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1. INTRODUCTION

In this paper we give a survey of methods which can be used for including solutions of a
nonlinear system of equations. These methods are called inclusion methods or enclosure
methods. An inclusion method usually starts with an interval vector which contains a
solution of a given system and improves this inclusion iteratively. The question which
has to be discussed is under what conditions is the sequence of including interval vectors
convergent to the solution. More often an including interval vector is not known and one
tries to compute an interval vector containing a solution by some operator which forms the
basis of an inclusion method. In other words, we prove the existence of a solution. Both
concepts are discussed and illustrated in this article. An interesting feature of inclusion
methods is that they can also be used to prove that there exists no solution in an interval
vector.

Our methods are based on interval arithmetic tools. As is well known from the literature
there exists a great variety of such inclusion methods (see [2] and [13], e.g.). Since the
purpose of this article consists in discussing the main principles of inclusion methods we
limit ourselves to only a few methods. Enclosure methods relying on other ideas are not
considered.

The paper is organized as follows: In chapter 2.1 we repeat the well known results for
the one-dimensional interval Newton method. Chapter 2.2 contains a series of properties
of the Gaussian algorithm applied to linear systems with interval data. These results
are used in chapter 2.3 where the interval Newton operator is introduced. In chapter 2.4
convergence and divergence statements for the so—called interval Newton method which
is based on the interval Newton operator are investigated. Chapter 2.5 contains results
about the speed of convergence and divergence, respectively. In chapter 3 the Krawczyk
operator is introduced and in the final chapter 4 it is shown how test intervals can be
efficiently constructed.

2. THE INTERVAL NEWTON METHOD

2.1. The One—Dimensional Case

In order to motivate the results of the later chapters we first consider a single equation
in one unknown. Assume that
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and that the derivative of f has an interval arithmetic evaluation f'([z]°) for some [z]° C
[z]. Assume that f has a zero z* in [z]°. If m[z]* is an arbitrary element contained in
[z]* (usually one chooses m[z]* as the center of [z]*) then the method

B mzk__f(m[:c]k) 2k 1
e = fmielt - Ly )
is well defined, provided 0 ¢ f’([z]°), and it holds that z* € [z]F and lim;_.[z]* = z".

Moreover the order of convergence is (under some additional conditions) at least two.
Method (1) is called the interval Newton method. For more details see [2], for example.

2.2. Preliminaries

For interval matrices [A] and [B] and a real vector c it holds in general that

[4)([Be) < ([A][B))c - (2)

This was proved in [17], p. 15. If ¢ is equal to one of the unit-vectors the equality-sign
holds. This is the content of the next lemma.

Lemma 1 Let ¢’ be the i-th unit-vector. Then

[41(Ble)) = ([A][B))ef

for arbitrary interval matrices [A] and [B].

Proof. Denote the columns of the matrix [B] by [8]', 1 <i < n. Then it holds that
[Ble' = ([o]', [t, ..., [6]")e’ = [8]'

and therefore

[41([Be) = [A](8]'.

On the other hand we have

(A(B)e = ([AI]' - - . [A]B]")e’ = [A)

and therefore the assertion follows. o

Assume now that we have given an n by n interval matrix [A] = ([a];;) and an interval
vector [b] = ([b);) with n components. By applying the formulas of the Gaussian algorithm
‘we compute an interval vector [z] = ([z];) for which the relation

{r=A"b| Ac(A), be ) o)

- holds. See (2], Section 15 or [17], p. 20 ff, for example. If we set [a]i; == la)i;, 1 <4, <,
-and [b)} := [b];, 1 < ¢ < n, then the formulas are as follows:



for k=1(1)(n—1) do

begin
for: = (k.*_ 1)(1)11 &
begin
for j = (k+1)(1)n do
el o= [ — ol
{:}kk
[B]F* = [b)% - [b]f;_[f‘_];;fz
[alie
end;
for I = 1(1)k do ;
begin
for j =I(1)n do
[a]?l = [a]f;
Bl = [B)f
end;
end;

2] = [b]n/a]5n
for : = (n —1)(-1)1 do

2] = (187 — 2 5ipa el [2])/a]:-

We have assumed that no division by an interval which contains zero occurs. In this
case we say that the feasibility of the Gaussian algorithm is guaranteed. The feasibility
is not dependent on the right hand side vector [b].

If we define the interval matrices
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then we have for the interval vector computed by the Gaussian algorithm

(=] = (D' (T ((DPATTC. - - (O (T (D) (B)) - - ) ()

where

) = [CI"((C1" (... (ICP((CT D) - - )-

The interval vector [z] computed in this manner is usually also denoted by [z] =
IGA([A], [b]) (‘Interval Gauss algorithm of [A4] and [b]’).

