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Two effiden! algorithms for enclosing a zero of a continuous function are presented. They are
similar to the recent methods. but together with quadratic interpolation they make essential use
of inverse cubic interpolation 38. weIl Since asymptotica1ly the inverse cubic interpo~ation is
always choSen by the algorithms. they achieve higher-efficiency indices: 1.6529... for the first
algorithm. and 1.6686... for the second one. It i8 proved that the second algorithm is optimal in
a certain family. Numerica1 experiments show that the two n~w methods compare well with
recent methods. as weil 88 with the efficient solvers of Dekker. Bren~ Bus and Dekker. arid Le.
The second method from the present artic1e has the best. behavior of all 12 methods especially
when the termination tolerance is sma1l .
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1. fNTRODUCTlON

In arecent paper, Alefeld and Potra [1992] proposed threeefficient methods
for enc10sing a simple zero' X* of a continuous function f. Starting with an

- initial enclosing interval [al' b~] = [a, b), the methods produce a sequence of
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328 G. E. Alefeld et al.

intervals {[an, bnJ}:-l' such that'

x. E [an+l,bn+d ~ [an,bn] ~ ... ~ [al,b1] = [a,b]

tim (bn - an) = O.
n-oo

(1)

(2)

The asymptotic effieieney indices of eaeh of the three methgds in the sense
of Ostrowski [1973] are 21/2 = 1.4142..., 41/3 = 1.5874..., and «3 +
(131/2»/2)1/3 = 1.4892..., respeetively. Subsequently, Alefeld et al. [1993]
improved the methods of Alefeld and Potra and obtained two new enclosing
methods having asymptotie efficieney indices (1 + (21/2»1/2 = 1.5537 and
(1 + (51/2»/2 = 1.6180..., respectively. The numerieal- experiments pre-
sen ted by Alefeld et al. show that the five methods mentioned above are
about as effieient as the equation solvers ofBrent [1972], Dekker [1969], and
Le [1985]. The seeond method in Alefeld et al. has the best behavior of aU
eight methods.

Although there are many enclosing met~ods for solving the equation

{(x) = 0, (3)

where { is eontinuous on [a, b] and has a simple zero x * in [a, b], most of
them do not have niee asymptotie eonvergenee properties of the diameters
{(bn - an)}:. l' Forexample, in ease ofDekker's method, the diameters bn - an
may remain greater than a relative large positive quantity until the last
iteration when a "&-step" is taken. In ease of Le's [1985] Algorithm LZ4, the
convergenee properties of{(bn - an)}:-1 have not been proved exeept that the
total number of function evaluations is bounded by four times of that needed
by the bisection method, which is also an upper bound for the number of
funetion evaluations required by the second method to be presented in this

. article. - -

Bus and Dekker [1975] published two improved versions ofDekker's [1969]
method and proved that the upper bounds of the number of function evalua-
tions are four or five times of that needed by the bisection method. However,
for those two methods, as weIl as for Brent's method, the lllinois method, the
Anderson-Björek method, Regula Falsi, Snyder's method, the Pegasus method,
and so on, only tl}e convergenee rate of {Ixn - X *U: - l' where x n is the
current estimate of x., has been studied and not the eonvergeneerate ofthe
diameters (b,. - an)' However, finding the rate of eonvergenee ofthe sequenee
of the diameters is extremely -important beeause in most algorithms for
solving nonlinear equations the stopping criterion iseonstrueted in terms of
the diameter of the enclosing interval. -

In ease { is eonvex on [a, b], the classieal Newton-Fourier method
[Ostrowski 1973, p. 248], Sehmidt's [1971] method and the methods of
Alefeld and Potra [1988] produee a sequenee of enclosing intervals whose
diameters are superlinearly eonvergent to zero. The highest asymptotie effi-
eiency index of those methods, 1.5537 . . . , is attained by a method of Sehmidt
and a slight modifieation of this method due -to Alefeld-Potra. The eonvexity
assumption was eventually removed in the methods of Alefeld and Potra
ACM Transactions on Mathematical Software. Vol. 21. No. 3. September 1995.
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[1992], and the methods of Alefeld et al. [1993]. The second method in Alefeld
et al. achieves the efficiency index (1 + (51/2»/2 = 1.6180... which was, up
to that moment, the highest efficiency index for a general nonlinear equation
solver with superlinear convergence of the diameters of the enclosing inter-
vals and without any convexity requirements on f. The methods of Alefeld
and Potra [1992]and Alefeld et a1. are based on "double-Iength secant steps"
and on appropriate use of quadratic interpolation and are briefly described in
the next section.

We propose two methods which further improve the methods of Alefeld et
al. [1992]. The improvements are achieved by employing inverse cubic inter-
polation instead of quadratic interpolation whenever possible. We show in
Section 5 that asymptotically the inverse cubic interpolations will always be
chosen by the algorithm. Our first method requires at most 3 while OUT
second method requires at most 4 function evaluations per iteration. Asymp-

. totically our first method requires only 2 and OUTsecond method only 3
function evaluations per iteration. For OUTfirst method, {(bn - an)J:-l con-
verges to zero with R-order at least 1 + (31/2) = 2.732..., while for OUT
second method {(bIJ- an)}:-l converges to zero with R-order at least 2 +
(71/2) = 4.646 Hence the corresponding efficiency indices are (1 +
(~1/2»1/2 = 1.6529... and (2 + (71/2»1/3= 1.6686..., respectively.We also
show that OUTsecond method is optimal in a certain class of algorithms.

