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Abstract. We present a eharaeterization of the solution set S, the symmetrie solution set Ssyrn,
the persymmetrie solution set Sper, and the skew-symmetrie solution set Sskew of real linear systems
Ax = b with the n x n eoefficient matrix A varying between a lower bound A and an upper bound
A, and with b similarly varying between Q, b. We show that in eaeh orthant the sets Ssyrn, Sper,
and Sskew are, respectively, the intersection of S with sets, the boundaries of whieh are quadrics.
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L Introduction. Let [A] be an n x n matrix with eompact intervals as entries,
let [b]be a vector with n interval eomponents, and let E be the n x n permutation ma-
trix with ones in the northeast-southwest diagonal and zeros elsewhere. The purpose
of this paper is to eharaeterize the solution sets

(1.1)

(1.2)

(1.3)

(1.4)

S:= {x E Rnl Ax = b, A E [A], bE [b]}, .

Ssym := {x E Rnl Ax = b, A = AT E [A] = [A]T, bE [b]},

Sper := {x E Rnl Ax = b, EA = (EA)T E E[A] = (E[A])T, bE [b]),

Sskew := {x E Rnl Ax = b, A = -AT E [A] = ([a]ij) = _[A]T,

[a]ii= 0 for i = 1, . . . ,n, b E [b]}

by means of inequalities which show that in each fixed orthant 0 the solution set S is

the intersection of finitely many half spaces, while Ssym n 0, Sper n 0, and Sskew no
are the intersection of sn 0 with finitely many sets, the boundaries of which are conie
sections in Rn. The eharacterization of Sn 0 was already given in [4], [5], [7], [11],
[12], and others while the characterization of Ssym n 0 in the two-dimensional ease
was derived in [4]. The teehnique there could not be transferred onto the general case
in an obvious way. It was ehanged in [2], [3]. We will use here a different technique
known as Fourier-Motzkin elimination, which is deseribed, e.g., in [14].
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Note that we require

{

no additional condition on [A] in the case of S,

(1 5) [A] = [AjT in the case of Ssym,. E[A]= (E[A])Tin the case of Spen

[A] = ([a]ij) = -[AjT with [a]ii= 0, i = 1,..., n in the case of Sskew'

The restrietions in (1.5) are not severe. If [A] =1= [AjT in the case of Ssym, e.g., and
if [B] denotes the largest interval matrix in [A] such that [B] = [B]T holds, then the
matrices in [A]\[B] do not influence Ssym' Therefore, instead of [A] the matrix [B]
would play the crucial role in characterizing S sym'

We emphasize that [A] is allowed to contain singular real matrices. The restriction
[a]ii = 0, i = 1,..., n in the case of Sskew stems from the fact that a skew-symmetric
matrix A = (aij) E Rnxn is defined by A = -AT which implies aii = 0 for i =
1, . . . , n. We also recall that this matrix is singular if n is odd. This can be seen from
detA = det(-AT) = det(-A) = (-I)ndetA. The condition EA = (EA)T for Sper
characterizes apersymmetrie matrix which is defined to be symmetrie with respect
to the northeast-southwest diagonal; cf. [6], e.g.

The sets in (1.1)-(1.4) occur when dealing with linear systems of equations, the
input data ofwhich are affiicted with tolerances (cf. [1], [10], ür [13], e.g.). This is the
case when data A, bare perturbed by errors caused, e.g., by measurements or by a
conversion from decimal to binary digits on a computer. Assume that these errors are
known to be bounded by some quantities LlA E Rnxn and Llb E Rn with nonnegative
entries. Then it seems reasonable to accept a vector X as the "correct" solution of
Ax = b if it is in fact the solution of a perturbed system Ax = bwith

A E [A] := [1 - LlA, 1 + LlA], bE [b] := [b - Llb, b + Llb].