The interval matrix IGA([A]) is defined as the product of the interval matrices occuring
in the definition of IGA([A], [3]):

IGA([A]) = [DI'((T]'(. .- (D)~ (T (2T (CT (- - ([CT) - - )-

Note that it is not possible to omit the paranthesis in the expressions for IGA([A], [8])
and IGA([A]), respectively. IGA([A]) has the following property.

Lemma 2 Let € denote the i—th unit vector. Then IGA([A],€') = IGA([A])- ¢, 1 <

t<n.

Proof. Starting with the representation of IGA([A], ¢') and applying repeatedly Lemma 1
we get the assertion. =

The last lemma states that the —th column of the matrix IGA([A]) is equal to the inter-
val vector which is obtained if one applies the Gaussian dlgorithm to the interval matrix
[A] and the right hand side €'. In order to compute IGA([A]) it is therefore not neces-
sary to know the matrices appearing on the right hand side in the definition of IGA([A])
explicitly. IGA([A]) can be computed by ‘formally inverting ’ the interval matrix [A] by
applying the Gaussian algorithm.

Finally we need the following result.

Lemma 3 For an interval matriz [A] and a point vector b it always holds that

IGA([A),b) C IGA([A]) - b.

Proof. Apply (2) repeatedly to the representation (3) of IGA([A],b). a
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2.3. The n—Dimensional Case
Let there be given a mapping

f:lzfc DCR" > R"

and assume that the partial derivatives of f exist in D and are continuous. If y € [z] isa
fixed chosen point then

f@)-fy)=J(=)(z-y), z€D (4)
where the matrix J(z) is defined by

J(=)= ] fy+t(z - ) dt. | (5)

(See [14], p. 71, (10)). Note that J is a continuous mapping of z for fixed y. Sincet € [0, 1]
we have that y + {(z — y) € [z] and therefore that

J=) € £(ial) | 6)
where f'([z]) denotes an interval arithmetic evaluation of the Jacobian of f, provided

there exists one.

Theorem 1 Let f: D C R® — R™ be a continuously differentiable mapping and assume
that an interval arithmetic evaluation f'([z]) of the Jacobian ezists for some interval vec-
tor [z] C D. Suppose that the Gaussian algorithm is feasible for f'([z]) and take for the
right-hand side f(y) where y € [z] is fized. Then it holds:

1) If f has a (necessarily unique) zero z~ in [z] then

z" € y — IGA(f'([z]), f(¥))-

2) If

(y = IGA(f'([z]). fw) " [z] = 0 (M
then f has no zero in [z].

3) If

y— IGA(f'([z]), f(¥)) € [=] | (8)

then f has a unique zero z" in [z].
Proof. 1) Assume that z- and z** are two zeros of f in [z]. Then by (4)
0=f(z") = f(z7) = J(z")(+" = =)

where J(z~) is defined analogously to (5). Since IGA(f'([z])) exists it follows that f([z])
contains no singular matrix and since J(r~) € f([z]) it follows that J(z*) is nonsingular.
Therefore 2= = z™*. By (4) again we have that

J(@7) = f(y) = = fly) = J(«") (=™ —y).
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Since J(z*) € f'([x]) it is nonsingular and therefore it follows that

zt = y-J(=) (1Y)
€ y—IGA(f([z]), f(¥))

since

J (=) f(y) € IGA(S'([=]), S ()

by the inclusion monotonicity of interval arithmetic.

2) The proof follows because of the preceding part.

3) Since the Gaussian algorithm can be carried out on the matrix f'([z]) it follows that
all the point matrices from f’([z]) are nonsingular. In particular J(z) is nonsingular. We
consider the mapping

p:[fjc DCR*—-R"
where
p(z) =z —J(z)7' f(=)

and where for some fixed y € [z] the matrix J(z) is defined by (4) and (5).
It follows

p(z) = z—J(z)f(y) + I (=) (f(¥) - f(=))
= y—J(z)f(y)
y = IGA(f'([z]), f(v)) € [=}-

Hence the continuous mapping p maps the nonempty convex and compact set [z] into
itself. Therefore, by the Brouwer fixed point theorem it has a fixed point z* in [z] from
which it follows that f has a solution z* in [z]. By the same ideas as in part 1) it follows
that z* 1s unique. : O
 The preceding theorem has a series of implications. If one has an interval vector for
which (7) holds then [z] is an ezclusion set for the zeros of f. If on the other hand (8)
holds then [z] and because of 1) also y — IGA(f'([z]), f(¥)) C [z] is an inclusion set for a
zero of f and [z]\(y — IGA(f'([z]), f(y))) is an ezclusion set for the zeros of f.