Section 3 describes OUTsubroutine for inverse c~bic interpolation, and
Section 4 presents the major algorithms of this article. In Section 5 the
convergence results are proved, and in Section 6 numerical experiments are
presented. We compare the two methods of this article with the methods in
Alefeld and Potra [1992J and Alefeld et al. [1993J, with the methods of Brent
[1972] and Dekker [1969J which are used in many standard software pack-
ages, with the Algorithms M and R of Bus and Dekker [1975], and with the
Algorithm LZ4 orLe [1985]. The numerical results show that the two meth-
ods of the present article compare weIl with the other 10 methods. The second
method in this article has the best behavior among all methods especially
when the termination tolerance is smalI.

2. SOME RECENT ENCLOSING METHODS

In this section we briefly describe the recently developed enclosing algorithms
of Alefeld and Potra [1992] and their improvements proposed by Alefeld et al.
[1993] for enclosing a simple zero x * of a continuous function f in [a, b]
where f(a)f(b) < o. In all, there are three methods proposed in Alefeld and
Potra and two methods proposed in Alefeld et al. "Double-Iength secant step"
is used by al~ five methods, and quadratic interpolation techniques are
applied in all but the first method of Alefeld and Potra. In the present article
we call those methods Algorithms 2.1-2.5 and summarize their asymptotic
convergence properties in the following table, where NFM stands for "the
maximum number of function evaluations required per iteration," NFA for
"the number of function evaluations required asymptotically per iteration,"
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and AEI for "asymptotie effideney index" (the values of AEI are rounded to
the given number of digits).

We first list out two subroutines that are ealled by Algorithms 2.1-2.5 as
weIl as by Algorithms 4.1 and 4.2 in Section 4. We assume throughout that f
is eontinuous on [a, b] and that f(a)f(b) < O.We eonsider a pointe E (a, b).

Subroutine braeket(a, b, e, Ci,b) (or braeket(a, b, c, Ci,b, d»
Ir fee) = 0, then print c and stop;
Ir f(a)f(e) < 0, then Ci- a, b ...c, (d ... b);
Ir f(b)f(e) < 0, then Ci"'"c, b "'"b, (d ...a).

After calling the above subroutine, we will have a new interval [ä, b} C
[a, b] ~th f{ä)f(b) < O. Furthermore, if bracket(a, b, e, ä, b, d) is called,
then we will have a point d ~ [ä, b] such that if d < äthen f(ä)f(d) > 0;
otherwise f(d)f{b) > O.

Subroutine Newton-Quadratic{a, b, d, r, k)
Set A ...{[a, b, d], B = ([a,b];
Ir A ... 0, then r ... a - B-lf(a);
Ir Af(a) > 0, then ro ... a, else ro ... b;
For i = 1,2,..., k do:

P(ri-l)

ri ... ri-l - P'(ri-l)

B(ri-l)
= r. 1-

.- B+A(2ri-l-a-b)

(4)

r == rJc.

The above subroutine has a, b, d, and k as inputs and r as output. It is
assumed that d ~ [a, b] and that f(d)f(a) > 0 if d < a and f(d)f(b) > 0 if
d > b. k is a positive integer, and r is an approximation of the unique zer~ z
of the quadratie polynomial, .

P{x) = P{a, b, d)(x) = f(a) +([a, b](x - a) + ([a, b, d](x - a)(x - b)

in [a, b] where fra, b] = (f(b) - f(a»/(b - a), and fra, b, d] = (fr b, d] -
fra, b])/(d - a); note that P(a) = f(a) and P(b) = f(b). Hence P(a}P{b) < O.

The following five algorithms describe the methods in Alefeld and Potra
[1992] and Alefeld et a1. [1993], where J.1..< 1 is a positive parameter which is
usually chosen as J.1..= 0.5. .
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2.1 Method 1 ofAlefeld and Potra [1992) 3 2 1.4142
2.2 Method 2 of Alefeld and Potra (1992J 4 . 3 1.5874
2.3 Method 3 of Alefeldand Potra (1992] 3 3 1.4892
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2.5 Method 2 of Alefeld et al. [1993) 4 3 1.6180
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Algorithm 2.1 (Ale(eld and Pot:a [1992])

set al = a, b1 = b, ror n = 1,2, do:

2.1.1 cn = an :- ([an' bntl ((an);
2.1.2 call bracket(an, bn, cn, än, bn);
2.1.3 if If(än)1 < If(bn)l, then set un = än, else set Un = bn;
2.1.4 set cn = un - 2f[än, bn]-l{(un);
2.1.5 if ICn- uni> 0.5(bn - än),

then Cn= 0.5(bn + än), else cn = cn;
2.1.6 call bracket(än, bn, cn' an, bn);
2.1.7 if bn - an < p.(bn - an),

then an+ I = an' bn+l = bn,
else call bracket(an, bn, 0.5(an + bn), an+l, bn+l)'

Algorithm 2.2 (Ale(eld and Potra [1992D

set al = a,bl = b, for n = 1,2,... do:
2.2.1 cn = an - {[an' bn]-l {(an); .