The characterization of all such X led Oettli and Prager [11] to their famous equiva-
lence

(1.6) x E S ~ Ib- Ax I ::;LlAlx!+ Llb,

where lvi := (lvii) E Rn für V = (Vi) ERn. It relates the midpoint residual to
the tolerances and to lxi and was reformulated in [7] similarly as in the subsequent
Theorem 3.4. Often 1 belongs to a partieular dass of matrices with dependencies in
their entries. Such a dass is formed by symmetrie matriees, persymmetric matrices,
skew-symmetrie matrices, and others. Therefore, it is reasonable to consider subsets
of S for which the elements x are solutions of linear systems Ax = b with special
matrices A only. This leads to the problem discussed in this paper. Our results are
formulated in terms of inequalities involving the bounds of [A], [b]. They can easily
be reformulated using the midpoints A,band the tolerances LlA, Llb, although a
compact form such as (1.6) is still missing.

We also mention that the sets Ssym and Sskew were already considered in [8] and
[9]. There, bounds for the projections of these sets onto the coordinate axes were
derived but no characterization of these sets were given.

We have arranged our paper as follows. In section 2 we list the notation which

we will use throughout the paper; in section 3 we present the results. We dose Dur
paper with some examples in section 4 which illustrate the technique and the theory.



ON THE SHAPE OF THE SOLUTION SET 695

2. Preliminaries. By Rn, Rnxn, IR, IRn, and IRnxn we denote the set
of real vectors with n components, the set of real n x n matrices, the set of in-
tervals, the set of interval vectors with n components, and the set of n x n inter-
val matrices, respectively. By "interval" we always mean areal compact interval.
Interval vectors and interval matrices are vectors and matrices, respectively, with
interval entries. We write intervals in brackets with the exception of degenerate
intervals (so-called point intervals ), which we identify with the element being con-
tained, and we proceed similarly with interval vectors and interval matrices. We

write [A] = [A,A] = ([a]ij) = ([Qij,aij]) E IRnxn simultaneously, without further
reference, and we use an analogous notation for intervals and interval vectors. By [A]T
we mean the transposed matrix of [A]. We mention that [A] = [AjT is equivalent to

T - -T T -T - T
A = A and A = A and that [A] = -[A] is equivalent to A = -A and A = -A .
Therefore, if an interval matrix [A] fulfills the condition [A] = _[A]T, its midpoint

matrix A:= ~(A+A) satisfies A = _AT; i.e., Ais skew-symmetric. We call an n x n
interval matrix singular if it contains at least one singular real matrix; otherwise, we
call it regular. For computations with interval quantities we refer to [1] or [10].

By 0 we denote any closed orthant of Rn. To distinguish among the sets
S, Ssym, Spen and Sskew we call Ssym the symmetrie solution set, Sper the persym-
metrie solution set, and Sskew the skew-symmetrie solution set.

3. Results. We start trus section with a topological result wruch for S and Ssyrn
is already known (see [4]).

THEOREM 3.1. Let [A] E IRnxn be regular and satisfy (1.5).

(a) Eaeh ofthe sets Ssyrn, Spen Sskew, sno, SsyrnnO, Sperno, and SskewnO
is eompaet.

(b) Eaeh ofthe sets S, Ssyrn, Spen Sskew, and SnO is eonnected; SnO is eonvex.

Proof First, we prove the assertions for Sskew' Let A = -AT E [A] and interpret

x = A-lb as a function f of the n(n2-1) variables aij, 1 :s; i < j :s; n and the n
variables bi, 1 :s; i :S n. This function is continuous. Since [a]ij, [b]iare connected
and compact the same holds for the range Sskew of f.

The compactness of the intersection Sskew no follows from Sskew being compact
and from 0 being closed.

In the cases of S, Ssyrn, and Sper one proves the assertions by similar arguments.

