; 5. d[xJ, 5 ~ o.

0

We do not discuss here which functions are aUowed in order that the inter-
val. arithmetic evaluation exists. The theorem states that if it exists then the

Hausdorff distance between R(f; [x)) and f([x]) goes linearly to zero with the
diameter d[x]. Similarly the diameter of the interval arithmetic evaluation goes
linearly to zero if d(x] is approaching zero.
On the other hand we have seen in the second part of Example 1 that lUx)) may
be dependent on the expression which ia used for computing f([x]). Therefore
the following qUe8tiou is natural:
Is it possible to rearrange the variables of the given function expression in such
a manner that the interval arithmetic evaluation gives higher than linear order
of convergence to the range of values?
We consider first the simple example

EXAMPLE 2.

Letf(x)=x-x2, xE[O,l]=[x]o.
It is easy to see that for 0 :s; r:S; ! and [x] = [! - r,! + rJ wehave

[1 2 1]R(f; [x]) = 4 - r , 4

and

f([x]) = [~ - 2r - r2, ~ + 2r - r2] .
From this it follows

q(R(f; [x]), (f([x])) :s; I .d[x] with I = I,

and

d f([x]) :s; 0 .d[x] with 5=2

in agreement with Theorem 1.
If we rewrite f(x) as

z - x2= ~ - (x - ~) (x - ~)
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and plug in the interval [x]= [~ - r, ~ + r] on the right hand side then we get
the interval [~ - r2, ~ + r2) which, of course, includes R(f; [x]) again, and

q (R(f;[X]), [~ - "r2,~ + r2]) =r2 = ~(d[X])2.

Hence the distance between R(f; [x]) and the enclosure interval a - r2, i + r2)
goes quadratically to zero with the diameter of [x]. 0

The preceding example is an illustration for the following general result.

THEOREM 2 (The centered form)

Let the function f : JR -+ JR be represented in the 'centered form'

J(x) = J(z) + (x - z). h(x) (5)

for same z E [x] ~ D. 1f we define

f([x]) := J(z) + ([x] - z) . h((x])

then

and
a) RU; (x]) ~ J((x])

b) q(R(f; [x]),f([x])) ~ K' (d[x])2, K > 0 . 0

b) is called ' quadratic approximation property' of the centered form. For rational
functions it is not difficult to find a centered form. See [21],for example.
After having introduced the centered form it is natural to ask if there are forms
which deliver higher than quadratic order of approximation of the range. Un-
fortunatly this is not the case as has been shown recently by P. Hertling [11].
See also [18].
Nevertheless in special cases one can use so-called generalized centered forms to
get higher order approximations of the range. See [8],e.g. . Another interesting
idea which uses a so-called 'remainder form of f' was introduced by Cornelius
and Lohner [10].
In passing we note that the principal results presented up to this point also hold
for functions of several variables.

As a simple example for the demonstration how the ideas of interval arithmetic
can be applied we consider the following problem:
Let there be given a differentiable function f : D C JR -+ JR and an interval
[x]O~ D for which the interval arithmetic evaluation of the derivative exists
and does not contain zero: 0 f- f'([x]O). We want to check whether there exists
a zero x' in (x]O,and ifit exists we want to compute it by producing a sequence
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of int-ervals containing x* with the property that the lower and upper bounds

are converging to x*, (Of course, checking the existence is easy in this case by
evaluating the function at the end points of [x]o. However, the idea following
works also for systems of equations. This will be shown in the next section).

For [x]~ [x]o we introduce the so-called Interval-Newton-Operator

N[x] =m[x]- f(m(x))'" Ir 1\ , m[x] E [x] , (6)

and consider the following iteration method

[X)k+l = N[x)k n [x]k , k = 0,1,2,..., (7)

which is called Interval-Newton-Method.
The properties of the method are described in the following result.

THEOREM 3.

Under the above assumptions the foltowing hold for (7) :

a) x* E [x]O,f(x*) = 0 ~ {[x]k} :-0 is welt defined, x* E [x]k, lim [x]k =X*.- k-oo

If dJ'([x]) :sc. d[x], [x] ~ [x]O, then d[x]k+l :sI (d[x]k)2.

b) N[x]ko n [x]ko= 0 ( empty set) for some ko 2: 0 iff fex) =I 0, x E [x]O, 0

Hence, in case a), the diameters are converging quadratically to zero. On the
other hand, if the method (7) breaks down because of empty intersection af-
ter a finite number of steps then it is proved that there exists no zero of f in
[x]o. From a practical point of view it would be interesting to have qualitiative
knowledge about the size of ko in this case. This will be discussed in the next
section in a more general setting.