.2.2.2 call bracket(an' bn, cn' an, bn);
2.2.3 cn = the unique zero of P(a,,, bn, cnXx) in [an' 1)n];
2.2.4call bracket(an' bn, Cn' än, bn);
2.2.5-2.2.9: same as 2.1.3-2.1.7.

Algorithm 2.3 (Alefeld and Potra [1992D

set al = a, bl = b, ror n = 1,2,... do:
2.3.1 cn = 0.5(an + bn);
2.3.2-2.3.6: same as 2.2.2-2.2.6;
2.3.7 call bracket(än, bn, cn' an+l' bn+l)'

Algorithm 2.4 (Alefeld et al. [1993])

2.4.1 set al = a, bl = b, Cl = al - {[al' bl]-! ((al);
2.4.2 call bracket(al' bl. Cl' a2, b2, d2);
For n = 2, 3, ..., do:

2.4.3 call Newton-Quadratic{an, bn, dn, cn, 2);
2.4.4 call bracket(an, bn, cn, än, bn, dn); .

2.4.5 if l{(än)1< If(bn>l,then set un = än, else set un = bn;
2.4.6 set cn = un - 2f[än,bn]-1{(ulI);
2.4.7 if ICn- uni> O.5(bn- än>,

then Crr-= 0.50>n + än>, else cn = cn;
2.4.8 call bracket(än, bn, cn, an, bn, dn);
2.4.9 if bn - an < p.(bn - an)'

then an+! = an, bn+l = bn, dn+l = dn
else call bracket(an, bn. 0'-5(an + bn), an+!, bn+l' dn+l)'
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Algorithm 2.5 (Ale(eld et al. [1993])

2.5.1-2.5.2: same as 2.4.1-2.4.2;
For n = 2, 3, ..., do:

2.5.3 caU Newton-Quadratic(a,p bn, dn, en, 2);
2.5.4 caU braeket(an, bn, en, än, bn, ein);
2.5.5 caU Newton-Quadratic{än, bn, ein, Cn,3);
2.5.6 caU bracket(än, bn, Cn,än, bn, dn);
2.5.7-2.5.11: same as 2.4.5-2.4.9.

3. A BASIC SUBROUTINE

In this section we describe a subroutine for approximating a zero of ( by
using the inverse cubic interpolation. This subroutine will be called by the
algorithms described in the next seetion. Assurne that ( is continuous on a
closed interval I, that ( has a zero in I, and that a~ b, e, d are four numbers
in 1. Ir f(a), (b), fee), and f(d) are four distinct values, then the inverse
interpolation polynomial at (a, (Ca»~,(b, f(b», (e, fee»~, and (d, (d» is given
by the formula

[P(y) =a + (y -{(a»[-I[f(a),f(b)]

+(y - f(a»(y - f(b»f-I[ f(a), f(b), f(c)] (5)

+(y - f(a»(y - f(b»(y - {(e»f-I[ f(a), {(b), ((c), f(d)],

where

{-Ir (Ca), f(b)] = b - a
,.,b) -: {(a) ,

f ~ I [{(a), ({b), {(e)] = {-I [{(b), {(e)] - {-I [{(a), {(b)],., '\ ,., '\ ,

and

f-I[ (Ca), f(b), fee), f(d)] = {-I[ ((b), fee), f(d)] - (-Ir f(a), f(b), f(c)]_#.. --. .

Notice that the polynomial IP(y) in (5) can always be constructed as long as
(Ca), ((b), fee), and {(d).are distinct, even if f ia not invertible. Then we may
always compute x = IP(O), which is an "approximate solution" of {(x) = 0
although x may lie outside of 1. We are interested in the case where (Ca),
((b), fee), 'and red)are distinct and where x is in 1. We will prove that this
will always happen asymptotically.

In case f is continuously differentiable with ('(x) =1=0 for a11 x EI and
f(a)f(b) < 0 for some Ca,b] ~[, f-l(x) exists, and a simple root X* of
ACM Transactions on Mathematical Software, Val. 21, No. 3, September 1995.
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f( x) = 0 lies in [a, b]. In this case, if we further assurne that p4'(.-c> exists
and is continuous on I, then

Ix - x * I~ IIP{O) - f-1{O)1

~ If{a)lIf{b)1I f(c)IIf{d)I maxye f(/) I[ f-l{y )f4)14! .

(6)

Since

[f-l{y)f4) = 1°f'{x)r{x)f"'{x) - 15[ r(x)]3 - [f'(X)]2 t<4)(X)
. [f'(X)]7

for all y E f{I) with x = f-l(y) EI, we deduce that

Ix - x.1 ~ Mlf(a)ltf(b)lIf(c)lIf(d)l, (7)

where

10MIM2Ma + 15M; + MI2M4
M=

(mI>'
(8)

with MI = maxxe IIf'{x)l, M2 = max:ce/ Ir(x)l, Ma = maxxe/ 1{'"(x)l, M4
= max:ceIlf(4)(x)l, and mI = min:ceIlf'(x)l. We mention that mI > 0 be-
cause I is assumed 10 be a closed interval. The following procedure for
calculating x = IP(O) is a slight modification of the Aitken-Neville interpola-
tion algorithm that avoids unnecessary roundoff errors, as described in Stoer
and Bulirsch [1980].

