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1. INTRODUCTION

In this paper we give a survey of methods which can be used for including solutions of a
nonlinear system of equations. These methods are called inclusion methods or enclosure
methods. An inclusion method usuaIly starts with an interval vector which contains a
solution of a given system and improves this inclusion iteratively. The question which
has to be discussed is under what conditions is the sequence of including interval vectors
convergent to the solution. More often an including interval vector is not known and one
tries to compute an interval vector containing a solution by some operator which forms the
basis of an inclusion method. In other words, we prove the existence of a solution. Both
concepts are discussed and illustrated in this article. An interesting feature of inclusion
methods is that they can also be used to prove that there exists no solution in an interval
vector.

Our methods are based on interval arithmetic took As is weIl known from the literature

there exists a great variety of such inclusion methods (see [2] and [13], e.g.). Since the
purpose of this article consists in discussing the main principles of inclusion methods we
limit ourselves to only a few methods. Enclosure methods relying on other ideas are not
considered.

The paper is organized as folIows: In chapter 2.1 we repeat the weIl known results for
the one-dimensional interval Newton method. Chapter 2.2 contains aseries of properties
of the Gaussian algorithm applied to linear systems with interval data. These results
are used in chapter 2.3 where the interval Newton operator is introduced. In chapter 2.4
convergence and divergence statements for the so-caIled interval Newton method which
is based on the interval Newton operator are investigated. Chapter 2.5 contains results
about the speed of convergence and divergence, respectively. In chapter 3 the Krawczyk
operator is introduced and in the final chapter 4 it is shown how test intervals can be
efficiently constructed.

2. THE INTERVAL NEWTON METHOD

2.1. The One-Dimensional Case

In order to ll10tivate thc results of the later chapters we first consider a single equation
in one unknowll. Assumc that

J: [.r] C f) C R --> R
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and that the derivative of I has an interval arithmetic evaluation J'([xJO)for some [x)O~
[x). Assumethat I has a zero x' in [x]o. If m[x]k is an arbitrary element contained in
[x]k (usually one chooses m[xJkas the center of [x]k) then the metbod

[x)kH = {m[x)k - I(m[x]k) } n [x )
k

I/([x]k)
(1)

is well defined, provided 0 f/.J'([x)O),and it bolds that x' E [x)kand limk-+oo[x)k= x..
Moreover tbe order of convergence is (under some additional conditions) at least two.
Method (1) is called tbe interval Newton method. For more details see [2J,for example.

2.2. Preliminaries

For interval matrices [A]and [BJ and a real vector c it bolds in general tbat

(A]([B)c) ~ ([A][B))c . (2)

This was proved in {17J, p. 15. If c is equal to one of the unit-vectors tbe equality-sign
holds. This is the content of tbe next lemma.

Lemma 1 Let ei be the i-th unit-vector. Then

(A]([B]ei) = ([A)[B))ei

for arbitrary interval matrices [AJ and [B].

Proof. Denote tbe columns of the matrix {B] by [bJi, 1 ~ i :S n. Then it bolds that

{Bk = ([W, [W,..., [br)ei = [bJi

and therefore

(A]([B]ei) = [A][b]i.

On tbe other hand we have

([A][B])ei = ([A](W, - . ., [A][b]n)ei = [A][b]i

and therefore tbe assertion folIows. 0

Assume now tbat we have given an n by n interval matrix [A]= ([a]i;) and an interval
vector [bI = ([b];) with n components. By applying the formulas of tbe Gaussian algorithm
we compute an interval vector [x] = ([X]i) for which tbe relation

{x = A-1b IA E [A], bE [bn ~ [x]

- holds. See [2), Section 15 or [17], p. 20 ff, for example. lf we set [aH; := [a]i;, 1 :S i, j :S n,
;and [bH := [b]i, I :S i :S n, then the formulas are as folIows:
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(or k = 1(I)(n - I) do
begin

for i = (k + 1)(I)n do
begin

for j = (k + 1)(I)n do

[ ]1:+1
[ ]

1:
[ ]

1: [aJfl:
a ij := a ij - a kj -[ JI:

au

[b]~+1 '= [b]~- [b]
1: [a]fl:

t . t I:

[ ]1:
au

end;
for I = 1(I)k do
begin

for j = 1(I)n do
[ ]1:+1"- [ ]

k
a lj .- a lj

[b]~+1:= [bIt
end;

end;
[xJn = [bm/[amn
for i = (n -1)(-1)1 do

[XJi = ([b]? - Li=i+1[a]ij[x]j)/[a]ii.

We have assumed that no division by an interval which contains zero occurs. In this
ca.se we say that the fea.sibility of the Gaussiaü algorithm is gua.ranteed. The feasibility
is not dependent on the right hand side vector [bI.
If we define the interval matrices

1
.

0
1

[C]I::= I [a]+1.1: 1 I , 1 :::;k :::;n - 1,
[a]ZI:

0 . 0'.
[a]1: 1

- [a]Zk

1

0

[D]k:= I

1
I , 1 S k S n,

[a)"kk

()
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0
'.