3. Enclosing Solutions of Nonlinear Systems by Newton-like Methods

At the end of the last section we introduced the so-called Interval-Newton-

Method for a single equation. In order that we can introduce this and similar
methods for systems of simultaneous equations we have to discuss some basic
facts about interval matrices and linear equations with intervals as coefficients.
For a more general discussion of this subject we refer to [6J, especially chapter
10.

An interval matrix is an array with intervals as elements. Operations between
interval matrices are defined in the usual manner,
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If [A] = ([aij]) and [B] = ([bij]) are inter val matrices and if C = (Ci) is areal
vector then

[A]([B]c) ~ ([A][B])c. (8)

This was proved in [22], p. 15. Ir; however, cis equal to one of the unit vectors
ei then

[A]([B]ei) = ([A][B])ei . (9)

Assume now that we have given an n by n interval matrix [A] = ([aij]) which
contains no singular matrix and an interval vector [b] = ([bd). By applying
formal1y the formulas of the Gaussian algorithm we compute an interval vector
[x] = ([xd) for which the relation

{x=A-1b I AE[A],bE[b]}~[x]

holds. See [6], section 15, for example. Here we assumed that no division by an
interval which contains zero occurs in the elimination process. Some sufficient

conditions for this are contained in [6]. See also [15]. It is an open question
to find necessary and sufficient conditions for the feasibility of the Gaussian
elimination process in the case of an interval matrix.
Subsequently we denote by

IGA([A], [b])

the result of the Gaussian algorithm applied to the interval matrix [A] and the
right hand side [b], whereas

IGA([A])

is the interval matrix whose i-th column is obtained as IGA([A], ei) where ei
denotes the i-th unit vector again. In other words: IGA([A)) is an enclosure for
the inverses of all matrices A E [A].

NOW,let there be given a mapping

f : [x] C D C JRn -t JRn (10)

and assume that the partial derivatives of fexist in D and are continuous. If
y E Ix] is fixed then

f(x) - f(y) = J(x) . (x - y), xE D, (11)

where

J(x) =11 J'(y + t(x - y)}dt, x E [x]. (12)

Note that J is a continuous mapping of x for fixed y. Since t E [0,1] we have
y + t(x - y) E [x] and therefore

J(x) E J'([x]) (13)

where f' ([x]) denotes the interval arithmetic evaluation of the J acobian of f.
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In analogy to (6) we introduce the Interval-Newton-Operator N[xJ. Suppose
that m[x] E [x] is areal vector. Then

N[x] =m[x]- IGA(j'([xJ), I(m[x))). (14)

The lnterval-Newton-Method is defined by

[X]I:+l= N[xt n [xJI:, k = 0,1,2, . . . (15)

Analogously to Theorem 3 we have the following result.

THEOREM 4.

Let there be given an interval vector [xJo and a continuously differentiable map-

ping I : [xJo C D ~ JRn -+ JRn and assume that the interval arithmetic eval-
uation J'([x]O) 01 the Jacobian exists. Assume that IGA(J'([x]) exists (which
is identical to assuming that the Gaussian algorithm is Jeasible Jor J'([xJO»).

Assume that p(A) < 1 (p denotes the spectral radius oJ the matrix A) where

A = II - IGA(J'([xJO». j'([x]o)l. (16)

(1 denotes the identity. The absolute value oJ an interval matrix, say [HJ =
([hijJ), is defined elementwise by ![HJI= (Ihij 1). For a single interval [hJ =
[h1, h2J we define l[hJl = max{lhd, Ih21}).

a) If I has a (necessarilyunique) zero x' in [x]Othen the sequence {[x]1:}k=O
defined by (15) is we// defined, x' E [xJI:and lim [xlI:= x'.I:-+oo
Moreover, iJ

d J'([xJ)jj :S C .IId[x] I! , c ~ 0, 1 :S i, j :S n , (17)

Jor [xJ ~ [xJo (where d[x] is areal vecior which is obtained by Jorming

componentwise the diameter) then

IId[x]I:+lll :S "tlld[x]kI!2 , 'Y ~ O. (18)

b) N[xJko n [x]ko= 0 ( emptyset) Jor same ko ~ 0 iff J(x) =1= 0, x E [xJo.