The convexity of S n 0 results from the fact that trus set can be expressed as
the intersection of finitely many half spaces (cf. [11]or the subsequent Theorem 3.4,
e.g.). 0

Remark. If [A] is singular but contains no singular symmetrie matrix the proof
of Theorem 3.1 shows that Ssyrn remains compact and connected and that Ssym n 0
remains compact. An analogous statement holds for Sper, Sskew, Sper n 0, and
Sskew n O. For singular [A] the solution set S, however, is empty or unbounded since
the kernel of each singular matrix A E [A] is unbounded. Due to singularity, the
function f with f(A,b) := A-lb is certainly not defined on [A] x [b]. Trus already
indicates that the assertians of Theorem 3.1 may be wrong in the singular case. As
an illustration we consider the example

[A] := ( [-~, 1]

[-1,1]

)0 ' [b]:= ( ~) .
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Any real matrix A E [A] can be represented by

A= (~ ~)
with Ci, ß E [-1,1]. Hence A is regular with

A-1 = ( Ci~1 ß~1 )
provided that aß =1= O. We obtain

S = {(" b)T I, E R, -00 < b ~ -1 or 1 ~ b < oo},

Ssym = Sskew = {(O,b)TI - 00 < b ~ -1 or 1 ~ b < oo},

which shows that neither S nor Ssym nor Sskew is compact or connected in this
case. 0

Gur next theorem characterizes Sskew by a set of inequalities. Its proof starts
with

(3.1) xE Sskew ~ Q ~ Ax ~ b, A = -AT E [A],

transforms the inequalities in a suitable way by introducing new variables Zij, and
continues by applying the Fourier-Motzkin elimination (see [14], e.g.) to replace the

entries of A by their bounds Qij and o'ij, respectively.
THEOREM 3.2. Let [A] = -[Af E IRnxn with [a]ii = 0, i = 1,... ,n, and let

[b]E I Rn. Then for any orthant 0 ~ Rn the set Sskew n 0 can be represented as
an intersection of finitely many closed sets, the boundaries of which are quadries or
hyperplanes. The inequalities characterizirig these hyperplanes and quadries can be
derived from Q ~ Ax ~ b, A = -AT E [A], x E 0 by means of the Fourier-Motzkin
elimination.

Proof Step 1. Let (3.1) hold, fix an orthant 0, and defiue

Note that the values of aij, at, bi, bt are constant as long as X remains in the same
orthant and that they satisfy aij = -at and aii = afi = o. We first will see that
(3.1) is equivalent to

XES 1\ =:IZij ERsuch that

{

aijXiXj.~ ~ij- ~ .~tXiXj, ~,~ :: 1, . . . , n, i < j,z~J- zJ~' 2,J-1,...,n,
bixi ~ 2.:,7=1 Zij ~ btxi, i = 1,... ,no

(3.3)

Setting Zij := aijXiXj immediately shows that "(3.1) =} (3.3)." To prove the converse
we will construct A E Ilnxn such that A = -AT E [A] and Ax E [b]. Consider a nxed
index pair io, jo and defiue aiojo according to the following procedure.

{a..

if XiXj 2':0,
{o,..

if XiXj 2': 0,a...= -J a;. := J
J . o'ij if XiXj < 0, Ja.. if XiXj < 0,-J

(3.2)

{b.

if Xi 2':0,

b+ '= {bi
if Xi 2':0,

bi:= b: if Xi < 0, . b. if Xi < O.-
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Case 1: Xio = O. Since x E S by (3.3), there are real numbers aioj for j = 1, . . . ,n
such that

(3.4) a. . < a'!' . < (i. .-~oJ - ~oJ - ~oJ

and

(3.5)

n

Qio S L a:ojxj S bio'
j=l

If Xjo i= 0 then aiojo := aiojo =: -ajoio; if Xjo = 0 then aiojo := iiiojo with iiiojo being
the corresponding entry of the skew-symmetric midpoint matrix A E [A].