We now consider more generally the case that we have given an interval vector [z] which
contains a zero =~ of the mapping

m

f:lzfJc DCR" - R".

f is assumed to be continuously differentiable in D. Furthermore we assume that the
interval arithmetic evaluation f'([z]) of the Jacobian f’(x) exists and that the Gaussian
algorithm is feasible for f’([z]). In the preceding theorem it was shown that z~ is unique
in [z] under these conditions. Assume now that m[z] is an arbitrary chosen real vector
contained in [z]. Then the so-called interval Newton operator N([z]) is defined by

N([z]) = m[z] = IGA(f'([z]), f(mlz]))
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and the interval Newton method (IN) is defined by setting [z]° := [z] and

mfz]* € [z]f
N([z]*) = mlz]* = IGA(S'([z]*), f(ml[z]"))
[zI* = N([z]*)n [z}
k=0,1,2,....

(IN)

Usually one chooses mfz]* as the midpoint (center) of [z]* if there is no specific infor-
mation about the location of z* in [z]*. However we don’t assume this choice.

Since z* € [z]° we have by 1) of the preceding theorem that z* € N([z]°) and therefore
that z* € [z]'. Since [z]' C [z]° it follows that f'([z]!) exists and f([z]') C f'([z]°). By
the inclusion monotonicity of interval arithmetic we conclude that the Gaussian algorithm
for f'([z]') is feasible and therefore N([z]') and hence [z]? is well defined. By mathematical
induction we can proof that (IN) computes a sequence {[x]"}zo: o of interval vectors with

z*€fz]5, k>0
and
EP2EP 2. 2R 2 2. .
From these two properties we can conclude that

Jim [o] = [2]"

and
rhE [:c]'.

The following example, introduced by H. Schwandt in [17] shows that in contrast to the
one-dimensional case repeated in chapter 2.1 it does not always hold that w([z]*) = 0. In
other words: The sequence {[z]¥} may have a limit which is a proper interval.

; Y
Example 1 Lctx:(i)andf(l‘}:( u;’rv l)‘

u’—v
145
The vector z* = ] ‘25 is the unique solution of the system f(z) = 0 in the interval
2

veclor
o__ 1 [ll, 19]
=15 ( fira) )

Choosing m[z]® as the center of [x]° we get

3 sorl,
. 88" 12584
N([=]) =
7 5801

[ J

8’ 1144
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and therefore [z]' = [z]°. If we choose m[z]* to be the center of [z]* for all k then we have
o = o == [t = o] =
and

hm[x]k [z]° £ =". 0

2.4. Convergence and Divergence Statements

In the following theorem we state and prove some convergence a.nd divergence results
for the interval Newion method (IN). The definition of these concepts will become clear
from the formulation of the next theorem.

Theorem 2 Let there be given an interval vector [z]° and a continuously differentiable
mapping

f:lzl°c DCR*—R"

and assume that an interval arithmetic evaluation f'([z]°) of the Jacobian erxists. Assume
that IGA(f'([z]°)) ezists (which is identical to assuming that the Gaussian algorithm is
feasible for f'([z]°) and an arbitrary right hand side. See the remarks following Lemma
2).

(a) Suppose that p(A) < 1 ( p denotes the spectral radius of a real matriz) where

= = IGA(f([]°) - £ (I=1°)], (9)
or that p(B) < 1 where
B = w(IGA(f'([]°))) - If'([=]°)I- (10)

If f has a (necessarily unique ) zero z* in [z]° then the sequence {[z]*}32, computed by
(IN) is well defined and it holds that z* € [z]* and limyg_o[z]* = 2*.

If one chooses m[z]* as the center of [z]* then the condition p(B) < 1 can be replaced
by p(B) < 2.

(b) If p(A) < 1 or p(B) < 1 (where A and B are defined by (9) and(10), respectively) and
- if f has no zero in [z]° then there is a kg > 0 such that N([z]*) N [z]% =B (empty set),
that is (IN) will break down after a finite number of steps because of empty intersection.