[T)k := 1 -[a];;.k+t . .. -[a]k..
1 0 , 1 ::;k::; n - 1,

0
1

then we have for the interval vector computed by the Gaussian algorithm

[x] = [Dj1([T]l([D]2([T]2(... ([Dr-t([Tr-l([Dr[b})...) (3)

where

[6] = [Cr-l([c]n-2(... ([C]2([C]l[b})...).

The interval vector [x] computed in this manner is usually also denoted by [x] =
IGA([A], [bJ)('Interval Gauss algorithm of [A] and [b]').

The interva.l matrix IGA([A]) is definedas the product of the interva.lmatrices occuring
in the definition of IGA([A), [b]):

IGA([A])= [D]l([T]l(... ([D]n-l([Tr-l ([Dr([Cr-l(. .. ([C]l).. .).

Note that it is not possible to omit the paranthesis in the expressions for IGA([A], [b])

and IGA([A]), respectively. IGA([A)) has the foiiowing property.

Lemma 2 Let ci denote the i-th unit vector. Then IGA([A), ei) = IGA([A)). ci , I <
i ~ n.

Proof. Starting with the representation of IGA([A], ci) and applying repeatedly Lemma 1
we get the assertion. 0

The last lemma states that the i-th column of the matrix IGA([A}) is equal to the inler-
val vector which is obtained if one applies the Gaussian algorithm to the interval matrix
[A] and the right hand side ci. In order to compute IGA([A}) it is therefore not neces-
sary to know the matrices appearing on the right hand side in the definition of IGA([A])
explicitly. IGA([A]) can be computed by 'formally inverting , the interval matrix [A] by
applying the Gaussian algorithm.

Finally we need the foUowing result.

Lemma 3 For an intrrval matrix [AJ and a point vector b it always holds that

IGA([A], b) ~ IGA([AJ) . b.

fJmof- Apply (2) repeat('dly to thc reprcsentation (3) of IGA([Aj, b). 0
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2.3. The n-Dimensional Case

Let there be given a mapping

f : [x] C D ~ Rn ~ Rn

and assurne that the partial derivatives of fexist in D and are continuous. U y E [x] is.a
fixed chosen point then

f(x) - f(y) = J(x)(x - y), xE D (4)

where the matrix J(x) is defined by

J(x) = 11 /(y + t(x - y)) dt.
(5)

(See [14],p. 71, (10)). Note that J is acontinuous mappingof x forfixed y. Sincet E [0,1]
we have that y + t(x - y) E [x] and therefore that

J(x) E J'([x]) (6)

where J'([x]) denotes an interval arithmetic evaluation of the Jacobian of f, provided
there exists one.

Theorem 1 Let f : D ~ Rn ~ Rn be a continuously differentiable mapping and assume
that an interval arithmetic evaluation J'([x]) of the Jacobian exists fOT some interval vec-
tor [x] C D. Suppose that the Gaussian algorithm is feasible fOT J'([x]) and take for the
right-hand side f(y) where y E (x] is fixed. Thw it holds:

1) lf f has a (necessarily unique) zero x. in [x] then

x' E Y - IGA(J'([x]),f(y».

2) If

(y - IGA(J'([x]),f(y») n [x]= 0 (7)

thw f has no zero in Ix].

3) lf

y - IGA(J'([x)),f(y)) ~ [x] (8)

then f has a unique zero x. in [x].

Proof. 1) Assume that x. and x** are two zeros of f in [x]. Then by (4)

0 = f(x') - f(x'.) = J(:r-)(.r. - XU)

where J(x*) is defined anaJogously to (5). Since IGA(J'([x])) exists it follows that J'([x])
contains no singular matrix and since J(r') E J'([x]) it follows that J(x*) is nonsingular.
Therefore x. = XU. By (4) again we have that

f(:1:-) - f(y) = - f(y) = J(.r-)(:c- - y).
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Since J(x.) E j'([x]) it is nonsingular and therefore it follows that

x* = y - J(X*)-l f(y)
E y - IGA(J'([x]), f(y))

smce

J(x.)-lf(y) E IGA(J'([x]),f(y))

by the indusion monotonicity of interval arithmetic.
2) The proof follows because of the preceding part.
3) Since the Gaussian algorithm can be carried out on the matrix j'([xJ) it follows that
all the point matrices from J'([x]) are nonsingular. In particular J(x) is nonsingular. We
consider the mapping

p : [x] C D ~ Rn ~ Rn

where

p(x) = X - J(X)-l f(x)

and where for some fixed y E [x] the matrix J(x) is defined by (4) and (5).
It follows

p(x) = x - J(X)-l f(y) + J(X)-l(J(y) - f(x))
TI ,-. rr ,

= y - JtX) -Jty)
E Y- IGA(J'([x]),J(y)) ~ [x].

