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1 Introduction

In [5] the following generalized additive inverse (matrix) eigenvalv.e prob-
lem was formulated (cf. also [4,9, 10, 18,24,29]).

Problem 1. Givenn + 1 real n x n matricesAi, i = 0,... ,n, and given
n real numbers Ai,i = 1,. . . ,n, findn real numbersci, i = 1,. . . ,n, such
that the matrix

n T
A(c) := Ao+ L cjAi, C:= (Cl"", Cn)

i=1
(1)

has the prescribed numbers Ai as eigenvalues if Ci=ci,i = 1,. . . ,n.

Often the matriees Ai are assumed to be symmetrie (cf. [5], e.g.). We
will also do this in our subsequent sections. But at the moment we allow
Ai to be unsymmetric, too. .

Taking for Ai in (1) the matrix ei(ei)T, where ei denotes the i-th eol-
umn of the n x n identity matrix I, results in the following additive inverse
(matrix) eigenvalue problem [6, 8, 10, 11, 12, 14, 28, 29], wrnch thus is a
special version of Problem 1.

! .

Problem 2. Given a real matrix Ao andgiven n real numbers Ai, i =
1, . . . ,n, find a diagonalmatrix C. := diag(ci, ... ,c~) such that A :=
Ao + C. has the prescribed numbers Ai as eigenvalues (where often the
diagonal entries of Ao are w.l.o.g. assumed to be zero).

Let Ao := 0 and choose Ai in (1) as null matrix with the excepti()n
of t4e i-th row which is equal to (ei)TA for a given real n x n matrix A.
The'n (1) yields to the well-known mv.ltiplicative inverse (matrix) eigen-
1Jalueproblem [8, 11, 13, 14, 15].

Problem 3. Given areal n x n matrix A and given n real numbers Ai,
i = 1, . . . ,n, find a diagonal matrix C. := diag(ci , . . . ,c~) such that C. . A
has the prescribed numbers Aias eigenvalues.

Note that for symmetrie matrices A Problem 3 is equivalent to finding
a diagonal matrix C' such that A . C' bas Ai, i = 1,... ,n, as eigenvalues.
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Often, A is assumed to be symmetrie positive definite and C. is required
to have nonnegative diagonal elements (c.f. [8], e.g.).

We illustrate the Problems 1 and 3 by the following little example.

Example 1.1. Assume that we are given two point masses ml, m2 which
are coupled by aspring of spring constant CI > 0. Assume that ml is
coupled by aspring of constant Co> 0 with some rigid wall and that m2 is
similarly connected by aspring of constant C2> 0 with a second rigid wall
standing parallel to the first one.

Denote by Xi(t), i = 1,2, the displacement of the mass mi at the time
t from its eqnilihrinm position. Neglecting gravity and using Newton's
second law [16], p. 55, ILSweIl as Hooke's law [16], p. 200, we get-by
elemcntary ruks of !IlPchauics (i.c., by the superposition of the forces)-
the following pqllatioIls of motion for our system

{
7ItIXl(t) = -rOxI(t)+rt{x2(t)-Xl(t)}
7It2X2(t) = -rJ{x2(t) - XI(t)} - C2X2(t). (2)

Here, x(t) denotes the sPcollclcll!1'ivat.iwof ;r(t) with respect to the time t.Let

A:=
(

Co+ Cl -CI

)
, D:=

(
'111 0

)
, ,I:(t):=

(
Xl(t)

)
,

-Cl Cl+C2 () 7Hz X2(t)

Then (2) can be written n,S

B!i:(t) = -Ax(t) (3)

with the solutions

X(t) = Qv(1)cos(~t)+ßv(1)sill(~t)

+ 'Yv(2)cos( At) + 8v(2)Sill(At)

(4)
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where AI, A2 are thc eigenvalues of the generalized eigenvalue problem
Av = ABv with the symmetrie positive definite matrices A and B. Thus
Al, A2 are positive and eigenvalues ofthe m!j.trix B-l A; V(l), v(2) are any
fixed eigenvectors associated with Al and ).2 respectively, and Q, ß, 1', {)

are any real constants. Normally mi, Cj are given, and one looks for Aj,
v(i) to get the solutions x( t) of (2). In some cases, however, mj, Aj, and Co
are prescribed whereas CI, C2are to be determined in such a way that the
solutions of (2) are given by (4). This means that B is known and A is

unknown. Replaeing x( t) in (3) by the fundamental solutions v(i) cos( v%t),
v(i) sin( y'A7t), i = 1,2, yields