Subroutine ipzero(a, b, e, d, x)
set

Qll = (e - d) {(e>
. {(d) - f' ~,

Q21 = (b - e) ((b)
fee) - {" ~ ,

Q31 = (a - b) {(a).
{( b) - -, ~,,

D21 :a: (b - c) fee)
fee) - f" ~ ,

D3I (a - b) ((b)
f( b) - f( (J ~ ,

Q22:8 (D21 - Q) {(b)11 M n -, . ~,

ACM Transactions on Mathematical Software. Val. 21. No. 3. September 1995.
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-, f(a)

Q32 ... (D31 - Q21) f(c) - f' ,.
f(c)

D32 = (D31 - Q21) f(c) - ,., ,.
f(a.)

Q33 - (D32 - Q22) ,., n ,." .

%- a + (Q31 + Q32 + Q33)' end.

4. ALGOAITHMS

In this section we present two algorithms for enclosing a simple zero x * of a
continuous function f in [at b] where f(a)f(b) < O.These two algorithms are
'improvementsof Algorithm 2.4 and Algorithm 2.5. They call the subroutines
bracket and Newton-Quadratic as described in Section 2. as weIl as the
subroutine ipzero from the previous section. The basic idea is that we will
make use of x = IP(O) whenever it is computable and lies inside the current
enclosing interval. which is always the case asymptotically. The first algo-
rithm requires at most 3 while asymptotically 2 function evaluations per
iteration, and the second algorithm requires at most 4 while asymptotically 3
function evaluations per iteration. Under certain assumptions the first algo-
rithm has an asymptotic efficiency index (1 + (31/2»1/2 = 1.6529 and the
second algorithm has an asymptotic index (2 + (71/2»1/3 = 1.6686. oe. We
also show that in a certain sense our second algorithm is an optimal proce-
dure. In the folloWing algorithms, JL< 1 is a positive parameter which is
usually chosen as JL= 0.5.
Algorithm 4.1

4.1.1 set al = a, b1 = b, Cl = al - f[al' bd-1 f(ai);
4.1.2 'caU bracket(al' bl, Cl' a2' b2, d2);
For n = 2, 3, ..., do:

4.1.3 if n = 2 or ni..i~ - Ij> = 0 where fl = ((an), f2 = f(bn>.
f3 = f(dn), and f. = f(e~),

then call Newton-Quadratic(an., bn, dn. cn. 2).
else

call ipzero(an. bn.. dn.. en. cn).
if (cn.- an.Xcn.- bn.)~ 0

then call Newton-Quadratic{an. bn, dn. cn. 2).
endif;

4.1.4 call bracket(an. bn, cn. än. bn, (in);
4.1.5 if If(än)1 < If(bn)l. then set un = än. else set Un = bn;
4.1.6 set cn.= un. - 2f[än. bn]-lf(un);

4.1.7 if ICn- un.I> 0.5(bn - än).
then cn = 0.5(bn + än), else cn = cn;
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4.1.8 call bracket(än. bn. cn. an. bn. cln);
4.1.9 jf bn - an < fJ.(bn- an).

then..an+l = an' bn+l = bn, dn+l = cln, en+l = dnr
else

en+l = cln.

call bracket(an. bn. 0.5(an + bn), an+ l' bn+l' dn+l)'
endif.

Algorithm 4.2
4.2.1-4.2.2: same as 4.1.1-4.1.2;
For n = 2, 3, .... do:

4.2.3 if n = 2 or ni..j(!; -~) = 0 where fl = {(an)' f2 = ((bn),
fa = f(d,,), and f. = feen).

then caU Newton-Quadratic{an, bn, d", c". 2),
else .

call ipzero(a", bn, d", e,l' cn)'
if (cn - anXcn - b,,)~ 0

. then call Newton-Quadratic(a", bn, d", Cli' 2),
endif; .

4.2.4 set en = dn. call bracket(a,l' bn, cn' a", b", cln);
4.2.5 if ni.. j( /; - I) = 0 where I1 = {(an)' I~ = ((b,,), fa = f(cln),

t.. = feen).
then caU Newton-Quadratic{an, bn, cln, cn' 3),

else

call ipzero(an, bn, cln, en, cn),
if (cn - anXc" -bn) ~ 0

then call Newton-Quadratic{a", bn, dn,'C", 3),
endif;

4.2.6 call bracket(an' bn, cn, än, bn, dn);
4.2.7-4.2.11: same as 4.1.5-4.1.9.

The following theorem contains a basic property of the above algorithms,
whose proof is straightforward and hence will be omitted.

THEOREM4.3. Let f be continuous on [at bJ. f(a)f(b) < O. and consider
either Algorithm 4.1 or AIgorithm 4.2. Then either a zero of fis found in a
finite number of iterations, or the sequence of the intervals {[an' bnJ}:-1
satisfies both (1) and (2) where X* is a zero off in [a, bJ.