Hence the continuous mapping p maps the nonempty convex and compact set [x] into
itself. Therefore, by the Brouwer fixed point theorem it has a fixed point x' in [x] from
which it follows that f has a solution x' in [x]. By the same ideas as in part 1) it follows
that x' is unique. 0

The preceding theorem has aseries of implications. If one has an interval vector for
which (7) holds then [x] is an exclusion set for the zeros of f. If on the other hand (8)
holds then [x] and because of 1) also y - IGA(J'([x]),f(y)) ~ [x] is an inclusion set for a
zero of fand [x]\(y - IGA(J'([x]),J(y))) is an exclusion set for the zeros of f.

We now consider more generally the case that we have given an interval vector [x] which
contains a zero x' of the mapping

f: [x] C D ~ Rn ~ Rn.

f is assumed to be continuously differentiable in D. Furthermore we assurne that the
interval arithmetic evaluation j'([x]) of the Jacobian J'(x) exists and that the Gaussian
algorithm is feasible for J'([x]). In the precedirig theorem it was shown that x* is unique
in [x] under these conditions. Assume now that m[x] is an arbitrary chosen real vector
contained in [x]. Then the so-called interval Newton operator N([x]) is defined by

N([xj) = m[x] - IGA(J'([x]), f(m[x]))
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and the interval Newton method (IN) is defined by setting [x]O:= [x] and

{

m[x]k E [x]k
N([x]k) = m[x]k - IGA(J'([x]k),f(m[x]k))

[x]k+1 = N([x]k)n [x]k
k = 0,1,2,... . } (IN)

Usually one chooses m[x]k as the midpoint (center) of [x]k if there is no specific infor-
mation about the location of x' in [x]k. However we don't assume this choice.

Since x' E [x]Owe have by 1) of the preceding theorem that x' E N([x]O) and therefore
that x' E [xJl. Siuce [xJ1~ [x]O it foHowsthat J'([xJ1) exists aud J'([xJ1) ~ f'([x]O). By
the iuclusiou mouotouicity of iuterval arithmetic we couelude that the Gaussiau algorithm
for f'([xP) is feasible and therefore N([x]1) aud hence [x]2is weHdefiued. By mathematical

induction we can proof that (IN) computes a sequeuce {[x]k} k= 0 of iuterval vectors with

x' E [x]\ k ~ 0

and

[x]O2 [X]l 2 . .. 2 [x]k2 [x]k+12 '" .

From these two properties we can couelude that

lim [x]k= [xr
k-+oo

aud

x' E [xt.

The following example, iutroduced by H. Schwaudt in [17] shows that in coutrast to the
one-dimensional ca.se repeated in chapter 2.1 it does uot always hold that w([x].) = O. Iu
other words: The sequence {[x]k} may have a limit which is a proper iuterval.

(
u

) (
-U2 + V2 - 1

)Exarnple 1 Let x = v and J(x) = u2 - V .

The veclor x' ~ ( ~:y: ) ;s the vniqve so/vlion ollhe system I( x) ~ 0 ;n the ;nlerval
vector

x ° - 1 ( [11,19] )[ ] - 10 [11,19] .

Choosing m[x]O as the center oJ [x]O we get

(

[_2. 90771

)
N([xJ') ~ 88' 125841

[~ 58018' 1144]
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and therefore [xJ1= [x]o. If we choose m[x]k to be the center oJ[x]k for all k then we have

[x]o = [X]I = . . . = {x)k = [x]k+1 = . . .

and

lim [x]k = [x]o =I x'.k-oo
0

2.4. Convergence and Divergence Statements
In the fol1owing theorem we st30te and prove some convergence and divergence results

for the interval Newton method (IN). The definition of these concepts will become clea.r
from the formul3otion of the next theorem.

Theorem 2 Let there be given an interval vector [x]o and a continuously differentiable
mappmg

f: [x]o C D ~ Rn --+ Rn

and assume that an interval arithmetic evaluation J'([x]O)of the Jacobian exists. Assume
that IGA(J'([x]O» exists (which is identical to assuming that the Gaussian algorithm is
feasible for f'([x]O) and an arbitrary right hand side. See the remarks following Lemma
2).
(a) Suppose that p(A) < 1 (p denotes the spectral radius of a real matrix) where

A = 11 - IGA(J'([x]O» . J'([x]O)I, (9)

or that p( B) < 1 where

B = w(IGA(J'([x]O»).1J'([x]O)I. (10)

If f has a (necessarily unique ) zero x* in [x]Othen the sequence {[x]k}~ computed by
(IN) is well defined and it holds that x* E [x]k and liffik-oo[x]k = x*.

If one chooses m[x]k as the center of [x]k then the condition p(B) < 1 can be replaced
by p(B) < 2.

(b) If p(A) < 1 or p(B) < 1 (wher.eA and Bare defined by (9) and(10), respectively) and
if f has no zero in [x]Othen there is a ko ~ 0 suchthatN([x]ko)n [x]ko= 0 (emptyset),
that is (IN) will break down after a finite number of steps because of empty intersection.