).jv(i) = B-I Av(i)

= {B-l (~ ~) + CjB-I(!1 ~1) + c2B-l (~ ~)} v(i)
= A(c)v(i), i=1,2

with

( ) -1
(

Co 0
)A C := Ao + cIAI + c2A2, Ao:= B 0 0 '

A B-I
(

1 -1
)

A B-I
(

0 0

)I := -1 1 I 2 := 0 1

where C:= (Cl,C2l has to be eomputed. We have thus arrived at a gen-
eralized additive inverse eigenvalue problem with matriees Ai, i = 1,2,3,
whieh are symmetrie if ml =m2.

.Iuterpreted physically, the problem means the following:

Given the masses, the eigenfrequencies of the system and one spring
cOllstant, say Co, (in order to equal unknowns and equations and thus to
keep the chance for uniqueness), adjust the remaining spring constants in
snch a way that the system oscillates with the preseribed eigenfrequencies
VX1, VX;.

Assume now Cj,.Ajto be given and mj to be determined such that the
sollltions of (2) can again be expressed by (4). This means, that the spring
constants are now given whereas the masses are to be computed to make
the system oscillate with the prescribed eigenfrequencies y'Xi, y'X2. We
an~ again led to the problem

AjV(j) =B-I Av(i), i = 1,2 (5)
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where this time the diagonal matrix B is unknown and the matrix A is
known. It is obvious that (5) is just a multiplicative inverse eigenvalue
problem.

The example above ean easily be generalized to a system with n masses
and n + 1 springs with eonstants Ci, resulting in an n x n diagonal matrix
B and asymmetrie n x n matrix A.

There are several papers whieh consider existenee and uniqueness of the
Problems 1-3 provided that the matriees Ai and A are symmetrie. We eite
[7,8, 11, 13, 14, 28] without claiming to be exhaustive. Thus [11] derives
a necessary criterion for the existenee and non-existenee, respectively of
the Problem 2. In [14] a suffieient criterion is preseuted for the existenee
and uniqueness of Problem 2. In [8] it is shown that the Problem 2 has at
least one and at most n! solutions if one admits complex values for Cf. It
is also remarked that even in the 2 x 2 ease no solution needs to exist for

this problem if one restricts Ci to be real. Problem 3 has at least o,ne and
at most n! solutions if all the principal minors of A differ from zero and
if one admits again complex values for Ci. N<;>tethat the first of these two
assumptions is satisfied for an symmetrie positive definite matrices. Again
it is remarked that no solution needs to exist for Problem 3, if one restricts
Ci to be real.

In [4, 5, 9, 10, 12, 18], Ncwton's method is used to construct approx-
imations Cn to a solution (.' of thc Problem 1 where c' is tacitly assumed
to exist. As an inhc~rl'nt fac'l.of the Newton method it is remarked that

the sequence {cu} COIlVN~(,Sj,o c' if une Htarts the iteration su.fficiently
dose to c'. Thc goal uf OHrpappr consists in ckriving an algorithm which
verifies automatically thc cxist.l'lIcl' allClwit.hin S01U\'interval bounds also
the uniqueness for thc followil1~sliv;htly sp('ci;di'/'('cIVl'l'siollof Problem 1.

Problem 1', Given n + 1 realn x lLl'i'ylH/III'LriclIlat,rkc'l'iAi, i = 0,1, . . . , n,

and given n real numbers

)'1 < >.~ < . . . < ,\"

find n real numbers ci, i = 1,... \n, such that tlw matrix A(c) from (1)
has the prescribed numbers Ai as eigenvalues for Ci = ci, i = 1,. . . ,n.
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Our algorithm starts with the Newton method as described in [10], e.g.,
which, in practice, stops with a vector 15,viewed to be an approximation
of c.. Unless additional considerations are done (e.g., check whether the
assumptions of Kantorovich's theorem are fulfilled) nothing can be said
about the existence of c. by this purely computational process. I~ the

sequel, we will use interval arithmetic combined with Brouwer's fixed point
theorem to verify c' in some neighbourhood U of Cor to get informed that
no solution c' existsin U. In the first case the algorithm even guarantees

the uniqueness of c. with respect to U.

We have organized our paper as follows. In Section 2 we introduce
some definitions and notations. In Section 3 we recall some results needed
to understand the algorithm which is presented in Section 4. In Section 5
we illustrate this algorithm by numerical examples.