~

5. CONVERGENCE THEOREMS

From the previous section it is clear that the intervals ([an, b"n: - 1 produced
by either Algorithm 4.1 or Algorithm 4.2 satisfy bn+1 - an+1 ~ JLI(b"- an)

.for n ~ 2, where JLl = max{ JI.,O.5}. Since JLI < 1, that shows at least linear
ACM Tranaactions on Mathematical Software, Vol. 21, No. 3, September 1995.
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convergence. In what follows we show that under certain smoothness as-
sumptions Algorithm 4.1 and Algorithm 4.2 produce intervals whose diame-
ters {(b" - a,,)}:-l eonverge 10zero with R-orders atleast 1 + 31/2 = 2.732...
and 2 + 7112= 4.646..., respeetively. First, we have the fo11owingtwo lem-
mas.

LEMMA5.1 (ALEFELD-POTRA[1992]). Assume that {is conti~uously differ-
entiable in [a, b], that f(a)f(b) < 0, and that x. is a simple root off(x) = 0
in [a, b]. Suppose that AIgorithm 4.1 (or AIgorithm 4.2) d.oes not terminate
after a finite number of iterations. Then there is an n3 such that for all
n > n3, C" and u" in step 4.1.6 (or in step 4.2.8) satisfy

f(cn)f(un) < o. (9)

LEMMA5.2. Under the hypothesis of Lemma 5.1, assume that fis four
times continuously differentiable on [a, b]. Then:

(1) For Algorithm 4.1, there is rl > 0 and nl such that c" in step 4.1.3 will
always be obtained by calling ipzero tor all n > nl' and

If(cn)1 ~ rl(b" - an)2(bn-l- an-l)2, 'In > nl' (10)

(2) For Algorithm 4.2, there is r2 > 0 and n2 such that c" in step 4.2.3 and cn
in step 4.2.5 will always be obtained by calling ipzero for all n > n2' and

I{(Cn) I ~ r2(bn - an)4(bn-l - an-l)3, 'In> n2' (11)

PROOF. By Theorem 4.1, x * E (an' bn), and

bn - an -+ O. (12)

Since x * ia a simple zero, f'(x *) * O. Therefore, when n is big enough
f'(x) :1=0 for all x E [an, bn]. Forsimplieity, we assume that f'(x) * 0 for a11
xE [a, b]. With this assumption, fis strictly monotone on [a, b], and henee
fi (i = 1,2,3,4) in step 4.1.3 are four distinet values. Therefore, the subrou-
tine ipzero will alwaya be ealled in step 4.1.3, and now we need only 10prove
that c" calculated from ipzero satisfies c" E (a", bn>whenever n is large
enough.

From (7) we see that

ICn - x*1 ~ MI f(an) 11{(b,,)" f(dn> 11{(en)1
(13)

4 2
)

2
~ M(M1) (b" - an) (b"-l - an-l

where M and. MI are as defined in (7) and (8) with the interval I replaced by
[a, b]. Since x* E (a, b), there is an € > 0 such that [x* - €, x* + €] C
(a, b). Henee (13) and (12) imply that there is an n such that

CnE [x* - €,x* + €] c(a,b), 'In ~n. (14)
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Therefore the following inequality

If(cn)1 ~ M1lcn - x., (15)

holds for n ~ n, and as a resultwe have

If(cn)1 ~ Mdcn - x., ~ M(M1)4(bn - an)(bn-l - an-l)2If(an)'
as weIl as

If(cn)1 ~ M1lcn - x., ~ M(M1Y&(bn ~ an)(bn-l - an-l)2If(bn)1.

Equation (12) enables us again to choose an nl ~ n such that CnE (a, b) for
all n ~ nl and

If(cn)1 < min{1f(an)',' f(bn) I},
. .

Vn ~ nl. (16)

Since fis strictly monotone over [a, b], and f(an)f{bn) < 0, (16) im.pliesthat
CnE (an, bn) whenever n ~ nl. Therefore cn in step 4.1.3 will always be
obtained from ipzero for aIl n ~ nl' and now (10) follows immediately from
(13) and (15) with rl == M(MI)5.

A similar argument can be appIied to show that there is an n2 such that cn
in step 4.2.3 and Cn in step 4.2.5 will always be obtained from ipzero for all
n ~ n2' For n ~ n2 we can write,

If(cn)1 ~ Mllcn - x.,
~ MI MI f(ä,) 11f( bn)lIf( dn)lIf(en)1

= M1Mlf(a,)lIf(b,)lIf(cn)lIf(dn)1

~ (M1)4 M(bn - an)2(bn-l- an-l)lf(cn)1

~ (M1)9M2(bn - an)4(bn-l- an-l)3

which proves (11) with r2 == (M1)9M2. 0

The following two theorems show the as~ptotic convergence properties of
Algorithm 4.1 and Algorithm 4.2, respectively.

THEOREM5.3. Under the assumptions of Lemma 5.2, the sequence of
diameters {(bn - an)>:-l produced by Algorithm 4.1 converges to zero, and
there is an LI > 0 such that

b 2 2n+l - an+I ~ L1(bn - an) (bn-l - an-I) , Vn ==2,3,... . (17)

Moreover, there is an NI such that for alt n > NI we have

an+ I == an and bn+I = "n.

Hence when n > NI, Algorithm 4.1 requires only two function evaluations per
iteration.