0

Note that in contrast to the onedimensional case we need the condition (16).
Becauseof continuity reasonsthiscondition alwaysholds if the diameter d[x]O

of the given interval vector ('starting interval') is componentwise small enough
(and if J'([xJO) contains no singular matrix) since because of Theorem 1 we
have A = 0 in the limit case d[x]O =O. H. Schwandt [22) has discussed a simple

example in the case p(A) ~ 1 which shows that for a certain interval vector (15)

is feasible, x. E [xJI:,but lim [xlI:f. x..1:-+00
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In case a) of the preceding theorem we have by (18) quadratic convergence of
the diameters of the enclosing intervals to the zero vector. This is the same
favorable behaviour as it is weIl known for the usual Newton-Method. If there

is no solution x' of fex) =0 in [x]o this can be detected by applying (18) until
the intersection becomes empty for some ko. From a practical point of view it is
important that ko is not big in general. Under natural conditions it can really
be proved that ko is small if the diameter of [xJois smalI:

Note that a given interval vector [x] = ([xd) can be represented by two real
vectors xl and x2 which have as its components the lower and upper bounds
of [Xi], respectively. Similarly we also write {x] = ([Xi)) = {xl, x2J and N[x] =
[nI, n2J for the Interval-Newton-Operator (14). Now it is easy to prove that

N[x] n [x]=0

iff for at least one component io either

(n2 - xl)io < 0 (19)

or

(x2-nl ) . <0.
to

Furthermore it can be shown that

(20)

X2 - nl :s 0 (lId[x]112)+ A2f(x2) (21)

and

n2 - xl :s 0 (lId[x]W) - Al f(xl) (22)

provided (17) holds. Here Aland A 2 are two real matrices contained in

IGA(f'([x]O)) and 0 (lId[x]W) denotes areal vector whose components all have

theorder OOld[x]W). Furthermore if fex) :/; 0, x E [x], then for sufficiently
small diameter d[x] there is at least one io E {I, 2, . . ., n} such that

(AI.f(xl))iO :/;0 (23)

and

sign (Al. f(xl))io = sign (A2. f(x2))io . (24)

. Assurne now: that sign (AI . f(xl)). = 1. Then for sufficiently small diameterto

d[x] we have (n2 - Xl) io < 0 by (22) and by (19) the intersection becomes
empty. If sign(AI . f(xl ))io = -1 then by (21) we obtain x2 - nl < 0 for suffi..,
ciently small d[x] and by (20) the intersection becomes again empty.

If N[x]kon [x]ko= 0 for some ko then the Interval-Newton-Method breaks down

and we speak of divergence of this method. Because of the terms OOld[x]!12)
in (21) and (22) we can say that in the case fex) # 0, x E [xJo, the Interval-
Newton-Method is quadratical/y divergent.
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We demonstrate this behaviour by a simple onedimensional example.

EXAMPLE 3.

Consider the polynomial

fex) =x5 + X4 - llx3 - 3x2+ 18x

which has only simple real zeros contained in the interval [xJo = [-5, 6J. Hence
(7) can not be performed since 0 E f'([xJO). Using a modification ofthe Interval-
Newton-Method described already in [3]one can compute disjoint subintervals of

[x]Ofor which the interval arithmetic evaluation does not contain zero. Hence (7)
can be performed for each of these intervals. If such a subinterval contains a zero
then a) of Theorem 3 holds, o~herwise b) is true. The following table contains
the intervals which were obtained by applying the generalized Interval-Newton-
Method until 0 ri.J'([xJ)for all computed subintervals of [x]O(for simplicity we
only give three digits in the mantissa).

0
TABLE 1.

TABLE 2.