Proof. (a) From the discussion in Chapter 2.3 we know that (IN) is well defined if
IGA(f'([z]°)) exists and if f has a zero z* in [z]°. We now assume that p(A4) < 1 holds.
Note that analogously to (4), (5) and (6) we have

f(m[:-:}k) = f(m{;-:]k) = flzr)= J{m[z]k)(m[;r]k —z°) (11)
and

J(mz]*) € f([=]). | (12)



15

Besides of this we use (2), Lemma 3, and the fact that for a real vector ¢ and interval
matrices [X] and [Y] the equation ([X] + [Y])e = [X]c+ [V]c is valid. Then we get

N([z}) —z° = mlz]f -2 - IGA(f'([z]*), f(m[z]))
C mfz]f —z* — IGA(S([z]})) - f(m[z]*)
= mlz]* — z* — IGA(f([=]")) - {J(m[z]})(m[z]* — z°)}
C mlz]* —z* — IGA(f'([z)D{Sf ([z]*)(m[z]* — z*)}
C mlz]* —z* — (IGA(f([z]Y) - F'([z]*)}(m[z}* — =°)

(I = IGA(f"(I=]")) - F'([=]*))(m[z]* — =) .

Since mz]* € [z]* and | — IGA(S([z]*)) - f'([z]*)] < A it follows that
IN([z]") — z°| < Al[z])* — =7

oF xjilivalently thit

(N (), 2") < A o(fal*,2").

Since z* € N([z]*) n[z]* = [z]**' C N([z]*) it also holds that
q([z)**,27) < q(N([z]*), 2") < A q([=]*,z")

s iere

g([=]**",z") < ¢(N([z]),z") < A g([]°, ).

Because of p(A) < 1 the assertion limy_.,,[z]¥ = z* holds.
We now proof (a) under the assumption p(B) < 1. Applying Lemma 3 we get for k > 0

N([z]*) = mlz]* ~IGA(S'([z]*), f(mlz]*))
€ mlz]* —IGA(S'([=]*)) - f(mlz]*)

and for the width of N([z]¥)

w(N([=]) < w(IGA(Sf([2])) - If (mlz]*)]
w(IGA(f'([z]))) - |J (m[z]*)(m[z]* — z7)|
wIGA(f([=])) - 1S ([=]°)] - w(l=]®),

where we have used (4) and (5), the fact that [z]* C [z]° and the inequality [m[z]* —z°| <
w([z]*). '

Since [z]**! = N([z]*) N [z]* we have w([z]**') < w(N]z]*) and therefore

w([z]"*") < B w([z]")

IA A IA

and
w({z}k“) £ ghEl w([z]°),

from which the assertion limy_[r]* = r* follows. If m[z]* is the center of [z]* then

] 1
|m[z]* - z*] < Sw[r]"' and the proof can be completed also in the case p(B) < 2.
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(b) We now prove (b) under the assumption p(A) < 1. We assume that for all £ > 0
the intersection N([z]¥) N [z]F is not empty. Then (IN) is well defined and it holds that

EP 2 2. 2 [ 2 2

from which it follows that the sequence is converging to an interval vector [z]*. We
now consider the sequence {m[z]*}{2,. This sequence is contained in the compact set
[z]°. By the Bolzano-Weierstrass theorem we conclude that there exists a convergent
sub-sequence {m[z]¥},. Suppose that lim; .o, m[z]* = z*. Since m[z]* € [z]* it also
holds that z* € [z]*. Using the continuity of the functions and operations involved in the
method (IN) we get from

N(]®%) = m([z]*) - IGA(S'([z]%), f(m[z]*))
=]+ N([=]*)n [z]*

the pair of equations

[u" = =* —IGA(f([z]"), f(z*))
[z]" = [l

where [u]* = lim;_o, N([z]*¥) = N([z]).
From the second equation it follows that [z]* C [u]* and therefore that z* € [u]*. Since
z* € [z]*. Therefore we get from the first equation

2 e —IGAT Uz LI ))

or

0 € IGA(f([=]"), f(=7))

and by Lemma 3 and the inclusion monotonicity

0 € IGA(S'([=])- f(=)
C IGA(S([=]") - f(z")-

Since for an interval matrix [X] and a real vector ¢ we have [X]c = {Xc|X € [X]}
it follows that there exists a matrix X € IGA(f'([z]°) such that X f(z*) = 0. If X is
nonsingular then we have the contradiction f(z*) = 0. The nonsingularity of X can be
seen in the following manner: If Y € f'([z]°) then

H = XY <|I -IGA(S([2]°) - f'([=]°)] = A.
By the Perron-Frobenius theory it follows that
(I - XY) < p(A) < L.