PRooF. As in the proof of Lemma 5.2 we assume without loss of generality
that ('(x) :I:0 for all %E [a, b]. Take NI such that NI >max{nl' n3). Then
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by Lemma 5.1, (9) holds for all n > NI, From steps 4.1.6-4.1.8 of Algorithm
4.1 and the fact that U,p CIIe [äll' bll] we deduce that

bll - all S ICII - u"l,
From step 4.1.6 we also see that

"In> NI, (18)

ICn- uIII=/2{[äll,bll]-I{(UII)1
2

s -I {(u,,)I,
ml

.,.

(19)

where ml is as defined in (8) with the interval I replaced by [a, b]. Finally, .

since CII e {ä", bll}' we have that 1{(uII)1S 1{(cII)I.Combining that with (18)
and (19) we have

A 2
bll - ein S -I {(e,,)I,

ml
"In > NI, (20)

Now by Lemma 5.2, 1{(e,,)1S rl(bn - a,,)2(b"-1 - a"-1)2, so that

A A 2 2 2
b" - a" S -rl(b" - an) (bn-l - all-I) , "In > NI,

ml

Since ({bn - all)}:-1 converges to zero, if NI is large enough then

(21)

bll - an < p.(b"- .all) , "In > NI,

This shows that far all n > NI we will have a,,+l = an and bll+l = bn. By
taking

{

2 (bll+1 - an+l)

}
LI ~ max -rl' 2 2

ml (bll - an) (bll-1 - all-I)

and using (21) we obtain (17). 0

COROLLARY5.4. Under the assumptions o{ Theorem 5.3, {E,,};-~ =, {(bll -
a,,)>:-1 eonverges to zero with R-order at least 1 + 31/2 = 2.732... . Since
asymptotieally Algorithm 4.1 requires only two {unction evaluations per itera-
tion, its effieiency index is (1 + (31/2»1/2 = 1.6529... .

PROOF. By Theorem 5.3, {EII}:-1converges to zero, and EII+1S L1E;E;-l'
for n = 2,3,...; and the result follows by invoking Theorem 2.1 of Potra
[1989]. 0

n = 2,3,..., NI

THEOREM5.5. Under the assumptions o{ Lemma 4.2, the sequence o{
diameters {(bll - a,,)}:-l produeed by AIgorithm 4.2 eonverges to zero, and
there is an L2 > O.such that

bll+1 - all+l S L2(bn - all)4(bn-1- an-l)3, "In = 2,3, (22)

Moreover, there is an N2 sueh that tor all n > N2 we have

an+l=an and bn.q=bn.
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Hence when n > N~, Algorithm 4.2 requires only three function evaluations
per iteration.

PROOF. The prQofis about the same as that of Theorem 5.3. We assurne
that {'(x) * 0 for all x E [a, b]. Take N2 such that N2 > max{n2' n3}' When
n > N2 then, as in the proof of Theorem 5.3, we have

" 2
bn - an ~ -I f(cn)!.

mI

Now by Lemma 5.2, If(cn)1 ~ r2(bn - an)4(bn-I - an-l)3. Therefore

" ,,- 2 4 3
bn - an ~ -r2(bn - all) (bn-l - all-I) ,

mI

The rest of the proof is similar to the corresponmng part of the proof of
Theorem 5.3 and is omitted. 0

COROLLARY5.6. . Under the assumptions of Theorem 5.5, {€n>:-1 = {(bll -
all)}:-I eonverges to zero' with R-order at least 2 + 71/2 = 4.646... . Sinee
asymptotically Algorithm 4.2 requires only three function evaluations per
iteration, its efficiency index is (2 + (71/2»1/3 = 1.6686 0

Next, we notice that Algorithm 4.2 is an optimal procedure in the following
sense. It is clear that Algorithm 4.2 improves Algorithm 4.1 by repeating
4.2.3-4.2.4 in 4.2.5-4.2.6. If we repeat this k times, we will get an algorithm
of the form: .

Algorithm 5.7

5.1.1-5.1.2: same as 4.2.1-4.2.2;
for n = 2,3,..., do
5.1.3: same as 4.2.3;

5.1.4: set e~l)= dll' call bracket(an' bll' en, a~l), b~l), d~l);

Algorithm748: Enclosing Zeros of Cantinuous Functions

Vn > N2.

5.1.2k: set e~k-I) = d~It-2), cal1.bracket(a~It-2), b~It-2), e~It-2), a~Jr-l),
b(1r-I) d(1t - 1» . .

n , n ,
5.1.2k + 1:

.fn ( i - i ) .- 0 h f- -
fi(

(Ir-I» i - fi(b (Ir-I»
1 i.,. j / i / j - w ere 1 - an , /2 - n ,
13 = f(d~Jr-1), f. = f(e~Jr-1»,

then call New ton-Quadr atic{ a(Jr- 1) b(Jr- 1) d(1r -I) C k + 1)n , 11 , n , n' ,
else

call ipzero(a(Jr - 1) b(Jr - 1) d(Jr -1) e(Jr-1) C )11 ' 11 , 11 " n , n'
if (-f - a(1t -1) XC - b(Jr-1» ~ 011 11 11 11

then call Newton- Quadr ati c(a(Jr-I) b (It-I) d(Jr-I) C k + 1)n , 11 , 11 , , 11' ,

endif;
5.1.2k + 2. call bracket(a (It.-l) b (1t-1) C a

- -b. d ).
, . 11 '" '"' 11' 11' 11'

5.1.2k + 3-5.1.2k + 7: same as 4.2.7-4.2.11.