2 Preliminaries

(6)

By Rn, Rmxn, IR, I Rn, I Rmxn we denote the set of real vectors with
n components, the set of real m x n matrices, the set of intervals, the
set of interval vectors with n components and the set of m x n interval
matrices, respectively. By "interval" we always mean areal compact in-
terval. Interval vectors and interval matrices are vectors and matrices,
respectively, with intervals as entries. We write intervals in brackets with
the exception of degenerate intervals (so-ca1led point intervals ) which' we
identify with the element being contained, and we proceed similarly with
interval vectors and interval matrices. Examples are the unit matrix I
and its i-th column ei. If necessary, yve identify the elements of Rn xl
and I Rnx 1 in the usual way with those of Rn and I Rn, respectively. We
1\S~ the notation [a] = [~,a] E IR simultaneously without further ref-
c'rmice, and in an analogous way we write [x] = [~,x] = ([xd) E I Rn
/Lud [A] = [Li,A] = ([fuj,aij])= ([aij])E IRnxn. By int([x]) we de-
note the topologieal interior of the interval vector [x], by x we mean its
midpoint x := (;r + x) /2 E Rn. We proceed similarly for interval ma-
trices [A] for which we introduce, in addition, the non-negative matrix
1[A]! = (Cij) E Rnxn by Cij:= max{lfujl,laijl}.
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We equip IR with the usual arithmetic, i.e., we define

[a] 0 [b] := {ä 0 bl ä E [a], bE [b]}

for 0 E {+, -, .,I}, with 0 fJ. [b]in case of division. It is easily seen that
(7) can be expressed by

[a] + [b]

[a] - [b]

[a] . [b]

[a] / [b]

= [G+./1,a+b],
= [ß.- E, a -ld,
= Imin S, max S]

1 1
= [a]. I];,E]'

with S := {G./1,Gb,aQ,ab},

We recall, that (IR,+,.) is not a field. But it turns out (cf. [3]) that
(I R, +), (IR,.) are commutative semigroups with the neutral element 0
and 1, respectively. Addition and multiplication are related by the so-called
subdistributivity law

[a] . ([b]+ [c]) ~ [a] . [b]+ [a] . [c].

Equality seldom holds in (8). We point out, that for non-degenerate
intervals, inverses are missing. Thus, equations cannot be handled as usual.

The product [C] = [A] . [B] of two interval matrices [A] E I Rmxn,
[B] E IRnxp is detined entrywise by

"
[Cij] := 1: [aik]. [bkj) (i = 1,..., m; j = 1,... ,p).

k=1

It is obvious by (7) that

{A. BI A E [A],B E [B]} ~ [A]. [B]

holds. Simple examples show, that "~" call1lOt,be rpplac:ed by "=" in (9).

For the symmetrie matrix A(c) = Au + L:'=1 ('jAi of Problem I' we

introduce the eigenvalue vectol' A(C) = ('\i(C'»)E R" where '\i(C), i =
1,..., n, are the eigenvaluesof A(c). For each r E RH we assume '\i(C) to
be ordered increasingly, Le., >'l(c) ~ '\2(C) ~ ... ~ A,,(C), where multiple
eigenvalues are counted according to their multiplicity. Assume just for
the subsequent definitions that c" exists.
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(7)

By [25], p. 45, Ai(C) depends continuously on c. Observing (6) we
therefore get

tim Ai(C)= '\i(C")= Ai, i = 1,..., n.c--c'

In particular, there exists a neighbourhood U' ~ Rn of c" such that

A)(C) < '\2(C) < ... < A,,(C) for cE U". (10)

For these vectors c let qi(c) E Rn be the eigenvector of A( c) which corre-
sponds to Ai(c) and whieh satisfies

Ill(c)ll~:= (qi(c)( qi(C)= 1 (11)

and sign q{(c) = sign q{(c") where we assume w.1.o.g. sign q{(c") to be non-
zero. By [25],p. 45, eigenvectors of algebraic simple eigenvalues depend
continuously on the entries of the matrix. Therefore we have

tim qi(c) = qi(c").c--c'
(8)

Although it is well-known, t4at qi(c) depends analytically on c we will not
exploit this fact in order to prove the following lemma, which can already
be found in [9].

Lemma 2.1. For tbe Problem l' and cE U" we get

a((qi(C»)TA(c) qi(c») = (qi(c)f Aj qi(C),i,j = 1,...,n.