Case 2: Xio i= O. If Xjo i= 0 then aiojo := Ziojo ; if Xjo = 0 then aiojo is alreadyX'OX30

defined by the preceding case when the roles of io and jo are exchanged.
If one lets io run from 1 to n and if for each fixed io the second index in Ziojo

runs from 1 to n then by the procedure above a skew-symmetric matrix A E [A] is
constructed which satisfies (3.1). Note that in Case 1 of our procedure there may occur

several choices for the entries aioj such that (3.4) and (3.5) are valid. It is obvious
that in this case for a fixed io the entries of one and the same double inequality (3.5)
fiust be chosen for those jo = 1,..., n for which Xjo i= O. Together with the last

double inequality in (3.3), this guarantees QiS I:,;=l aijXj S bio
The condition "x E 8" in (3.3) is necessary, as the example A := 0 E RIXl,

b := 1 E R shows. Here, x = 0 E R is clearly not in S ;2 Sskew, but the remaining
conditions of (3.3) are fulfilled for Zn = O.

Step 2. By Zii = -Zii we obtain Zii = O. Therefore, we omit Zii in (3.3). We
now apply the Fourier-Motzkin elimination to (3.3). We illustrate this process by
eliminating Z12. To this end we replace Zij by -Zji for all i > j in the inequalities of
(3.3). We rewrite these inequalities and change their order by forming three groups:
the inequalities of the first group have the form. . . S Zl2 with zl2-free left-hand side,
the inequalities of the second group read Zl2 S . .. with zl2-free right-hand side, and
the inequalities ofthe third group do not contain Z12' Since the maximum over allleft-
hand sides of the inequalities of the first. group is less than or equal to the minimum
over all right-hand sides of the inequalities of the second group, these inequalities are
equivalent to requiring that each left-hand side of the first group be less than or equal
to each right-hand side of the second group while keeping all inequalities of the third
group. Omitting trivial inequalities, (3.3) is equivalent to

XES /\ :3 Zij ERsuch that

a12xlx2 S bTxl - I:,;=3 Zlj,

a12xI X2 S -b"2X2 + I:,;=3 Z2j,

b1xI - I:,;=3 Zlj S aT2xlx2,

b1Xl - I:,;=3 Zlj S -b"2 X2 + I:,;=3 Z2j,
b+ ~n +

- 2 X2 + L j=3 Z2j S a12xIX2,

-bt X2 + I:,;=3 Z2j S bTXl - I:,;=3Zlj,
remaining (in)equalities of (3.3),

(3.6)

where Zl2 and Z21 no longer occur. This process of eliminating Zij can be continued
until we end up with a set of final inequalities which (together with x E sn 0) is

equivalent to X E Sskew nO and which contains no variable Zij. This proves the
theorem. 0
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At the end of the elimination process, there are two special inequalities for each

i E {I,..., n} which can be divided by Xi =1= 0 such that no fractions occur. For
example, if the first inequality of (3.6) is combined successively with the inequalities

aljxlxj :::; Zlj one obtains the final inequality ~;=2 aljxlxj :::; bixI' Since all =
atl = 0 it can be supplemented to ~;=l aljxlxj :::;bixI, which reduces to

(3.7)

n

LaljXj :::; bl
j=l

if Xl > 0 and

n

LaijXj ~!h
j=l

if Xl < O.

From the third inequality of (3.6) one similarly obtains

(3.8)

n

LatXj ~ QI
j=l

if Xl > 0 and

n

""' + -
~ aljXj :::; bl
j=l

if Xl < O.