Proof. (30) From the discussjon in Ch30pter 2.3 we know that (IN) is weIl defined jf
IGA(f'([x]O» exists 30ndjf f has 30zero x* in [xJo. We now assume th30t p(A) < 1 holds.
Note th30t analogously to (4), (5) and (6) we have

J(m{xt) == f(m[xt) - J(x*) = J(m[x]k)(m[x]k - x*) (11)

and

J(m[x]k) E J'([X]k). (12)
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Besides of this we use (2), Lemma 3, and the fact that for areal vector c and interval

matrices (X] and [Y] the equation ([X] + [Y])c = [X]c + [Y]c is valid. Then we get

N([X]k) - x* = m[x]k - x' - ICA(f'([x]k), f(m(x]k»

~ m(xJk - x* - ICA(f'([x]k» . f(m[x]k)
= m[x]k - x' - ICA(f'([x]k» . {J(m(x]k)(m[xJk - x')}
~ m[x]k - x. - ICA(f'([x]k»){J'([x]k)(m[x]k - x.)}
~ m[x]k - x. - {ICA(f'([x]k» . J'([X]k)}(m(x]k - x")
= (I - ICA(J'((x]k» . J'([x]k»(m(x]k - x") .

Since m(x]k E (x]k and 11- IGA(f'([x]k» . J'([x]k)l ~ A it followsthat

IN((x]k) - x"l ~ AUx]k - x.1

~

or, equivalently, that

q(N([xt), x") ~ A q«(xt, x").

Since x" E N((X]k) n (x]k = (X]k+l ~ N([x]k) it also holds that

q«(X]k+1, x*) ~ q(N«(x]k),x.) ~ A q«(x]\x.)

and therefore

q([X]k+1, x") ~ q(N([xt), x*) ~ Ak+1q([x]O,x.).

Because of p(A) < 1 the assertion liITlk-oo[x]k= x' holds.
We now proof (a) under the assumption p(B) < 1. Applying Lemma 3 we get for k ~ 0

N([x]k) = m[x]k - ICA(J'([x]k),f(m(x]k»
~ m[x]k- ICA(J'«(xJk» . f(m[x]k)

and for the width of N([x]k)

w(N([x]k» ~ w(ICA(f'([x]k») .lf(m(x]k)1
~ w(ICA(f'([x]O») .1J(m[xJk)(m[x]k - x.)1
~ w(ICA(f'([xJO»). 1J'([x]°)l. w([x]k),

where we have used (4) and (5), the fact that [x]k ~ [x]Oand the inequality Im[x]k -x.1 ~
w«(x]k). .

Since [xJk+l = N([xJk) n [xJk we have W([xJk+l) ~ w(N(xJk) and therefore

w«(xJk+l) ~ B w((xJk)

and

W([xt+l) ~ Bk+lw([:r]O),

from which the assertion limk_=[.r]k = x. folIows. If m[x]k is the center of [x]k then
I

Im[x]k - x.1 S; 2"w[x]k and the proof can be compIeted also in the case peS) < 2.
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(b) We now prove (b) under the assumption p(A) < 1. We assume that for all k ~ 0
the intersection N([x]") n [x]" is not empty- Then (IN) is weIl defined and it holds that

[x]O 2 [xlI 2...2 [x]" 2 [x]k+1 2 ...

!rom which it follows that the sequence is converging to an interval vector [x]*. We

now consider the sequence {m[x]k}~- This sequence is contained in the compact set
[x]o. By the Bolzano-Weierstrass theorem we conc\ude that there exists a convergent

sub-sequence {m[x]k;}~. Suppose that Iimi-oo m[x]kt = x*. Since m[x]k; E [x]k; it also

holds that x' E [x]'. Using the continuity of the functions and operations involved in the
method (IN) we get from

N([x]G) = m([x]k;) - IGA(P([x}kt),j(m[x]k;))

[xJG+t = N([x]k;) n [xJk;

the pair of equations

[u]. = x' - IGA(J'([x)*), J(x.))
[x] * = [uJ* n [x]*

where [u]* = liID;-+<x>N([xJ";) = N([xJ*).
From the second equation it follows that [xJ* ~ [u]* and thereforethat x' E [u]*. Since
x' E [xJ*. Therefore we get from the first equation

x* E x* - IGA(J'([x]*),j(x*))

or

0 E IGA(J'([x]*), J(x*))

and by Lemma. 3 and the inc\usion monotonicity

0 E IGA(J'([x].)). J(x*)
~ IGA(J'([x]O). J(x*).

Since for an interval matrix [X] and areal vector c we have [X]c = {XciX E [X]}
it follows that there exists a matrix X E IGA(f'([x]O) such that XJ(x*) = o. If X is
nonsingular then we have the contradiction J(x*) = o. The nonsingularity of X can be
seen in the foIlowing manner: If Y E j'([x]O) then

11- XYI $ 11- IGA(f'([x]O)) - j'([x]O)1= A.

By the Perron-Frobenius theory it follows that

p(I - XV) $ p(A) < 1.

Therefore

{l- (I - Xy))-1 = (XY)-1

exists, that is X is nonsingular.