Therefore

(== XY)™" = (XY)"

exists, that is X is nonsingular.
In order to complete the proof, we have to show that under the assumption p(B) < |
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there is no singular matrix contained in IGA(([z]°)). This can be seen as follows (see
[9], where also relations between p(A) and p(B) are discussed): Let Y € f'([z]°) and
X € IGA(f([z]°))- Since IGA(f'([z]°)) exists it follows that Y is nonsingular.
Therefore
-XY] < ¥ - X]|Y|

< ?;(IGAU'([I](’))) (=)

Again we have p(I — XY) < p(B) < 1 by the Perron-Frobenius theory and hence the
nonsingularity of X. This completes the proof. a

How easy or difficult are the conditions p(A) < 1 and/or p(B) < 1 to fulfill? The answer
is that these conditions always hold if the components of the width w([z]°) of [z]° are
all sufficiently small. In this case the product IGA(f([z]%) - f([z]°) differs only slightly
from the identity matrix and A is therefore a small nonnegative matrix. Analogously is
IGA(f'([z]°)) close to a real matrix if w([z]°) is small, hence w(IGA(f'([z]°))) is a small

nonnegative matrix and therefore also B.

2.5. Speed of Convergence and Divergence
In the next theorems we will present results concerning the speed of convergence and
divergence, respectively.

Theorem 3 Let there be given an interval vector [z]° and a continuously differentiable
mapping

f:z°CcCDCR">R"

and assume that an interval arithmetic evaluation f'([z]°) of the Jacobian exists. Fur-
thermore assume that for all elements of the Jacobian and some norm an inequality of

the form

w(f'([z]):;) < ellw(zDIl, ¢> 0, (13)
holds for all [z] C [z]°. If [z]° contains a zero z~ of f and if (IN) is convergent to z* then
(=) < yllw((=]®) 1%, ¥ >0,

that is the sequence of widths is quadratically convergent to zero (and therefore also the
sequence of distances q([z]¥,z") between [z]* and z*. See [2], Appendiz A).

Proof. As in [2], Chapter 19, Lemma 6, it can be shown that (13) implies for some norm

lw(IGA(S (D < &llw([zDI, ~ 20, (14)
for all [r] C [z]°. Because of (4), (5) and (6) we have
w([;r}kﬂ) < w(N( {I]

= it DIGAC ). S )

< w(IGA(S([«]")) - lf(m[f] )l

= w(IGA(f'([«]%)) - | (m][z]* Y| r]k — z*)]

< w(IGA(S (D)) - 1 (1) - ol [#])
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Using a monotone vector norm and the equivalence of all vector norms and matrix
norms, respectively, we get

o ([z)** Il < yllw((=])117

where
v=8r- LIS
and where § is a consequence of the equivalence of all norms. O

We remark that in practice the condition (13) is not very strong. It holds, for example,
for all functions with continuous partial derivatives of second order.

Quadratic convergence behaviour is a property which an iterative method usually only
exhibits asymptotically. Therefore the following behaviour is of interest.

Lemma 4 Suppose that the assumptions of Theorem 2 concerning f and f'([z]°) are true,
that f has a zero z* in [z]° and that p(A) < 1. Then m[z]* ¢ [z]*! if m[z]* # z".

Proof. Suppose that m[z]* € N([z]*). Using the relation

N([=]) = == € (I = IGA(S'([=])) - f([=]))(mlz}* - =7)

which was derived in part (a) of the proof of Theorem 2 we get, because of
mz]* — z" € N([z]}) — =",

the inequalities

mlal 27| < |1~ IGA(/([=]) - F([=]9) - bl — =

< Alm|z]* - z*|.
Since p(A) < 1 we get the contradiction m[z]* = z". O
From Lemma 4 it follows that if one chooses m[z]* as the center of [z]* and if m[z]* # z*
then at least one of the components of [:c]k""' has its width smaller than half of the width

of the corresponding component of [z]*. The next lemma shows that a similar result holds
if there is no solution in [z]°.

Lemma 5 Suppose that the assumptions of Theorem 2 concerning f and f'([z]°) are
true, that f has no zero z* in [z]° and that p(A) < 1 or p(B) < 1. Then m|z]* & [z]*+!
(provided [x]**! is defined at all).

Proof. Assume that m[z]* € [£]**'. Then m[z]* € N[z]* and therefore
0 € IGA(SL'[«)") - f(m[])).