With

(3.9)
{

a..-ZJ

&::;:= aij

if Xj ~ 0,
ifxj<O,

aT: .-ZJ {
aij

Qij

if Xj ~ 0,
if Xj < 0,

the four inequalities in (3.7) and (3.8) can be summarized to

n

L aijxj :::;bl
j=l

and

n

LatXj ~ QI'
j=l

provided that Xl =1= O. Repeating the arguments, one finally gets

~;=l aijxj :::;bi,

}""~ I a-:f-.xJ. > b. ,uJ= ZJ - -z
(3.10) i = 1,. ..,n

if no component of X equals O. These inequalities are just those which characterize
Sand which are known as the Oettli-Prager theorem (cf. [11]), which we restate as
Theorem 3.4. They can either be omitted in the list of inequalities if "x E S" remains
there as in (3.6), or "x E S" can be cancelled when (3.10) is used instead. This last
remark also holds if some of the components of X are zero.

We also note that the number n# of final inequalities for Sskew n 0 seems to be
2,,+1

double exponential. Thus we could show that n# is roughly bounded by 8 . (~)
with K,:= n(n2+1).Since the arguments are a little bit clumsy and the proof is lengthy
we will skip it.

The same technique for Sskew can also be applied to construct a set of inequalities
which characterize Ssym provided that [A] = [AjT. To get the equivalence to "x E
Ssym" one must replace the equality in (3.1) by A = AT, and one uses Zij = Zji

in (3.3) instead of Zij = -Zji. Analogously to Theorem 3.2, we get the following
theorem.

THEOREM3.3. Let [A]= [AjTE IRnxn and let [b]E IRn. Then for any orthant
0 ~ Rn the set Ssym n 0 can be represented as an intersection of finitely many
closed sets, the boundaries of which are quadries or hyperplanes. The inequalities
characterizing these hyperplanes and quadries can be derived from the elimination
process described above or they are of the form Xi = O. 0

Theorem 3.3 can analogously be formulated for Sper since Ax = b ~ EAx = Eb,
whence Sper for A equals Ssym for EA = (EAf.
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The solution set for other classes of special matrices such as Hankel or Toeplitz
matrices shows particularities which essentially differ from those which we have pre-
sented up to now. Thus, the inequalities need no longer remain the same in a fixed
orthant and they cannot be treated by means of the particular variables Zij. Work in
this respect is in progress.

Inequalities (3.10) can also be obtained with the technique above if one starts
with

(3.11) XES

instead of x E Sskew' The conditions corresponding to (3.3) then read

(3.12) 3Zij ERsuch that
{

a:;;Xj :S Zij:S ai;Xj, i,j = 1,... ,n,
b; < "''':' z.. < -b. ,; - 1-. - L ,J=l tJ - t, . - ,..., n

with 0,;;, ai; from (3.9). To prove the implication "(3.12) =? (3.11)" set aij = ~: if
Xj =I-O. If Xj = 0 then any element from [a]ij can be used to construct a matrix A
such that Ax E [b]holds. It is easy to see that one ends up with inequalities (3.10) if
one performs the elimination process as above, starting with (3.12).

For completeness we state the result in a separate theorem.
THEOREM 3.4 (Oettli-Prager theorem [11]). Let [A] E IRnxn and let [b]E IRn.

Then for any orthant 0 ~ Rn the set Sn 0 can be represented as the intersection of
closed half spaces. These half spaces are given by

(3.13)
2::;=laijXj :Sbi, }"''':'

1 a+:XJ' > b. ,L ,J= tJ - -t
i -1,.. .,n

or

(3.14) Xi :S0 or Xi 2:0,

where the inequalities in (3.14) are used to characterize the orthant 0 and where

aij,ai; are defined in (3.9). 0

4. Examples. In this section we present several examples to illustrate the results
of section 3. In particular, we construct the inequalities for characterizing S, Ssym,
Sper, and S skew'

In our first example we consider 2 x 2 interval matrices.
Example 4.1.