(9)

Pmof. Let to > 0 such that Ct := c + t ej E U", 0 ~ Itl ~ to. Then
A('t)qi(ce) = Ai(Ct)qi(Ct) implies

(/(.))T A(Ct)qi(Ct) = (qi(c))T A(C)qi(Ct) - t(qi(c»)T Ajqi(Ct)

= (Ai(Ct) - Aj(C»)(qi(c)f qi(Ct)+ ,\j(c)(qi(c)f qi(Ct).

Dividing by t =I0 and taking into account (qi(c)f A(c) = Ai(C)(qi(C»)Twe

(
'

)
T' '\i(Ct) - ,\t(c)(

'

)
T'

!lld.Hin ql(C) Ajq'(Ct) == q'(C) ql(Ct). Letting t tend to zerot,
;111.1oJli'i,'rving the continuity of ql(Ct) as weil as (11) proves the lemma. 0



12 G. Ale[eld, G. Mayer

In Section 3 we will use the function I : U. -+ Rn with the entries

Mc) :== (qi(C))T A(c)qi(c) - Ai, i = 1,..., n (12)
and Ai from Problem I'. The zeros of I are clearly the solutions of this
problem.

We will also consider the matrix A( c) for interval arguments [c] =
([c;]) E I Rn Le. A([e]) = Ao + Li=1[eliAi E I Rnxn. By Ai([e]) E IR and
qi([e])E IRn wedenote any supersets of {.\i(C)\cE [e]}and {qi(e)1c E [e]},
respectively, where i is kept fixed.

Inthe subsequent section, we will show how one can get Ai([C])and
qi([c]). It is clear by (9) and by Lemma 2.1 that the Jacobian I/(e) of I(e)
satisfies

I/(e) == ((qi(e)f Ajqi(e)) E f'([e]) := ((qi([e]))TAd([C]))
for e E [e].

We will use f'([e]) in connection with some version of the interval New-
ton method. To formulate this method, we define the vector

(13)

IGA(!C],[b])EIRn (14)

to denote the vector which results from the interval Gaussian algorithm

applied to [CI E IRnxn and [bI E IRn. For simplicity (and in order to
be unique) we assurne this algorithm to be performed without pivoting.
Since IGA([C], [b]) is obtained by formulae which read quite analogously
to those of the standard (i.c., non-interval) Gaussian algorithm, it is clear
by (7) that

{C-I bl C E [C], h E [/i]} ~ IGAnC], [bD

holds whenever IGA([C], [bI) cxists; in particular, C-I exists in this case
for any matrix C E [C]. Cf. [31ur [191 for mon' drtails concerning the
definition, the existenee anel propcrtirs of IGA([C], [li]).

3 The algorithm

We start this section by recalling same basic facts on the interval Newton
method

[X]k+1==N([xJk, xk) n [xY, k==O,l,...

A Computer Aided Existence and Uniquencss Proof...
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with the interval Newton operator

N([x],x) := x - IGA(g'([xJ),g(x)), x E [x}E IRn.
(16)

Here, 9 : [x}o E I Rn -+ I Rn is areal continuously differentiable vector
function for which we seek a zero within [x]O;

g/: {[x} E IRnl [x] ~ [x]O} -+ IRnxn
(17)

is an interval function for which

{i(x)\ x E [x]} ~ g'([x])

holds if [x} ~ [x]o. Assume that g/ in (17) is given beforehand in order
to make the definition (16) unique. Think, e.g., of an interval arithmetic

evalution [3], Ch. 3, for a fixed expression g'(x) of the Jacobian of g. Later
on, we will apply the following results on the interval Newton method.

Theorem 3.1 [1]. Let g, N, [x]obe given as above and assume [x}k,
k = 1,2, . . .to be constructed by (15). If lX}Oeontains a zero x' oE9 then
the vectors [x]k, k = 1,2,. . . are weH denned, each oEthem eonta.ins x', and
they eonverge monotonically to the interval vector[x]' := nk=O!x}kwhieh
again encloses x' .

In [I] it is shown by an example due 1.0Schwandt [30] that J:..':f:.X" can
occur for the bounds of [x]. from Theorem 3.1. Criteria which guarantee
J:..'= x' ==x' can also be found in [1]. They are fulfilled if g'(x') is non-
:;ingular and if [x}Oencloses x' sufficiently tight.

Theorem 3.1 can be applied if (18) of the followingtheorem holds.