The subintervals which do not contain a zero of f are marked by a star in
Table 2. The number in the second line exhibits the number of steps until the
intersection becomes empty. For n = 9 we have a diameter of approx. 2.75,
which is not smalI, and after only 3 steps the intersection becomes empty. The
intervals n = 1,2,3,6,8 each contain a zero of f. In the second line the num-
ber of steps are given which have to be performed unti! the lower and upper
bound can be no longer improved on the computer. These numbers confirm the

1 {-0.356 X 101; -0.293 X 101]
2 [-0.141 X 101; -0.870]
3 [-0.977 ; 0.499J
4 [0.501; 0.633]
5 [0.140 x 101; 0.185 X 101]
6 [0.188 X 101 ; 0.212 X 101]
7 [0.265 X 101j 0.269 X 101]
8 [0.297 X 101 ; 0.325 x 101J
9 [0.327 x 101; 0.600 X 101]

n 1 2 3 4* 5* 6 7* 8 9*
5 6 9 1 2 6 1 5 3
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quadratic convergence of the diameters of the enclosing intervals. (For n = 3
the enclosed zero is x" =0 and we are in the underflow range). 0

For more details concerning the speed of divergence see [4].

The Interval-Newton-Method has the big disadvantage that even if the interval
arithmetic evaluation f'([x]O) of the Jacobian containa no singular matrix its
feasibility ia not guaranteed, 1GA (J'([x]O),f(m[x)O)) can in general only be
computed if d[xJois sufficientlysmall. For this reason Krawczyk [12]had the
idea to introduce a mapping which today is called the Krawczyk-Operator:
Assurne again that a mapping (10) with the corresponding properties is given.
Then analogouslyto (14) we consider the so-called K rawczyk-Operator

K[x] =mIx] - C . J(m[x)) + (I - c. J'([x))) ([x]- mIx]) (25)

where C is a nonsingular real matrix. If we choose C = m (f' «(x]))-1 (= the
inverse of the center of the interval arithmetic evaluation of the Jacobian) and
mIx] as thecenter of [x]then for the so-calledKrawczyk-Method

(X]k+1 = K[x]k n [x]k , k=0,l,2,... (26)

the same result as formulated for the lnterval-Newton-Method in Theorem 4
holds.

PROOF.

a) By (11) we have

f(x") - J(m[x]) = J(m[x])(x" - mIx])

and since f( x") = 0 it follows

x" = mIx] - C . J(m[x)) + (I - C . J(m[x]))(x" - mIx])

E mIx] - C . J(m[x]) + (I - C . J'([x]))([x]- mIx])
= K[x].

Hence if x" E [x]Othen x" E K[x)O and therefore x" E K(x]O n [x]O = (xp.
Mathematical induction proves x" E [x]k , k ~ O.

For the diameters of the sequence {(x]kHo=owe have

S d K[xt

S 11- Ck . l' «(x]k)1d(xt

S 11- 1GA(J'([x)k)) . 1'«(x)k)1 d[x)k

S A. d(x]k

where A is defined by (16). Because of p(A) < 1 we have lim d[x]k=0 andk-=
since x" E [x)k it follows lim [x]k = x". The prooffor the quadratic convergencek-=

d[X]k+1
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behaviour (18) follows from

d[X]k+1 :::; 11 - Ck . 1'([x]k)1d[x]k

:::; ICkl'IC;l - 1'([x]k)1d[x]k

:::; 11GA(f'([x]O»I'I1'([x]k) - 1'([x]k)1 d[x]k

- 11GA(f'([x]O»I.d 1'([x]k) . d[x]k

by using (17).

b) Assurne now that K[x]kon [x]ko= 0 for some ko ~ O. Then f(x) =f. 0
for x E [x]Osince if f(x*) = 0 for some x* E [x]Othen Krawczyk's method is
weIl defined and x* E [xJk , k ~ O.
If on the other hand f(x) =f. 0 and N[x]kn [x]k =f. 0 then {[x]k} is weIldefined.
Because of p(A) < 1 we have d[x]k -+ 0 and since we have a nested sequence
it follows lim [x]k = x E IRn. Since the Krawczyk-Operatoris continuous andk-+oo
since the same holds for forming intersections we obtain by passing to infinity
in (26)

x = Kxnx=Kx
- x - 1'(x)-lf(x).

From this it follows that f( x) =0 in contrast to the assumption that f( x) =f. 0
for x E [xjD.
This completes the proof of Theorem 4 for the Krawczyk-Method. 0

In case b) of the Theorem 4, that is if K[x]ko n [x]ko= 0 for some ko, we speak
again of divergence (of the Krawczyk-Method). Similar as for the Interval-
Newton-Method ko is small if the diameter of [x]Ois smalI. This will be demon-
strated subsequently.