(a) Let [A] E IR2x2, [b]E IR2. Then S is characterized according to (3.13) by
the inequalities

(4.1)
{

all Xl + a12x2 :S ~l'
0,21Xl + a22x2 :S b2,

A+ A+ > ban Xl + a12x2 - -11
h+ A+ > ba2l Xl + a22x2 - -2

with the coefficients according to (3.9).
(b) Let [A] = [AjT hold. The symmetrie solution set Ssym is described by the

four inequalities in (4.1) supplemented by the two inequalities

(4.2)
{

blx1 - btx2 - aiixI + a22x~ :S0,
-b7xl + b~X2+ allX!- a~2x~~ 0
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with the eoefficients from (3.2). These inequalities show that the boundary of Ssym
ean already be eurvilinear in the 2 x 2 ease.

(e) Let E[A] = (E[A])T hold. The persymmetrie solution set Sper is deseribed
by the four inequalities in (4.1) supplemented by the two inequalities in (4.2) if one
redefines a~, b; appropriately.

(d) Let [A] = _[A]T hold with [a]ii= 0 for i = 1,2. The skew-symmetriesolution
set S skew is given by the four inequalities in (4.1) with aii = at= 0 in addition to
the two inequalities

(4.3) bl Xl S; -b2x2, -btX2 S; biXl,

whieh follow directly from (3.6) taking into aeeount Zn = Z22 = O. The skew-
symmetrie solution set in R2 is apparently bounded by a polygon; Le., its boundary
is formed by straight lines. Taking into aeeount aii = at = 0, one sees immedi-
ately from (4.1) that the solution set S is an interval vector. This is not always the
ease for Sskew' For example, ehoose [b]:= (l,lf and [ah2 := [0.25,1]. Then any
skew-symmetric element A of [A] ean be wtitten in the form

A = a (
0 1

) = -a2A-l
-1 0 with 0.25 S; a S; 1.

Henee Sskew= {ß( -1,1 f 11 S;ß S; 4}; Le., Sskew is the straight line in the plane
between the points (-1, 1) and (-4,4). The eorresponding solution set S, however,
is given by

S = {( -ß, 'Y)T11 S;ß, 'YS;4} = ([-4, -1], [1,4]f. 0

In our seeond example we eonsider 3 x 3 tri diagonal interval matriees.
Example 4.2.

(a) Let [A] E IR3x3 with [a]13 = [ahl := 0, and let [b]E R3. Then S is
eharacterized by the inequalities

(4.4)
{

all Xl + a12X2 S; [)l,

a2lxl + a22X2+ a23x3 S; ~2'
a32x2 + a33x3 S; b3,

A+ A+ > ban Xl + a12x2 - -1'
A+ A+ A+ > ba2l Xl + a22x2 + a23x3 - -2'

A+ A+ > ba32x2 + a33x3 - ~,

where the coefficients are again given by (3.9).
(b) For tridiagonal 3 x 3 matrices [A] = [AjT the symmetrie solution set Ssym is

characterized by the six inequalities in (4.4) and by the four additional inequalities

(4.5)

{

b
-

b+ + 2 + - 2 + - < 0+ 1 Xl - 2 X2 - an Xl a22x2 a23x2X3 - ,
b

-
b+ b- + 2 - 2 + 2 < 0+ 1 Xl - 2 X2 + 3 X3 - an Xl + a22x2 - a33x3 - ,

+blXl - (+bt - b2)X2 - ail XI - ai2xlx2 - (+at2 - a22)x~ S; 0,
b

-
b+ + + 2 - 2 < 0+ 2 X2 - 3 X3 - a12xlX2 - a22x2 + a33x3 -

together with their four counterparts, which one gets by replacing eaeh minus sign
by a plus sign, and vice versa (also in the superseripts). The coefficients of (4.5) are
defiued in (3.2). Note that the information of the third inequality in (4.5) is eontained
in that of the first row of (4.4) if [bh and [ah2 are point intervals.