Theorem 3.2 [1]. Let 9 and N be denned as above.

it) JE
N([x},x) ~ [x] (18)

then [x] contains exactly one zero oEg. This zero 1salso contained in
N([x], x).

b) JE

(15)

N([x},x) n !x}==0

t,lwn[x} contains no zero oEg.

(19)
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Condition (18) can often be fulfilled by using the so-called (-inflation
(cf. [26]) which rI,lodifies (15) in the following way.

Algorithm 3.3.

Choose I::as a small positive number and let kmaz be some positive integer.

Step 1:
Compute an approximaUon xapproz:of x' using any non-
linear system solver. E.g., apply the floating point New-
ton method.

Step 2: Iterate according to the following pseudocode.

k:= 0

Iy] := .[xapproz , xapproz]

repeat
k := k + 1

[xj := [yJ+ [-€, €J[yj+ [-1],1]j
choose x E [x)
[v) := N([x),x)

if [y]n [x)= 0 then write (' [xJcontains no zero')
until [v) ~ Ix) or k = kmaz'

Step 3:
IE k < kmaz then continue iterating according to (15)
until some stopping criterion is fuliWed. Otherwise stop
cr improve xopproz:or change €. In the two latter cases
start. the inflation process once more.

In Step 2, 1] denotes a fixecl small numher (e.g. the smaUest machine
number) necessary to guarantpü inflation iE[VIi =o.

Without further knowledgeon g, there is no guarantee to avoid k =
kma;:.But it is a wide numerical experiellcl' that. (18) is achieved after one
or two steps of inflation provicled x' r.xists aud xapproz:approximates x'

sufficiently weil. In addit.ion, there are 1\11;0criteria which guarantee that
€-inflation yields (18) after finitely many stpps of iterations according to
Step 2 of Algorithm 3.3. Cf. [23) or (27) for details.

We remark that there are also results dealing with (19); cf. 11] and[201,e.g.

It is obvious that the Steps 1-3 form the base of an algorithm to verify
a solution of Problem I' and to prove its uniqueness within some interval
bounds. One only has to replace g(x) by fee) from (12), g'([x]) by J'([c))

from (13), and x by c. Unfortunately, J'(!e]) = ((qi([e]){ Ajqi([c])) is not
given by an arithmetic expression with respect to [e]. This complicates
t.he problem. There are several methods to construct enclosures for the
rigenvectors qi(e), e E [e];cf. (21) for an overview. Forour numerical results
wc chose a method described in [2J for point matrices and generalized in
[22Jto interval matrices. The essential ideas are the following.

Let (x)) be an approximation of an eigenpair (x',). *) of areal n x n
matrix A from a, given interva,l matrix [A], which, later on, will be A([c]).
Without loss of generality assume xn = x~ = Cl :/= O. For x E Rn and
>.E R introduce the erIors ~x := X - x, ~>. := >.-~. Then ~xn = 0 and

A(x + ~x*) = (~ + ~A.)(X + ~x')

hence

0 = ~x - Ai - (A - ~I)ßx* + x~>"+ (ß).')ßx'.

Sinceßx~ = 0, (20) is equivalentto

(20)

0 = r - Bßy' + (ßY~)(ßY')

where

!

r:= ~x-Ax,
6.y. := (6.xi,... l6.x~-l' ß)..)T,
ßy. := (ßxi,...,ßX~-l,of,

!LW!where B E Rnxn is equal to A - ~I with the exception of the n-th
('ohunn, which coincideswith -x. With C E Rnxn, (20) yields the fixed
point. form

ßy' = Cr + (I - CB)ßy. + C(ßy~)ßy' (22)

(21)

whirh is the base of the iuterval iterative process

[6.y)k+l = g([ßyJk) n [6.y]k, k=O,1,... (23)

wh/'I'!'

. g([ßyJ) := Cr + (I - C[B])[ßY] + C([ßYn)[6.y)). (24)
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Analogously to (21), [~yl coincides with [~y] in the first n -1 components
whereas the last component is defined to be zero. The matrix [B] E I R"X"
is equal to [A] - Ü with the exception of the n-th column, which again
coincides with -.2:.

Starting with an approximation of an eigenpair, (25) can often be ful.
filled using an €-inflation analogously to AIgorithm 3.3. In our next theorem
wc show that €-inflation used as in AIgorithm 3.3 is superfluous if {~y]O

ean be chosen in a particular way.