In order to complete the proof, we have lo show lhat under lhe assumplion p( B) < I
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there is 110singular matrix contained in IGA(j'([x]O». This Can be seen a.s follows (see
[9], where also relations between p(A) and p(B) are discussed): Let Y E J'([x]O) and
X E IGA(J'([x}O». Since IGA(J'([x]O» exists it follows that Y is nonsingular.
Therefore

1I - XYI ::; IV-I - XIIVI
::; w(IGA(J'([x}O»).1J'([x]O)I
= B.

Again we have p( I - XV) ::; p(B) < 1 by the Perron-Frobenius theory and hence the
nonsingularity of X. This completes the proof. 0

Howeasy or difficult are the conditions p(A) < 1 andfor p(B) < 1 to fulfill? The answer
is that tbese conditions always bold if the components of the width w([xJO) of [xJo are
all sufficiently smalI. In this ca.se the product IGA(J'([xJO» . J'([x]O) differs only slightly
from the identity matrix and A is therefore a small nonnegative matrix. Analogously is
IGA(J'([xJO» dose to a real matrix if w([x]O) is small, hence w(IGA(J'([xJO») is a small
nonnegative matrix and therefore also B.

2.5.Speed of Convergence and Divergence
In the next theorems we will present results concerning the speed of convergence and

divergence, respectively.

Theorem 3 Let there be given an interval vector [x]Oand a continuously differentiable
mappmg

f: [x]OC D ~ Rn --t Rn

and assume that an interval arithmetic evaluation J'([x]O) of the Jacobian exists. Fur-
thermore assume that for al1 elements of the Jacobian and some norm an inequality of
the form

W(J'([X])ij) ::;cllw([x])lI, c ~ 0, (13)

holds for all [x] ~ [x]o. IJ(xJo contains a zero x' of fand if (IN) is convergent to x' then

I/w([x]k+1)11::; ,lIw([x]k) W\ ,~ 0,

that is the sequence of widths is quadratical1y convergent to zero (and therefore also the
sequence of distances q([x]k, x.) between [x]k and x'. See [fi, Appendix A}.

Proof. As in [2}, Chapter 19, Lemma 6, it can be shown that (13) implies for some norm

IIw(IGA(J'([x))))1/ :S~lIw([xJ)l1. ~ ~ 0,

for all [x] ~ [x}o. Because of (4), (5) and (6) we have

w([xJk+I) :S w(N([xJk»
= w(m[xlk - IGA(J'([:rlk),f(m[J:jk)))
:S w(IGA(J'([xjk))). If(m[.rjk)l
=w(ICA(J'([xjk))) .1J(m[xjk)(m[:rjk - x')1
< w(ICA(J'([:rjk))). 1J'([rJu)I. w([:r]k).

(14)
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Using a monotone vector norm and the equivalence of all vector norms and matrix
norms, respectively, we get

IIW([X])kHII~ 1'lIw«(xtHI2

where

l' = S. ". 11 If'«(x]O)I 11

and where S is a consequence of the equivalence of alI norms. 0

We remark that in practice the condition (13) is not very strong. It holds, for example,
for all functions with continuous partial derivatives of second order.

Quadratic convergence behaviour is a property which an iterative method usually only
exhibits asymptotically. Therefore the following behaviour is of interest.

Lemma 4 Suppose that the assumptions 0/ Theorem 2 concerning fand j'([x]O) are true,

that / has a zero x' in [x]O and that p(A) < 1. Then m(x]k <t(X]k+li/ m(x]k i- x..

Proof. Suppose that m(x]k E N«(x]k). Using the relation

N«(X]k) - x' ~ (I - IGA(J'«(x]k» . f'([x]k»(m(x]k - x')

which was derived in part (a) of the proof of Theorem 2 we get, because of

~r_ }k -* r hUf lk, .
'''l"'' - "" oe n \[XJ ) - x ,

the inequalities

Im(x]k - X.I ~ 11- IGA(J'«(x]k» . J'«(x]k)I'lm(x]k - x.1
< Alm(x]k- x.l-

Since p(A) < 1 we get the contradiction m(x]k = X'. 0

From Lemma 4 it follows that if one chooses m[x]k as the center of [x]kand if m[x]k i- x'
then at least on~ of the components of [X]k+l has its width smaller than half of the width
of the corresponding component of (x}k. The next lemma shows that a similar result holds
if there is no solution in (x]o.

Lemma:> Suppose that the assumptions 0/ Theorem 2 concerning fand j'([x]O) are

true, that f has DO zero x' in (x]o and that p(A) < 1 or p(B) < 1. Then m(x]k <t(x]k+1
(provided (x]kH is defined at al/).

Proof. Assume that m[:rt E [X]k+I. Then m[x]k E N[:r]k and therefore

0 E IGA(f'[x]k) . f(m[xJk).

Similarly as in the proof of (b) in TheorclIl 2 this lead~ lo thc conlradiction that m[.r]k i:;
a zero of f. 0
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From the preceding Lemma 5 it is not clear how many stepsit will take until the
intersection in (IN) becomes empty if there is no zero of J in [x]o. We now will show that
only a few steps are necessary if the width w([x]o) is small enough. Because of Lemma 3
we have for any [xl ~ [x]o

N([x]) = m[x] - IGA(J'([x]),f(m[x]))
~ m[x] - IGA(J'([x])). f(m[x]) =: N([x]).