As for the Interval-Newton-Operator we can represent K[x] using two real vec-
tors k1 and k2 and we write K[x] = [k1,k2].NowK[x]n [x]=0 iff

(X2 - k1)io < 0 (27)

or

(k2 - xl )io < 0 (28)

for at least one io E {I, 2,..., n}. (Compare with (19) and (20».
We first prove that for K[x] defined by (25) we have the vector inequalities

X2 - k1 :::; (j (IId(x]112) + C. f(x2) (29)

and

k2 - xl S;0 Old[x]1I2)- C. f(xl) (30)
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where Ix] = [xl, x2] and 0 (lId[x]W)denotes areal vector with components all
of order 0 (lId[x]W).
We prove (29). Let f'((x]) =(ff, fiJ where ff, f~ are real matrices. If ~(ff + f~)
is nonsingular then we set .

1
(

' '
)
-1

C := 2" fl + f2 .

An easy computation shows that

I - C . f' ([x]) = C; ; f; )-1 [f; ; f; , f; ; f;]

and therefore

K(x] = mIx] - C. f(m(x]) + (
ff + f~)

-l

[

ff - f~ f~ - ff
]

. d[x]
22' 2 2'

Hence

k 2 1

(f
' + f

'

)
-1

f
' ,

- x = m[xJ - xl - C. f(m[x]) + 1 2 2 . 2; f1 . d~x]

x2 - xl
= - c. f(m[x]) + (j Old[x]W)

where we have used (17).
Choosing y := xl in (11) we have

fex) - f(x1) = J(x). (x - xl)

where now

J(x) = 11 f'(xl + tex - x1)dt, x E [x].

For x = mIx] we therefore have

(31)

f(m[x]) - f(x1) = J(m[x]). (m[x] - xl)

where J(m[x]) is defined by (31). It follows that

k2 - Xl = ~d[x] - C . f(X1) - C. J(m[x]) . d[x] + 0 Old[x]W)2 2

= ~(I - c . J(m[x])) - C . f(X1) + 0 (IId[X]jj2).

Since

1- C. J(m(x]) = C (C-1 - J(m[x]))

E IGA(f'([x])). (f'([x]) - f'((x]))
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the assertion follows by applying (17).
The second inequality can be shown in the same manner, hence (29) and (30)
are proved.

If fex) -I- 0, x E [xJ and d[xJ is sufficiently smaIl, then there exists an io E
{1,2,...,n} such that

(C. f(x1))io i= 0 (32)

and
sign(C. f(x2))io = sign(C. f(x1))io . (33)

This can be seen as folIows: Since Xl E [x]we have f(x1) #- 0 and since C is
nonsingular it follows that C . f(x1) i= 0 and therefore (C . f(x1 ))io i= 0 for at
least one io E {I, 2,.. " n} which proves(32). Using again (11) with y = xl we
have

fex) - f(xl) = l(x). (x - xl), x E [x]

where

1 (x) = 11 f' (X I + t (x - Xl)) dt ,

By choosing x = x2 we have

x E [xJ . (34)

f(X2) - f(xl) = 1(x2) . (x2 - xl)

where 1(x2) is defined by (34). It foIlows

C . f(x2) =C . f(xl) + C. 1(x2) . (x2 - xl) .

Since the second term on the right hand side approaches zero if d[xJ -+ 0 we
have (33) for sufficiently small diameter d[xJ.
Using (29), (30) together with (32) and (33) we can now show that for suffi-
ciently small diameters of [xJ the intersection K[xJ n [x]becomes empty. See the
analogous conclusions for the Interval-Newton-Method using (23), (24) together
with (21) and (22). By the same motivation as for the Interval-Newton-Method
we denote this behaviour as 'quadratic divergence' of the Krawczyk-Method.

It is important that either using the Interval-Newton-Operator or the Krawczyk-
Operator one can also prove the existence of a solution of f(x) =0 in a given
interval vector. We formulate this fact as a theorem.

THEOREM '5.

Let f : D ~ IRn -+ IRn be a continuously differentiable mapping and assume

that the interval arithmetic evaluation f'([x}) of the lacobian exists for some
interval vector [xJ C D.
a) Suppose that the Gaussian algorithm is feasible for f' ([x]) and assume

y - IGA (f'([xJ), f(y)) ~ [x]
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where y E [x) is fixed. Then f has a unique zero x' in [x].
b) Suppose that C is a nonsingular matrix and assume

y - C. f(y) + CI- C. f'([x])) . ([x] - y) ~ [x)

for some fixed y E [x). Then f has a zero x' in [x).