Without proof we mention that the number of inequalities for Ssym inereases to
44 for a dense 3 x 3 system.
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(c) The skew-symmetric solution set Sskew is characterized by (4.4) with iiii =
ii~ = 0 for i = 1, 2, 3 and by the inequalities

{

-bi Xl - biX2 +a23x2X3 ::s: 0,
+b1xl + b2x2 + b3x3 ::s:0,

+b1xl - (+bi - b2)X2 - ai2xlx2 ::s:0,
-bi X2 - bj X3 - ai2xlx2 ::s: 0

(4.6)

together with their four counterparts, which are defined analogously as for Ssym' The
inequalities in (4.6) look similar to those in (4.5) when taking into account [a]ii = 0
for i = 1, 2, 3. Again, the third inequality in (4.6) equals the first one in (4.4) if [b2]

is a point intervaL Note also that according to section 1 each skew-symmetric matrix
from R3x3 is singular! 0

In our third example we describe Sand Sskew in two different ways, a direct way
(feasible since there is only one nontrivial pair of intervals) and a second way where
we will apply the results of Example 4.2.

Example 4.3. Let

(

0 1

[A] := -1 0
0 [-1, -0.5] [O~,l]), (

[0,2]

)[b]:= ~1 .

Then [A]= -[AjT with [a]ii= 0, i = 1, 2,3. Each A E [A], bE [b]can be represented
as

A = ( ~1

1 0

)
0 a ,

-ß 0 b = ( ~1 )
with a, ß E [0.5,1], "1E [0,2]. The linear system Ax = b then reads

(4.7)

(4.8)

(4.9)

X2 = "1,

-Xl +aX3 = 0,

-ßX2 = -1.

(a) We first want to describe the solution set S. Equations (4.7) and (4.8) show
that X2 2: 0 and Sign(XlX3) 2: O. This means that only the first orthant 01 and the
sixth orthant 06 can contain elements of S, where 01 is characterized by Xi 2: 0, i =
1, 2, 3, and where 06 is given by Xl ::s:0, X2 2: 0, X3 ::s:O. By the first and the third
equation the system (4.7)-(4.9) is solvable if and only if ß'Y = 1. This is possible for
any ß E [0.5,1] since "1= ß-l E [1,2]~ [0,2].The solutioncan be rewritten as

(4.10) Xl = aX3, X2 = ß-l , X3 ER.

Für each fixed a, ß E [0.5,1] these equations represent, of course, a straight line which
lies in the plane X2 = ß-l E [1,2] and which crosses the x2-axis at (0, ß-l, 0). For
each fixed ß E [0.5,1] one thus gets a (double) sector in 01 U 06 which is bounded
by the straight lines Xl = 0.5X3 and Xl = X3 while X2 = ß-l. Varying ß results in
two wedges, the cutting edges of which have length 1 and meet at the x2-axis from
(0,1,0) to (0,2,0).

(b) To characterize Sskew let a = ß. From (4.10) we then obtain XlX2 = X3

with X2 E [1,2],Le., Sskewis the intersectionof S with the hyperbolicalparaboloid
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X3 = X,X, which transforms to Y3 ~ yl-y~ viaX, ~ Yl+y" X, = Yl -Y', X3 = Y3. In
particular, the boundary of S ,kew is curvilinear. Figure 1 shows sn 0, and S ,kewnO, .
The intersectiollS sn 06 and S ,k~ n 06 are obtahled by rotating the two sets around
the xz-axis by an amount of 1800 degrees.
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FlG. 4.1. The shape of the solution sets 81 := 8 n 01, 82 := 8skew n 01 in Example 4.3.

(c) We now want to describe S and S,kew in a sec<md way, naroely, by the in.
equalities resulting from (4.4) and (4.6). For simplicity we USOS c; 0, U 06, which
yieldsa; = 0.5 = -4" at = 1 = -a3" Inequalities (4.4) ca.nthen be written in
the form

(4.11)

(4.12)

(4.13)

0 ~ Xz ~ 2,
0.5X3~ Xl ~ X3,

1 ~ Xz ~ 2

if (Xl' x" X3) E 0" In 06 inequality (4.12) mllSt be replaced by X3 <; Xl<; 0.5X3'
Since (4.13) is more rcstrictive tlian (4.11) we ca.n omit (4.11). ThllS S is characterized
by (4.12) and (4.13).