We denote the vector of lower bounds and upper bounds of the components of N([x])

by nI and n2, respectively. Analogously we define TiI and Ti2. Then N([x]) ~ N([x]) is
equivalent to
-1 < 1 < 2 < -2
n_n_n_n (15)

where the partial ordering is defined componentwise. As in the proof of Theorem 2 we use
the fact that for an interval matrix [X] and areal vector c we have [X]c = {XciX E [X]}.
Therefore from the definition of N([x]) we obtain

{ TiI = m[xJ - A2J(m[x])
Ti2 = m[x] - Al J(m[x])

where Al and A2 are real matrices contained in IGA(J'([x])). If the real vectors Xl and

X2 are defined analogously to nl and n2, respectively, then we get by using (15) and (16)

x2 - nl < X2 - Ti1

(16)

= X2 - m[x) + A2f(m[x])
= x2 - m[xl + A2{J(x2) + J(m[x])(m[x] - x2)}
= (l- A2J(m[x]))(x2- m(x]) + A2J(x2).

We now assume that (13) from Theorem 3 and therefore also (14) holds.
nonsingular since J(m[x]) E J'([x]). Therefore we get

1(1- A2J(m[x]))(x2 - m[x))l = I(J(m[x])-1- A2) J(m[x])(x2 - m[x])I
~ w(IGA(J'([x]))) '1J'([x]O)I' w([x])
= O(lIw([x])1I2).

J(m[x]) is

The right hand side denotes a vector whose components are all of the order O(lIw([x])1I2).
The preceding inequality can therefore be written as

X2 - nl ::; O(lIw([x])1I2) + A2J(x2). (17)

By similar considerations we get

n2-xl ::;O(lIw([x])lf)-AIJ(Xl). (18)

We now show that far sufficiently small width w([x]) the matrices Aland A2 are non-
singular: Since IGA(J'([x])) exists it follows that all Y E J'([x]) are nansingular. For an
arbitrary X E IGA(J'([x])) we have

1I - XYI ::; 1Y-1 - XI.IYI ::; w(IGA(J'([x]))) .lf'([xJ)l.

Since w(IGA(J'([x])) -t 0 far w([x]) -t 0 it follaws that the matrix on the right hand
side has spectral radius less than one for sufficiently small w([x]). Fram this it follows
p(l - XY) < I by the Perron-Frobenius theory and therefore the nonsingularity of X
and henre of Al and A2 for sufficiently small w([xJ).
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Lemma 6 Assume that under OUT assumptions fex) ::/:-0 fOT X E [x}. Then, if w«(x}) is

sufficiently small, there is at least one io E {I, 2, . . . , n} . such that

(Alf(xt))io =I 0 (Ci)

and

sign(A 1f( xt ))io = sign( A2f( x2) )io . (ß)

Proof. Since f(XI) =I 0 and because At is nonsingular for sufficiently small w([x]) we have
(Ci). Since At, A2 E IGA(J'((x])) it follows

IA2 - Atl ~ w(IGA(J'([x})))
and therefore

A2 = At + T

where IITII= O(lIw([x})II). Hence we have

A2 f(x2) = Atf(x2) + Tf(X2)

with T f(x2) -t 0 for w([x]) -t o. By (4) and (5) we have

f(X2) = f(xt) + J(X2)(x2 - Xl).

Multiplying this by At and inserting the resulting equation in the preceding one we get

A2 f(x2) = At f(xt) + Al J(x2)(X2 - xl) + T f(x2)

where AtJ(x2)(x2-xt) -+ 0 and Tf(x2) -t 0 for w([x]) -t O. For sufficiently small w([x])
there is bv (0:) an incle1(in c;nch t.hat. (Al ({x2)): -::i0 and therefore- J \ I - n -v -- -- --- - \- - J \ "'0 I .

sign(A2 f(X2))io = sign(AI f(XI»io

which is (ß). 0

Assumenow that sign(Atf(XI))io = L Then by (18)

(n2 - XI)io ~ (O(lIw([x])1I2)- Alf(XI))io < 0

for sufficiently small w([x}). If sign( Al f( Xl»io = -1 then by the preceding lemma
sign( A 2f(X2»io = -1 and therefore by (17)

(X2 - nt)io ~ (O(lIw([x])1I2)+ A2f(x2))io < 0

for sufficiently small w([x]).
Now the next lemma can easily be shown.

Lemma 7 We haue N([x])n [x] = 0 iffoT (at least) one io E {1,2,...,n}
1 1

(2w([x]) + 2w(N([x])))io < I(m[x] - m(N([x})))iol.

This is eqivalent to
'2 1 .) I

(TL - X )io < 0 01' (.r- - 11 );0 < 0

fOT at least One io E {I, L . . . . I! }. 0

The ineq1..!alities (19) and(~O) show {ha.t hera.usc of tI)(' tnll1 O(lIw([:rj)li:':) 011 111('ri?;ht

hand siele the intersediO\I will !)('COIl1('efllpt)' itS soon as tlw widt h w([:1']) is sIlIall eIlOII?;h.