339

(23)

(24)
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Algorithms 4.1 and 4.2 are special cases of Algorithm' 5.7. Furthermore,
when k ~ 2, similar to Lemma 5.2, Theorem 5.3, and Theorem 5.5 we see
that for Algorithm 5.7,

{ (
3.-2

)
3

bn+l - an+l) ~ L. bn - an) {bn-I - an-I' n=2,3,...

for some LIc > O.Hence when k ~ 2 Algorithm 5.7 has the R-order at least

. - 3k - 2 /
(

3k - 2

)

2

T- ~ +y3+ 2 '

which is the positive" root of the equation t 2 - {3k - 2)t - 3 = O. Since
asymptotically Algorithm 5.7 requires k + 1 function evaluations per .itera-
tion, the efficiency index is

. -
( 3k - 2 / (

3k - 2

)

2

)

I/C. + 1)

1. - 2 + 3 + 2

when k ~ 2.In a straightforward manner it ean be proved that 1. < 12 for all
k > 2. Therefore, Algorithm 4.2 is optimal.

6. NUMERICALEXPERIMENTS

In this section we present our numerieal experiments eomparing AIgorithms
4.1 and 4.2 with Algorithms 2.1-2.5, with the methods of Dekker [1969] and
Brent [1972], with the Algorithms M and R of Bus and Dekker [1975], and
with the Algorithm LZ4 of Le [1985]. In our experiments, the parameter JLin
Algorithms 2.1-2.5 and 4.1-4.2 was chosen as 0.5. For Dekker's method we
translated the ALGOL 60 routine Zeroin, presented by Dekker, into Fortran;
for Algorithms M and R of Bus .and Dekker we did the same (Le., we
translated into Fortran the ALGOL 60 routines Zeroin and Zeroinrat pre-
sented in Bus and Dekker); for Brent's method we simply used the Fortran
.routine Zero presented in the Appendix of Brent, while for the Algorithm LZ4
of Le we used bis Fortran code. The maehine used was an AT&T 3B2-1000
Model 80, in double preeision. The test problems are listed in Table I. The
termination criterion was the one used by Brent, Le.,

b - a ~ 2 .tole{a, b), (25)

where [a, b] is the eurrent enclosing interval, and

tole{a, b) = 2 'Iul' macheps + tol.

Here u E Ca,b} such that If{u)1 = min{lf{a)l,If{b)l}; macheps is tlie relative
maehine precision which in our ease is 1.9073486328 x 10-16, and tol is a
user-given nonnegative number. . .
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Tablc 1. Test Problems

Due to the above termination criterion, a natural modification of the
subroutine bracket was employed in our implementations of Algorithms
2.1-2.5 and 4.1-4.2. The modified subroutine is the fol1owing:

Subroutine bracket(a, b, c, Ci,b) (or bracket(a, b, c, Ci,b, d»

set 5.. A. tole(a,b) for some user-given flXed AE (0,1) (in our experi-
ments we took A- 0.7).

if b - a ~ 45, then set c = (a + b)j2, goto 10;
if e ~ a + 25, then set c - a + 25, goto 10;
if e ~ b - 25, then set c .. b - 25, goto 10;

10 if fee) ""'0, then print c and terminate;
if f(a)f(c) < 0, then Ci- a, b ... c, (d ... b);
if f(b)f{c) < 0, then Ci- c, b - b, (d ,.. a);
calculate tole(Ci,b);
if b - Ci~ 2. tole(Ci,b), then terminate.

In our experiments we tested a11 the pro~lems listed in Table I with
different user-given tol (tol = 10-7,10-1°, 10-15, and 0). The total number of
function evaluations in solving al1 the problems (154 cases) are Iisted in Table
II, where BR, DE, M, R, and LE stand for Brent's method, Dekker's method,
Algorithms M and R of Bus and Dekker, and Le's method, respectively, and
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# functionI(z) [a,b) parameter-
1 SiDZ - z/2 (r /2, r)
2 -2 Ef:l(2i - 5}1/(Z - i1}3 [an,bn)

an = n2 + 10-9
b.. = (n + 1}2- 10-9 n = 1(1}10

3 azeor [-9,31) (I = -40, 6 = -1
a=-100,6=-2
(I= -200, b = -3

4 zn - (I [0,5] (I = 0.2, I, n = 4(2)12
[- 0.95,4.05] CI= I, n =8(2)14

5 SiDZ - 0.5 0,1.5]
6 2ze-n- 2e-nr+ 1 0,1 n ==1(l)5,20{20)I00
7 [1+ (l-n 1]Z-(1- nz)1 0,1 n= 5,10,20
8 z - I-zn [0,1 n = 2,5,10,15,20
9 1 + (1- n)4}: - (1- nz)4 0,1 n - 1,2,4,5,8,15,20
10 e-nr(z - 1) + z" 0,1] n = 1,5,10,15,20
11 (nz - I)/«n - I):) 0.01,1] n = 2,5,15,20
12 z - n 1,100] n= 2(1)6,7(2)33