Similarly as in the proof of (b) in Theorem 2 this leads to the contradiction that m[r]* is
a zero of f. : 0
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From the preceding Lemma 5 it is not clear how many steps it will take until the
intersection in (IN) becomes empty if there is no zero of f in [z]°. We now will show that
only a few steps are necessary if the width w([z]°) is small enough. Because of Lemma 3
we have for any [z] C [z]°

N([z]) = mfz]-IGA(f([z]),f(m[z]))  _

C mlz] - IGA(S([z])) - f(mlz]) =: N([z])-

We denote the vector of lower bounds and upper bounds of the components of N([z])
by n! and n?, respectively. Analogously we define #' and #2. Then N([z]) C N([(z]) is
equivalent to

Al <n' <n? <@l (15)

where the partial ordering is defined componentwise. As in the proof of Theorem 2 we use
the fact that for an interval matrix [X] and a real vector ¢ we have [X]c = {Xc|X € [X]}.
Therefore from the definition of N([z]) we obtain

Al = mz] - A%f(m[z]) |
{ﬁ2= mlz] — A f(mlz]) (10}

where A' and A? are real matrices contained in IGA(f'([z])). If the real vectors z' and
z? are defined analogously to n' and n?, respectively, then we get by using (15) and (16)

2 1

2 —n 2 =1

-0

z? — m[z] + A?f(m[z])

z? — m[z} + A*{f(z?) + J(m[z])(mlz] — z*)}

(1 — A2J(m[z]))(z* — m[z]) + A*f(z?).

We now assume that (13) from Theorem 3 and therefore also (14) holds. J(m[z]) is
nonsingular since J(m[z]) € f'([z]). Therefore we get

(1 — A2 (m[z)))(z* = mlz])] = |(J(m[a])! — A%) J(m[z])(z® — m[z])|
w(IGA(f([z]) - 1S ([21°) - w([=])

O(llw([=DII*)-

The right hand side denotes a vector whose components are all of the order O(Jlw([=DII?)-
The preceding inequality can therefore be written as

IhIA

I

IhIA

27— nt < O(llw((2)I) + A2 (z?). (17)
By similar considerations we get
n? =zt < O(llw([z)I") — A'f(="). (18)

We now show that for sufficiently small width w([z]) the matrices A' and A? are non-
singular: Since IGA(f'([z])) exists it follows that all Y € f([x]) are nonsingular. For an
arbitrary X € IGA(f'([z])) we have

11— XY| < Y™ = X|- Y] < w(IGA(f([=)) - I/'(=))].

Since w(IGA(f'([z]))) — 0 for w([z]) — 0 it follows that the matrix on the right hand
side has spectral radius less than one for sufficiently small w([z]). From this it follows
p(I — XY) < 1 by the Perron-Frobenius theory and therefore the nonsingularity of X
and hence of A" and A? for sufficiently small w([z]).
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Lemma 6 Assume that under our assumptions f(z) # 0 for z € [z]. Then, if w([z]) is
sufficiently small, there is at least one ig € {1,2,...,n} such that

(A'f(="))i # 0 (a)
and
sign(A' [(="))o = sign(A*£(z%))s - (6)

Proof. Since f(z') # 0 and because A! is nonsingular for sufficiently small w([z]) we have

(). Since A*, A% € IGA(f'([z])) it follows

|A% — A'| < w(IGA(S([2])))

and therefore

A2=A'4T

where ||T}| = O(Jlw([z])]])- Hence we have

A*f(z*) = A'f(z*) + T f(z*)

with T f(z?) — 0 for w([z]) — 0. By (4) and (5) we have

f@*) = f(=") + I (=) (2" - 2").

Multiplying this by A' and inserting the resulting equation in the preceding one we get
A f(z®) = A f(z') + AU (2*)(* — =) + T f(=7)

where A'J(z?)(z?—2z') — 0 and T f(z?) — 0 for w([z]) — 0. For sufficiently small w([z])
there is by (@) an index 75 such that (A" f(z?));, # 0 and therefore

sign(A®f(z%));, = sign(4'f(z"))s,

which is (8). ' O
Assume now that sign(A' f(z'));, = 1. Then by (18)

(n* — ") < (O(llw((=DI?) — A'f(z"))is <O (19)

for sufficiently small w([z]). If sign(A'f(z'));; = —1 then by the preceding lemma

-sign(A%f(z?));, = —1 and therefore by (17)

(2" — ")y < (O(lw(=DI) + A*f(z));, < O (20)

for sufficiently small w([z]).
Now the next lemma can easily be shown.