With the notation above, and with (9) and (22) the following theorem
can easily be proved for (23), Theorem 3.6 [2]. Denote by IIxll tbe maximum norm for x ER", and

!Ist? tbe same symbol for its a..c;sociated matrix norm. Deline

Theorem 3.4. If ~y' E [~y]O tben ~y' E [~y]/;, k = 0,1,.. " and
tbe iterates [Ay],I:converge monotonically tothc interval vector [AyJ' :=
nr=o[Ay]1:wbich again encloses ~y'.

We add another result which resembles Theorem 3.2.

Theorem 3.5. Let 9 be delinedby (24) and let [~y] E IR".

a) If
g([Ay]) ~ int([Ay]) . (25)

then C is non-singular,and for each matrix A E [A] the vector (x +
[Ay],5.+[AYn])contains exa.ctlyone eigenpair(x', )..t),wbicbdepends
on A, with xn = x~ = Q:'t=O. In addition, (23) can be performed
without intersection, when starting witb [Ay]O:= [Ay].

b) If
g([Ay]) n [Ay]=0 (26)

tben for no matrix A E [A] the vector (i + [AP],.\ + [AYn]) contains
an eigenpair (x',)..') with x~ = 0:.

Proof. .

a) is proved in [22] bascd on results from [26].

b) If the assertion is false thcn thcrr is a matrix A E [A] and an eigenpair
(x', 'x') of A such that x~ = Q:'8.ndAy' E [~yJ. By (22) and (9) we
get

~y' = g(~y') E g([~y'])

which contradicts (26).

p := IICrll, (J := 1111- C[BJIII, 7:= IICII.

Assurne
a<1 and (1-a)2-4p7>0. (27)

Then
1 - a :!:j(l'::: a)2 - 4p7

ß;j;:= .27

lire real numbers, and

[~y] := [-ß,ß] . (1,1,..., 1f (28)

fullills (25), provided ß E (ß-,ß+). JE[A] is a point matrix and if ß is
('lIasen froJ!l1.(ß-,(ß- +ß+)j2) then [Ay]' = [Ay',Ay'l for tbe limit of
(23), witb :;1y' from (22).

Note that the assumptions (27) certainly hold if C ~ iJ-l, if the cli-
~Lllwter of [BI is sufficiently small, and if (x, X) is for each matrix A E [A]
a j!;ood approximation of an eigenpair (x., )..'), If the last two conditions
hold and if [AI is degenerate, it is shown in [2], that iJ-1 exists, provided
>" is an algebraically simple eigenvalue. We remark that (10) guarantees

I.hi,.,latter property at least near a solution of Problem 1'.

Ir (23) is applied to A([c]) with [~y]O satisfying (2:» then one gets
ill'/'iLl.l'S [x]k := i + [~y]k which enclose eigenvectors x(c) of A(c), cE [c],
lIol'lIlalized by Xn(C) = Q:'.To get enclosures qi([c]) of qi(C), c E [cJ,we
IIll1SI.t.itkcinto account the normalization (11). This can be done in several
WiLYS.To this end define .

h(x):= I: 2 for xE Rn\{O}.
Ej;::\ Xj

0 I"",,, I ()~7
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Replacing x by [x] E IRn with 0 rt [xl, yields an interval function h([xJ) St,ep 3:
in which the squares and the root are computed for [al E IR as

[a12 := { ä2 I ä E [al },

and
M := { ~ Iä E [a] },

where we assume G 2:0 in (29). It is easilyseen that h([xJ)contains all unit
vectors (with respect to the Euclidean norm) of the vectors from [x]. Unfor-
tunately, h([xJ), often highly overestimates the range H := {h(x) Ix E [x]}.
To get tighter bounds, let h' (x) dcnote the Jacobian of h at x. Replace
Xj by [xlj in h'(x), j = 1,..., n, and denote the result by h'([x]). Choose
x E [x]. Then it can be shown (see [3], e.g.) that the so-called mean value
form

hmvf([x]) := h(x) + h'([xJ)([x] - x)

IE (25) has been fulfilled in Step 2, then continue iterat-
ing according to (23) (without intersection) until some
stopping criterion is fulfilled, ending up with same vec-
tor [b.y]ko.

(29) St(~P 4:
Compute

[x] := x + [b.j)]kO, (,\,]:= ~ + (b.Yn]ko.

,~'t('p5: Compute

qi((e]):= h([x]) n hmvf([x])

as in (30).