13
0 if.: = 0

(-1,4]ze-.,-2 otherwise

14 (15 + SiD: - 1) if z;::: 0
[-104,r/2] n =1(1}40:l1 otherwise20

e - 1.859 .f 1!U2::1 Z > 1+" n = 20(1)4015 ("I)"XloJ
if z E [0,2:] [-104,10-4]e - 1.859 n= 100(100)1000

-0.859 iez < 0
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Table 11. Total Number ofFunction Evaluations in Solving All the Problems Listed in Table I

Table In. Total Number or Function Evaluations in Solving the 139 Cases that are Solvable
by All Methods

"un" stands for "unsolved" meaning that a problem is not solved within 1000
iterations. From there we see that Algorithms 4.1 and 4.2 eompare weIl with
the other 10 methods. The Algorithm 4.2 in this article has the best behavior,
espeeiaIly when the termination toleranee is small. This reeonfirms the fact
that the emcieney index is an asymptotie notion.

In our experiments we notieed that problem (13) was not solved by Dekker's
method within 1000 iterations. Furthermore, when tol = 0, there were 15
eases unsolved by Dekker's method and 11 eases (among those 15) unsolved
by the Algorithm M of Bus and Dekker. To make the eomparison more
informative we tested the 139 eases that were solvable (within 1000 itera-
tions) by all the 12 methods. The results are listed in Table IH.

We also mention that the funetions behave quite differently around the
ealeulated zeros. In fact, problems (3), (13), (14), and (15) require many more
function evaluations than others. In particular, the Algorithm R of Bus and
Dekker behaves very badlyon problems (14) and (15), while Dekker's method
did not solve (13) (within 1000 iterations) at aIl. To clarify these situations,
we tested three groups, eaeh representing a subset of the problem set listed
in Table I. The first group eontains only problem (13). The second group
represents (3), (14), and (15). The third group represents the rest of the
problems. The number of function evaluations for eaeh ease with tol = 10-15,
as weIl as the total number of function evaluations for each group, is listed in
Tables IV-VI, respeetively.

FinaIly, it is interesting to mention that with problem (13) eare is needed
when coding the funetion. In this case,

f( x) =
{

0 ..

xe -x 2

if x = 0

otherwise.
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tol BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2

10-7 2804 2808 2839 7630 2694 3154 2950 2645 2791 2687 2696 2650

1 un
1O-IU 2905 2963 2992 7768 2821 3338 3060 2789 2922 2819 2835 2786

1 un
1O-1 2975 3196 3261 8014 3061 3448 3151 2948 3015 2914 2908 2859

1 un -
0 3008 2998 3146 8230 3165 3509 3219 3029 3060 2954 2950 2884

15un llun

tol BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2

10-7 2501 2528 2527 6830 2412 2796 2588 2341 2464 2382 2377 2347

10-10 2589 2666 2663 6952 2529 2957 2682 2464 2576 2501 2499 2469

10--15 2651 2874 2903 7184 2756 3052 2762 2615 2664 2577 2570 2535

0 2674 2998 3035 7349 2835 3094 2820 2690 2696 2598 2600 2554
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" Table IV.

Table V. Number ofFunction Evaluations in Solving the Second Group ofRepresentative
Cases whim tol - 10-15

'Para.' stands tor 'parameter'.

Table VI. Number of Function Evaluations in Solving the Third Group of Representative
. Cases when tol ~ 10-15 - -

'Para.' stands tor 'parameter'.

and the initial interval is [-1,4]. If we code xe-x-2 in Fortran 77 as
x. (e-l/x2) then aIlll algorithms that solve this problem within 1000 itera-
tions deliver values around 0.02 as the exact solution, because the result of
the computation of 0.02' (e-l/(O.02)2)on our machine is equal to O. However,
when we code xe-x-2 as x/el/x2, aIl algorithms give correct solutions. The
same is true when we tried to use Dekker's method to solve this problem with
a larger tolez:~nce such as tal = 10-3.
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Prob. Para. BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2

#3 a=-lOO 19 20 20 18 16 29 34 25 26 27 25 24
b=-2

#14 n=10 21 23 23 67 21 23 20 18 20 19 20 19

#14 n=30 21 23 23 67 21 23 19- 18 20 19 20 19

#15 n=30 36 36 36 136 35 38 33 29 29 32 29 31

#15 n=500 39 39 39 139 40 41 37 34 33 34 35 35

Total 136 141 141 427 133 154 143 124 128 131 129 128

Prob. Para. BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2
#1 9 10 10 9 9 11 9 11 10 9 10 10
#2 n=2 10 10 10 9 11 18 18 17 17 12 15 11

a.=1
#4 n=4 15 16 16 14 12 18 20 16 12 13 12 13

on [0,5]
#5 10 10 10 9 9 11 9 10 10 8 11 10
#6 n=20 13 13 13 15 12 15 13 15 12 11 12 11
#7 n=10 9 9 9 9 7 11 5 5 6 5 7 7
#8 n=10 11 11 11 11 11 15 15 17 14 15 12 11
#9 n=1 10 10 10 9 10 12 11 11 11 11 11 9
#10 n=5. 9 9 9 9 9 15 14 14 14 11 12 9
#11 n=20 14 15 15 9 14 21 21 20 18 21 17 18
#12 n=3 10 13 13 13 11 13 10 13 12 11 6 5

Total 120 126 126 116 115 160 145 149 136 127 125 114
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