Lemma 7 We have N([z]) N [z] = 0 if for (at least) one 10 € {1,2,...,n}

(gl + SN (D), < lomlz] - m(V ()il

This is eqivalent to
(n?—x'), <0 or (2-n'), <0

or at least one 15 € {12 n}. O
f 0

The inequalities (19) and(20) show that because of the term O(Jfw([z])fi7) on the right
hand side the intersection will become empty as soon as the width w([r]) is small enonugh.
Because of the term ()uim[_r][]"'] we can speak of quadratic diverqence beliaviour.
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3. MODIFICATIONS OF THE INTERVAL NEWTON METHOD

In our assumptions on the interval Newton method we always had to assume that the
Gaussian algorithm is feasible with f'([z]°) (and an arbitrary right hand side). If f/([z]®)
contains no singular matrix this is by continuity arguments always the case if the width of
the elements of f/([z]°) is small enough. There also exist a series of sufficient criteria for
the feasibility of the Gaussian algorithm. See [10], for example. On the other hand there
exist simple examples of interval matrices which contain no singular matrix, nevertheless
the Gaussian algorithm will break down because of division by an interval which contains
zero. This is the case even if one takes into account all possible pivoting strategies. R.
Krawczyk had the idea to avoid this problem by introducing what today is called the
Krawczyk-operator. See [8]. '

Assume again that f : D C R™ — R"™ is a continuously differentiable mapping and
assume that an interval arithmetic evaluation f'([z]) exists for some [z] C D. Furthermore
let C be a real nonsingular matrix and z € [z]. Then the Krawczyk operator is defined as

K([z],z,C) =z — Cf(z) + (I - Cf([=D)([=] — 2).

K(|z],z,C) is again an interval vector. A complete analogue to Theorem 1 could be
formulated. We limit ourselves to the following result.

Theorem 4 If K([z],z,C) C [z] then f has a zero z* in K([z],z,C) (and therefore also
in [z]). 0

The proof is based on the Brouwer fixed point theorem and can be found in [2], Theorem
10 in Chapter 13 or in [12]. We omit the details.

Analogously as it was done with N([z]) we can also construct an iteration method using
the Krawczyk operator. There exist a series of possibilities. We limit ourselves to one
special case: Let [z]° C [z] be a given interval vector.

We set
:ck = m[a:]ke[:c]k
Ct = (m(f([z]))
K([z],25,C*) = 2%~ C*f(z")+ (I - C*f/([z]) () — =*) } (K)
[z = K([=]" <5 CH)n [z}
E = 0,1,2,... .

(K) is called the Krawczyk method.

Usually one chooses for m[z]* and m(f'([z]*)) the center of [z]* and f([z]*), respecti-
vely, but this is not a must. In contrast to (IN) where we have to perform the Gaussian
algorithm with an interval matrix we have to invert a real matrix which always can be
doune if it is nonsingular. For (/) similar results as in Theorem 2 can be formulated
and proved. In [3] a Krawczyk-like operator has been considered where only triangular
factorizations (and no inversions) of matrices are performed.

Finally we mention that the so-called Hansen-Sengupia operator which is a nonhnear
version of interval Gauss-Seidel iteration is occasionally prefered in practice (see [13]. pp-

P77 ).
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4. THE EFFICIENT CONSTRUCTION OF TEST INTERVALS

Both the interval Newton operator N([z]) and the Krawczyk operator K([z],z,C) can
be used for proving the existence of a zero of a given mapping f in an interval vector. This
has been stated in part 3) of Theorem 1 for N([z]) and in Theorem 4 for K([z],z,C). The
main problem is how one can find an interval vector [z] for which N([z]) or K([z],x,C)
is contained in [z].

In this chapter we propose the use of the Kantorovich theorem in order to efficiently
produce a good test interval that presumably contains a solution. Namely we proceed
with Newton’s method performed on a computer in normal floating point arithmetic. For
a given eps equal to the machine precision we devise a stopping criterion and construct
a test interval [z] such that K([z],z,C) C [z] is very likely to be satisfied. Moreover our
method is designed in such a way that the condition

lly — =*llos
T
is eventually also satisfied. Here y denotes any point of the interval K({z],z,C). Besides
of having an elegant theoretical justification, the resulting algorithm turns out to be very
efficient in practice. It gives highly accurate results and in the same time provides a tool
for establishing the existence of solutions of certain equations.
We start with the following well known result concerning the Krawczyk operator.