Inequalities (4.6) and their counterparts yield to

(4.14)

(4.15)

(4.16)

(4.17)

b1xI S XZX3 S 2bixI,
b1xI S X3 S bixI,

blxl :S XlxZ :S b!Xl,
X3 = XIXZ

10\

7.5

x
3 5
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in 01; in 06 inequality (4.14) must be exchanged by 2b1xl :s: X2X3 :s: b[Xl' Dividing

(4.16) by Xl implies (4.11). Hence (4.16) can be omitted. Since (4.15) is identical
with (4.16) if (4.17) is used, we can skip (4.15) too. Replacing X3 in (4.14) by (4.17)
and dividing by Xl yields to 0 = Ql :s: X~ :s: 2bl :s: 4, which again is fulfilled if (4.11)
holds. Therefore, the inequalities for Sskew reduce in 01 to

1 :s: X2 :s: 2,

Xl :s: X3 :s: 2Xl,

X3 = XlX2,

which is equivalent to (4.10) when taking into account a = ß E [0.5,1]. The same
holds in 06 if the second double inequality is replaced by 2Xl :s: X3 :s:Xl' D

In our last example we consider a 2 x 2 interval matrix [A]which satisfies [A]=
[AV.

Example 4.4. Let

[A] := ( [0\]

Then [A] = [A]Twith

A = (
la

)E [A] ===? A-l = 1 ( 'Y a )ß -'Y 'Y+ aß ß -1

with a, ß E [0,1], 'YE [1,4]. Since Q 2: 0 the first component of A -lb is nonnegative
für all b E [b]. Therefore, S is completely contained in the union 01 U 04 of the first
and the fourth quadrants.

We first consider sn 01, According to (4.1) we get the inequalities

[0,1] )[-4,-1] , [b]:= ( [0,2] )[0,2] .

(4.18) Xl :s: 2, X2 2: -0.5, X2 2: -Xl, Xl 2: X2.

This means that Sn 01 is the triangle with the corners (0,0), (2,0), and (2,2).
The corresponding inequalities for Sn 04 are given by

(4.19) Xl 2: 0, X2 2:-2, X2 :s: 2 - XI, X2 :s: 0.25 Xl'

r

They describe a quadrangle with the corners (0,0), (0, -2), (4, -2), and (2,0).
To describe Ssym n 01 we need inequalities (4.18) and the two inequalities from

(4.2), which can be transform to

(4.20) 4xi + (4X2 + 1)2 2: 1, (Xl -1)2 + x~ :s: 1.

The first inequality of (4.20) describes an ellipse and its exterior. Since the ellipse lies
completely in the lower half plane the first inequality of (4.20) is no restriction for
Ssym n 01. The second inequality describes a closed disc Dl with center (1,0) and
radius 1. The boundary of the intersection with Sn 01 is formed by the straight line
from (0,0) to (1,1), the part of the circle äDl from (1,1) to (2,0), and the part of
the xl-axis from (2,0) back to (0,0).

The inequalities in (4.19) together with the two inequalities

(4.21) xi + 4x~ 2: 0, (Xl - 1)2+ (xz + 1)2 :s: 2

characterize Ssym n 04, The first inequality in (4.21) is always true. The second
inequality describes a disc D2 with center (1, -1) and radius ..j2. The boundary of
its intersection with Sn04 is formed by the straight lines from (0,0) to (0, -2), from
(0, -2) to (2, -2), and from (2,0) to (0,0), and by the part of the circle äDz from

(2,-2) to (2,0). The situation is illustratedby Pigure2. 0
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FIC. 4.2. The shape of the solution sets S, Ssym in Example 4.4.
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