We formulate now the complete algorithm for verifying and enclosing
I'. of Problem 11.

encloses H in most cases tighter than h([x]), provided .I.is sufficiently elose
to x. Therefore we will use the intersection Algorithm 3.8.

h([x]) n hmv!([x])

as enclosure for H.

Now we are able to construct qi([e]) using (23) and (30) in the following
way.

Algorithm 3.7.

Step 1: Compute an approximation (x, ~) for tbe eigenpair

(qi(c), '\'i(C))of A(c) using any standard algoritbm. E.g.,
apply a software package Iike LA PACK.
Set 0: := in.

Step 2: If (27) is fulfilIed, tben compute [D.y] according to
Theorem 3.6 with ß E (ß-, ß+) elose to ß-.
Otherwise use E-inflation starting with (x, ~) and pro-

ceeding analogously to Step 2 in Algoritbm 3.3.

(30) 11)Approximation C of e. by using Newton's metbod

1. Choose c := cOE Rn.

2. Compute '\'(c), qi(C), i = 1,..., n.
3. Computef(c) = "(c) - "* E R" and f'(c) = ((qi(cf Ajqi(c)) E

R"xn.

4. Solvef'(e)(c - c) = - f(c). ("Newtonstep")

5. If Cdoes not fulfiIl some given stopping criterion, then set c := c
and goto Step 2 or stop.

I,) Vaification part and improvement of tbe bounds

G. [cl := [c,c]; inc/usion := fa/se.

i. [e]:= [c]+ [-E,EHel + [-7},1]].

8. Compute A([c]) and A(c).

9. Compute '\'(c) and f(c) = '\'(c) - ,\,' ERn.

/(). Compute and normalize [x]i([c]), i = 1,..., n, endingup with
I/([C)).

("E-inflation" )

2*



We remark that c in Step 9 and Step 12 can be replaced by any vectol'
c !rom [cl.

If inclusion = true for the first time (cf. 13. in Algorithm 3.8) then by
Theorem 3.2 we have verified a unique solution c' of Problem I' within [cl
and also within [cl'. This finishes the verification part of the algorithm,
and the phase of improving the bounds d., 7! for c' starts by continuing thp
loop 8-14 until some stopping criterion is fulfilled.

4 N umerical results

We apply now Algorithm 3.8 on several examples. We used the scientifi('
programming language PASCAL-XSC on a HP 720 workstation. PASCAL
XSC allows directed roundings and outward rounded interval arithmetic.
cf. 117].

Example 4.1.

Ao=

6 1 3 -2 0
1 2 2 0 4
3 2 1 2 0

-2 0 2 -2 0
0 4 0 0-3

2 1
1 0
0 -4

-1 -1
1 0

0 -1 1
-4 -1 0
-2 1 3

1 0 5
3 5-1

, AI=

* 'T
>. = (-10, -5, -1,4,10) .

Starting vector: cO= (-2.9,4.1,0.9,2.01,-l.Olf.

Verified enclosure:

1

[
[cl= [

. [
1

-3.00000oo00000002E + 000,
3.999999999999999E + 000,
9.999999999999996E - 001,
1.999999999999999E + 000,

-1.000000000000001E + 000,

-2.999999999999999E + 000 I
4.000000000000001E + 000 ]
1.000000000000001E + 000 ]
2.000000000000001E + 000 I

-9.999999999999997E - 001 ]
3 2 0 0 0
2 0 0 0 0
0 0 -5 0 0 I.
0 0 0 -6 8
0 0 0 8 6

Exact c*= (-3,4,1,2,-lf, A(c*)=

":xnmple 4.2.

..to=

-4 4-1
4 -4 -3

-1 -3 -4
0 2-4
0 -5 -1

0 0
2 -5

-4 -1
8 -2

-2 8

AI=

1 000 0
0 1 000
0 0 1 0 0
0 0 0 1 0
00001
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11. Compute J'([c]) := (qi([e])TAjqi([e])) E IRnxn.

r 1 2 -3 0 -1 ) [2 -1 0 2 1

2 -1 -3 1 0 -1 2 1 0 -6
12. Compute [cl' := c - IGA(J'([e]), j(c)). ("Newton step") A2 = -3 -3 O. -2 2 , A3 = 0 1 -3 8 -3
13. If inclusion = jalse and jf 0 1 -2 0 6 2 0 8 6 -3