Lemma 8 Assume that the mapping f : D C R™® — R™ is continuously differentiable

and the Jacobian has an interval arithmetic evaluation f'([z]) for all [z] C D such that

(S ([E))lleo < Lilw([z])lleo, [2] € D, (21)
for some L > 0. If C~' € f'([z]) then the following inequality
lw(K([z], 2, C))llew < YMlw((=])Il5 (22)

holds with v = ||Clleo L
Proof. For the width of K([z],z,C) we get
w(K([z,2,C)) = w(z-Cf(z)+(I - Cf(=))(=] - =)

< wll - CF((e)))- w(le] - 2)
= w(C(C™" - f'([z]))) - wlz]
= |C]-w(f([z])) - w([=])-
Using (21) we obtain (22). 0o

Consider now Newton’s method
Ik+l - Ik s f!(Ik)—lf(Ik)‘ Lo 0’ 1’2’ L (23)

applied to a mapping f : D C R® — R". The Newton-Kantorovich theorem gives
sufficient conditions for the convergence of Newton’s method starting at z°. Furthermore
it contains an error estimation. A simple discussion of this estimate in conjunction with
Lemma 8 will lead us to a test interval which can be computed using only iterates of
Newton’s method.
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Theorem 5 (Newton-Kantorovich. See [14], Theorem 12.6.2)
Assume that f : D C R* — R" is differentiable in the ball {z|||z — z°|| < r} and that

I1/'(z) — £l < Lil= -yl (24)
for all z, y from this ball. Suppose that f'(z°)™} ezists and that || f'(z°)7|| < Bo. Let -
' = =%l = 1) F =) < o

and assume that

1 1 —+/1—2hy

AR

Then the Newton iterates (23) are well defined, remain in the ball {z|||z — z°|| < ro}
and converge to a solution z* of f(z) = 0 which is unique in DN {z|||z — z°|| < r;} where

141 =2k

ho = BonoL < o <r

L s To
provided r > 1. Moreover the error estimate
1 ¥ _:
”I. = I” S 2k—1 (Qho)z lqﬂ} k 2 0: (25)
holds. Q

Please note that there also exists an affine-invariant form of the Newton—Kantorovich
theorem. See [5].

Theorem 5 has been used in [16] to prove the existence of solutions by explicitly compu-
ting L (this can be done by interval arithmetic evaluation of the second partial derivatives

provided they exist) and the bounds By and 7.
> 1
Since kg < 3 the error estimate (25) (for kK = 0,1 and the co-norm) leads to

llz* = 2% < 2no 2||z" = 2%c,

il

[l = Il“oo < 2hone < Mo = ”I1 - Iﬂuoo

This suggests a simple construction of an interval vector containing the solution. The
situation is illustrated in Figure 1.

If z° is close enough to the solution z* then z! is much closer than z° since Newton’s
method is quadratically convergent. The same holds if we choose any vector (# z*) from
the ball {z|l|z — z'||o. < 10} as starting vector for Newton’s method. Because of (22) and

since 7 € K ([z],z,C) it is reasonable to assume that K ([z],z', f/(z°)"!) C [z] for

[e} = {z]llx = 2'Jo < 10}- (26)

1 ]

The important point is that the test interval [z] can be computed without knowing B,
and L. Of course all the arguments above are based on the assumption that the hypothesis
of the Newton- Kantorovich theorem is satisfied, which may not be the case if 2° is far
away [rom =,
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I
I
1 7 7o
1
I

Figure 1. Error estimate (25) for k = 1 and the co-norm

We try to overcome this difficulty by performing first a certain number of Newton steps
until we are close enough to a solution z* of f(z) = 0. Then we compute the interval
vector (26) and using the Krawczyk operator we test whether this interval contains a
solution. The question of when to terminate the Newton iteration is answered by the
following considerations.

Our general assumption is that the Newton iterates are convergent to z*. We set

[¥] := K([z],=**", f'(z*))

where
[z] = {zeR|z"" —z|lo < m}
M = ]IIHI - Ik"w '

for some fixed k.
~ Our goal is to terminate Newton’s method as soon as

(i)l
=%+ e —
holds, where eps is the machine precision of the floating point system. If z= € [z] then
z" € [y] so that for any y € [y] we have
e = vl _ olsDllee
Izl = Nzl

eps (27)
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Since ||z*||oo differs only slightly from [[z*+'}|o, if z¥*! is near z*, condition (27) gua-
rantees that the relative error with which any y € [y] approximates z* is close to machine
precision.

A discussion which has been performed in [4] leads to the following result:

As soon as the inequality

8% _
_ < eps 28
e 7L i
1k
and z"*'. Hence (28) can be checked at each step of Newton’s method as soon as three
successive iterates have been computed. Extensive numerical testing has shown that the
proposed method has very good practical performance (see [4] and [6]).

Finally we note that the so—called e-inflation considered first in [16] is another method
for computing test intervals. A more theoretical investigation of this approach can be
found in [11]. '

is satisfied Newton’s method is stopped. This stopping criterion needs only eps, z*~
k41
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