PROOF.

a) Since the Gaussian algorithm is feasible it follows that J'([x]) contains no
singular matrices.
For fixed y E (x] we consider the equation (11) and J(x) defined by (12). J(x)
is nonsingular because of (13).
Now consider the mapping

p: [x] ~ D ~ ]Rn- ]Rn

where
p( x) = X - J (x) -1 f( x)

and y E [x] is fixed.

It follows, using the assumption,

p(x) = X - J(X)-l f(y) + J(X)-l(f(y) - fex))
= y - J(x )-1f(y)
E y - IGA (f'([x]), f(y))
~ [X], X E [X) .

Hence the continuous mapping p maps the nonempty convex and compact set
[x] into itself. Therefore, by the Brouwer fixed point theorem it has a fixed point
x. in [x) from which it follows that f has a solution in [x). The uniqueness fol-
lowsfrom the fact that J'([x]) contains no singular matrices.

b) Consider for the nonsingular matrix C the continuous mapping

q : [x) ~ D ~ ]Rn- ]Rn
defined by

q(x)=x-C.f(x),

It follows, using the assumption,

xE ]R.

q(x) = x-C.f(x)

= X - C. (f(x) - f(y)) - C. f(y)

= y + (X - y) - C. J(x) . (X- y) - C . f(y)
E y - C. f(y) + (1 - c. f' ([X))) . ([x] - y)

~ [x], X E [x] .
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By the same reasoning as before it follows f(x*) = 0 for some x* E [xJ. 0

REMARK

It is easy to show that in case a) of the preceding theorem the unique zero
of x* is even in y - IGA(J'([xJ), f(y» and in case b) all zeros x* of f in [xJ are
even in y - C . f(y) + (I - C. !,([x])). ([x] - y).

4. Verification of Solutions of Nonlinear Systems

The result of the last theorem in the preceding section can be used in a system-
atic manner for verifying the existence of a solution of a nonlinear system in an
interval vector. Besides of the existence of a solution also componentwise error-
bounds are delivered by such an interval vector. We are now going to discuss
how such an interval vector can be constructed.

For a nonlinear mapping f : D C }Rn -+ }Rn we consider Newton's method

xl:+1 = xl: - t'(xl:)-I f(xl:) , k = 0, 1,... (35)

The Newton-Kantorowich theorem gives sufficient conditions for the conver-
gence of Newton's method starting at xo. Furthermore it contains an error esti-
mation. A simple discussion ofthis estimation in conjunction with the quadratic
convergence property (18) which we have also proved for the Krawczyk-Method
will lead us to a test interval which can be computed using only iterates of
Newton's method.

THEOREM 6. (See (19], Theorem 12.6.2)

Ass1lme that f : D ~ }Rn -+}Rn is differentiable in the ball {x I !Ix - xOIl :S r}
and that

IIf'(x) - t'(y)1I ::; Lllx - yll

for all x,y from this ball. Suppose that f'(xO)-1 aists and that 1I!,(xO)-IIl:S
Bo. Let

tlxl - xOIl=ilf'(xOt1 . f(xO)1I :S 1]0

and assume that

1

ho = B01]oL ::; 2 '

1
- /1 -2ho < r.V 1]0-

ro = ho

Then the Newton iterates are well defined, remain in the ball {x lUx - xOU:S ro}

and converge to a solution x* of f( x) = 0 which is unique in D n {x IlIx - xOIl <
rl }where

1+ -/1 - 2ho
rl = ho 1]0
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provided r 2: rl. Moreover the error estimate

I\x. - xkl\~. 2k1_1(2ho)2k_17JO,k 2: 0
(36)

holds. 0

Since ho ~ ~, the error estimate (36) (for k = 0,1 and the oo-norm) leads
to

IIx. - xOI.loo

!Ix" - xllloo

~ 27Jo = 2!1x1 - xOlloo

< 2ho7Jo ~ 7Jo = Ilxl - xOlloo.

This suggests a simple construction of an interval vector containing the solution
x.. The situation is illustrated in Figure 1.