-1 0 2 6 1 1 -6 -3 -3 4,

\ [cl'S;[cl, ,,' ind",ion 0=tcu, r -3 -2 2 0 4
[-3 -1 -5 3 2

("verifieatjon sueeeeded"). -2 1 2 -4 0 -1 2 7 -1 -2
[e]' [c], set [cl:= [e]',goto Step 7 or stop A4 = 2 2 -2 -1 2 , A5= -5 7 5 -3 0

("verHicatioI1 failed"). 0 -4 -1 -5 0 3 -1 -3 0 -2
\ 4 0 2 0 1 2 -2 0 -2 4

14. Set [c]:= [e]'n [e]and goto Step 8 or stop.



11111
1 1 1 1 1
11111
1 1 1 1 1
11111

-1 -1 -1 -1 -1
-1 0 0 0 1

A4 = I -1 0 3 2 1
-1 0 2 0 1
-1 1 1 1 2

>: =(-8, -4, -3,6, 7)T .

22

A2 = A3 :::;

, A5:::;

20001
02001
00201
00021
1 1 1 1 1

-3 2-1
2 1-2

-1 -2 0
0 3 2

-1 -4 0

Startingvector: co:::; (-0.9,1.1, -0.9,0.9, -0,9f,

Verified enclosure:

[
[

[cl = [
[
{

-1,OOOOOOOOOOOOOOIE + 000 ,

9.999999999999999E - 001 ,
-1.000000000000001E + 000 ,

9.999999999999999E- 001 ,
-1.000000000000001E + 000 ,

. T.
Exact c = (-1,1, -1, 1, -1) , A(c):::;

G. Alefeld, G. Mayer

0 -1
3 -4

2 0 I'
1 -1

-1 2

-9.999999999999992E - 001 )
1.000000000000001E + 000 ]

-9.999999999999996E - 001 j
1.000000000000001E + 000 ]

-9.999999999999998E - 001 ]

-4 2 0 0 0
2 -7 0 0 0
0 0 -3 -3 0
0 0 -3 5 0
0 0 0 0 7

A Computer Aided Existence and UniqucnessPfOOE....

Example 4.3.

0 4 -1 1 1 5 -1 1
4 0 -1 2 1 4 -1 2

-1 -1 0 3 1 3 -1 3
1 2 3 0 1 2 -1 4
1 1 1 1 0 1 -1 5
5 4 3 2 1 ° -1 6

-1 -1 -1 -1 -1 -1 0 7
12345670

>" = (10,20,30,40,50,60,70, 8of.

Ao=

23

, Ai=ei(eif, i=I,...,S.

Starting vector: CO= (10,20,30,40,50,60,70,80f .

Verified enclosure:

[
[
[
[

[cl= [
[
[
[

1.190787610247270E + 001,

1.970552150808698E + 001,
3.054549818697703E + 001,

4.006265748844803E + 001,
5.158714029072548E + 001,
6.4 70213143217948E + 001,

7.017067582089113E + 001,
7.131849917021904E + 001,

1.190787610247272E + 001 ]
1.970552150808700E + 001 I
3.054549818697705E + 001 I
4.006265748844805E + 001 I
5.158714029072551E + 001 I
6.470213143217953E + 001 I
7.017067582089118E + 001 I
7.131849917021909E + 001 ]

111aU three examples the following properties occur:

. All the entries of the matrices Ai are machine representable real num-
lJ(~rs.

. The starting vector cOdiffers from the exact solution c' by 10% ap.
Ilwximately.

. The verification process needs only 1 inflation step. It was realized by
IIsing the function blow([x],f) ofPASCAL-XSCwith f =0.1 in Step 7
of AIgorithm 3.8. By Theorem 3.2 it is guaranteed that the listed
illt,~rval vector [cl contains exactly one solution c' of the Problem I'.
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. The improvement of the bounds stops whenever [c]' = [cl holds in
Algorithm 3.8, due to outward roundings on the computer. This
part of the algorithm needs about half of the total time. Thus it is
very time consuming. Since the bounds did not become much tighter,
the improvement step is (at least for our examples) not very efficient
and can be skipped.

Finally we remark, that Example 4.3 is taken from [10],where the ap-

proximation c = (11.90788,19.70552,30.54550,40.06266,51.58714, 64.70213110]
.70.17068,71.31850)T of c. is given which has been obtained by the New-
ton method. When the bounds of our verifying vector [cl are rounded
(outward) to seven significant digits, then the approximation c in [10] is
contained in [cl.
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