Be<:ause of tlw \.('nJl O(iltl'[.rJII2) \\T ciln spcak or l{ulIdralir dil'rrl/lnu- b(!IlIl'iollJ".

(19)

(20)
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3. MODIFICATIONS OF THE INTER VAL NEWTON METHOD

In our assumptions on the interval Newton method we always had to assume that the
Gaussian algorithm is feasible with P([x]O) (and an arbitrary right hand side). If P([x]O)
contains no singular matrix this is by continuity arguments always the case if the width of
the elements of P([x]O) is smalI enough. There also exist aseries of sufficient criteria-{or
the feasibility of the Gaussian algorithm. See [10],for example. On the other hand there
exist simple examples of interval matrices which contain no singular matrix, nevertheless
the Gaussian algorithm will break down because of division by an interval which contains
zero. This is the case even if one takes into account all possible pivoting strategies. R.
Krawczyk had the idea to avoid this problem by introducing what today is called the
Krawczyk~perator. See [8).

Assurne again that f : D ~ Rn - Rn is a continuously differentiable mapping and
assurne that an interval arithmetic evaluation J'([x]) exists for some [x] C D. Furthermore
let C be areal nonsingular matrix and x E [x]. Then the Krawczyk operator is defined as

K([x],x,C) = x - Cf(x) + (I - CP([x])([x] - x).

K([x],x,C) is again an interval vector. A complete analogue to Theorem 1 could be
formulated. We limit ourselves to the following result.

Theorem 4 ff K([x],x,C) ~ [x] then f has a zero x* in K([x],x,C) (and therefore also
in [x]). 0

The proof is based on the Brouwer fixed point theorem and can be found in [2), Theorem
10 in Chapter 13 or in [12). We omit the details.

Analogouslyas it was done with N([x]) we can also construct an iteration method using
the Krawczyk operator. There exist aseries of possibilities. We limit ourselves to one
special case: Let [x]O ~ [x] be a given interval vector.

We set

Xk = m[xJkE [x]k
Ck = (m(J'([xJk»)-1

I«[xJk,xk, Ck) = xk - CkJ(xk) + (I - Ck J'([xJk»([xJk - xk)
[X]k+l = I«[x]k, xk, Ck) n [x]k

k = 0, 1,2, . -. .

(I<)

(K) is ealled the j{rawczyk method.

Usually one ehooses for m[x]k and m(J'([x]k» the center of [x]k and P([x]k), respecti-
vely, but tbis is not a must. In contrast to (IN) where we have to perform the Gaussian
algorithm with all interval matrix we have to invert a real matrix whieh always can be
dOlle if it is nonsingular. For (I{) similar results as ill Theorem 2 ean be formulated
and proved, In [:~]a Krawezyk--likE' operator has Iwen eonsidered wlwre only triangular
fa.torizat.ions (and no inversions) of matriees are performcd,

Finall_\- W(OlJ1<'ntion that t he so -calIed Hansen-Sengllpla opcralo1' \\'hidl is a nonlinear
version ur inUon'al Gauss--Seide! it('ration is oecasiollalh- prefered in practic!' (se!' [1:3).pp-
177 Ir),
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4. THE EFFICIENT CONSTRUCTION OF TEST INTERVALS

Both the interval Newton operator N([x]) and the Krawczyk operator K([x], x, C) can
be used for proving the existence of a zero of a given mapping f in an interval vector. This
has been stated in part 3) of Theorem 1 for N([x]) and in Theorem 4 for K([x}, x, C). The
main problem is how one can find an interval vector [x] for which N([x]) or K([x], x, C)
is contained in [x].

In this chapter we propose the use of the Kantorovich theorem in order to efficiently
produce a good test interval that presumably contains a solution. Namely we proceed
with Newton's method performed on a computer in normal floating point arithmetic. For
a given eps equa.l to the machine precision we devise a stopping criterion and construct
a test interval [x] such that K([x], x, C) C [x] is very likely to be satisfied. Moreover OUf
method is designed in such a way that the condition

lIy - x.lleo <
IIx.lloo - eps

is eventuaIly also satisfied. Here y denotes any point of the interval K ([x}, x, C). Besides
of having an elegant theoretical justification, the resulting algorithm turns out to be very
efficient in pra.ctice. It gives highly accurate results and in the same time provides a tool
for establishing the existence of solutions of certain equations.

We start with the following weIl known result concerning the Krawczyk operator.

Lemma 8 Assume that the mapping f : D ~ Rn - Rn is continuously differentiable

and the Jacobian has an intcrtJal arithmctic cvaluation f'([xJ) fOT all [x] C D such that

IIw(J'([x]))lIoo :s illw([x])lIoo, [x] c D,

for some i 2 O. If C-l E J'([x]) then the following inequality

(21)

IIw(K([x], x, C)) 1100:S 1'lIw([x])lI~

holds with l' = IICllooL.