,-----
I I J
I t I
I I I
I I I"
I x 0 I 1 Ix

r ~ -i
I

x01
I
I

7Jo

..L-----

7Jo

...... '"

27Jo

Figure 1: Error estimates (36) for k = 1 and the (X)-norm
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If xO is dose enough to the solution x' then xl is much doser to x. than
xO since Newton)s method is quadratically convergent. The same holds if we
choose any vector (f. x*) from the ball {x IHx ~ x11100 ~ 1]0} as starting vector
for Newton)s method. Because of (18) and since x. E K[xJ it is reasonable to
assurne that

K[x) =xl - J'(xO)-l. f(x1) + (I - J'(XO)-l . J'([xJ)). ([x]- xl) ~ [x)

for
[x]= {x 1I1x - xlii 00 ~ 1]0} . (37)

The important point is that this test interval [x) can be computed without
knowing BQ and L. Of course alI the preceding arguments are based on the as-
sumption that the hypothesis of the Newton-Kantorowich theorem is satisfied,
which may not be the case if xOis far away from x' .
We try to overcome this difficulty by performing first a certain number of New-
ton steps until we are dose enough to a solution x. of f(x) = O. Then we
compute the interval (37) and using the Krawczyk-Operator we test whether
this interval contains a solution. The question of when to terminate the New-
ton iteration is answered by the following considerations.
Our general assumption is that the Newton iterates are convergent to x'. For
ease of notation we set

[y) := XA:+l- J'(xk)-l f(xk+l) + (I - J'(xk)-l f([x)))([x) - xk+l).

where

[x) = {x E IRn IlIxk+l - xl!oo ~ 1]d ,

1fA: = Oxk+1 - Xk1100

(38)

for some fixed k. Our goal is to terminate Newton's method as soon as

IId[yJlloo < eps
Ilxk+llloo -

(39)

holds where eps is the machine precision of the floating point system. If x. E [x}
then x. E [y}so that for any y E [y] we have

[Ix. - ylloo < Hd[yJII .
Hx.lloo - Ilx.lloo

Since Ilx.lloo differs only slightly from IIxk+ll1ooif xk+l is near x', condition
(39) guarantees that the relative error with which any y E [y] approximates x.
is elose to machine precision. Using (17) it can be shown that

IIdJ'([x])lIoo~ L[ld[xJlloo
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and
IId(y)llce ~ 1I!,(Xk)-ll1ce . Llld(x]ll~

where L =max{L, L}, and sinee -11d[xJ 11ce = 2T}k the inequality (39) holds if

ki ll L- 2

Hf'(x)- lce Th ~ eps
4 11xk+111co

(40)

is true.
From Newton's method we have

Xk+l - xk = f'(xk)-I {f(xk) - f(xk-I) - f'(xk)-I(xk - xk-I)}

and by 3.2.12 in [19] it follows that

1Jk ~ ~H!,(xk)-ll1ooL1JLI'

Replaeing the inequality sign by equality in this relation and eliminating
111'(xk)-ll\ooL in (40) we get the followingstoping eriterion for Newton's method:

81J~

I1
k+1

11

2 ~ eps.
xoo1Jk-1

(41)

Of course this is not a mathematieal proof that if (41) is satisfied then the in-

terval [y) constructed as above will contain x* and that the vectors in (y) will
approximate x* with a relative error elose to eps. However as has been shown in
[5] the test based on the stopping eriterion (41) works extremely weHin practice.

The idea of this seetion has been generalized to nonsmooth mappings by X.
Chen [9].

A very important point is also the fact that for the verification of solutions
of nonlinear systems one ean often replace the interval arithmetie evaluation of
the J acobian by an interval arithmetic enelosure of the slope-matrix of f. In
this connection slopes have first been considered in [1]. See also [20].

Verification techniques have been applied to aseries of fundamental problems
by rewriting them as nonlinear systems. We mention the eigenvalue problem for
matrices, the singular value problem, the generalized eigenvalue problem and

the generalized singular value problem, e.g. . See (16] where one can find many
references.

Interval arithmetic can also be applied in a systematic manner to bound the
solution set of a given problem if the data are already contained in intervals.

An interesting question in this context is how the solution set looks like. A
couple of recent papers are concerned with the discussion of this question in the
case of a linear system with intervalentries. See [7], for example.
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