Proof For the width of K([x],x,C) we get

(22)

= w(x - Cf(x) + (/ - CJ'([x]))([x]- x))
:S w(/ - CJ'([x])). w([x)- x)
= w(C(C-1 - J'([x]))). w[x)
= ICI. w(J'([x])) . w([x]).

Using (21) we obtain (22).

w(K([x], x, C))

0

Consider now Newton's method

k+l - k
f

'
(

k
)
-l

f(
k
) k - 0 1 2x -x- x x, -",..., (23)

applied to a mapping f : D ~ Rn - Rn. The Newton-Kantorovich theorem gives

sufficient conditions for the convergence of Newton's method starting at xo. Furthermore
it contains an error estimation. A simple discussion of this estimate in conjunction with
Lemma 8 will lead us to a test interval which can be computed using only iterates of
Newton's method.
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Theorem 5 (Newton-I<antorovich. See [1..f], Theorem 12.6.2)
Assume that f : D ~ Rn --t Rn is differentiable in the ball {xiIIx- xOIl :S r} and that

!lJ'(x) - J'(y)1I :S Lllx - y!l (24)

for all x, y from this ball. Suppose that f'(xO)-I exists and that 1If'(xOtIII :S Bo. Let.

!lxI - xOIl = 1IJ'(xOrI f(xO)1I :S '10

and assume that

1 1 - vn--=-2ho
ho = BO'1oL:S 2' ro = ho TJo:S r.

Then the Newtoniterates (23) are well defined, remain in the ball {xiIIx - xOIl :S ro}
and converge to a solution x" of f(x) = 0 which is unique in Dn{xlllx-xoll:S rd where

1 + VI - 2ho
rl = ho '10

provided r ~ rI. Moreover the error estimate

* 1 21 I

IIx - xII :S 2k-I (2ho) - '10, k ~ 0,

holds.

(25)

0

Please note that there also exists an affine--invariant form of the Newton-Kantorovich

theorem. See [5].
Theorem 5 has been used in [16] to prove the existence of solutions by explicitly compu-

ting L (this can be done by interval arithmetic evaluation of the second partial derivatives
provided they exist) and the bounds Bo and '10.

Since ho :S~ the error estimate (25) (for k = 0,1 and the oo-norm) leads to

!lx* - xOIl"" :S 2'10 - 211xI - xOIl"",

!lx* - xllloo :S 2ho'10 :S '10= IIXI - xOlloo.

This suggests a simple constructiol1 of an interval vector containing the solution. The
situation is illustrated in Figure L

If XO is dose enough to the solution x* then Xl is much doser thanxo since Newton's
method is quadratically convergent. The same holds if we choose any vector (# x*) from
the ball {xlllx - Xl 11 co :S Ilo} as starting vector for Newton's method. Because of (22) and
since x' E f{([x],x,C) it is reasonable to assume that f{([X],xl,J'(XO)-I) ~ [x] for

[.rJ= {:clll:c - Xl 1100 :S Ilo}. (26)

The important point is that the test interval [xJ can be computed witllOut knowing 130
and L. Of course all tlw arguments above are based on the assumption that the hypothesis
of the Newton. [\<Ultorovich theorem is satisfied, whieh may not be the ease if :co is far
ilWil.Y frolll .r-.
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Figure 1. Error estimate (25) for k = 1 and the oo-norm

We try to overcome this difficulty by performing first a certain number of Newton steps
until we are elose enough to a solution x' of f(x) = O. Then we compute the interval
vector (26) and using the Krawczyk operator we test whether this interval contains a
solution. The question of when to terminate the Newton iteration is answered by the
following considerations.

Our generalassumption is that the Newton iterates are convergent to X'. We set

[y] := [«[x], Xk+1,J'(xk)-I)

where

[x] = {x E Rnlllxk+1 - xlloo ~ 1Ik}
1Ik = IIxk+l- xklloo -

for some fixed k.

Our goal is to terminate Newton's method as sooo as

IIw([yJ)lloo <
IIxk+1l1oo - eps

holds, where eps is the machine precision of the floating point system.
x' E [y] so that for any y E [yJ we have

IIx. - ylloo < IIw([y])lIoo
IIx.lloo - IIx.neo .

(27)

If x. E [xl then
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Since IIx.lloodiffers only slightly from IIxk+ll1ooif Xk+l is near x', condition (27) gua-
rantees that the relative error with which any y E [y) approximates x' is elose to machine
preC1S10n.

A discussion which has been performed in [4J leads to the following result:
As soon as the inequality

81}~ < eps2 -
IIxk+ll1oo . Tlk-l

(28)

is satisfied Newton's method is stopped. This stopping criterion needs only eps, xk-l, xk
and xk+l. Hence (28) can be checked at each step of Newton's method as soon as three
successive iterates have been computed. Extensive numerical testiog has shown that the
proposed method has very good practical performance (see [4J and (6)).

Finally we note that the so-called (-inflation considered fust in [16J is another method
for computing test intervals. A more theoretical investigation of this approach can be
fouod in [l1J. .
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