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ON ENCLOSING SIMPLE ROOTS OF NONLINEAR EQUATIONS

G. ALEFELD, F. A. POTRA, AND YIXUN SHI

ABSTRACT.In this paper we present two efficient algorithms for endosing a
simple root of the nonlinear equation f(x) = 0 in the interval [a, b] - They
improve recent methods of Alefeld and Potra by achieving higher efficiency
indices and avoiding the solution of a quadratic equation per iteration. The
efficiency indices of our methods are 1.5537... and 1.618... , respectively.
We show that our second method is an optimal algorithm in some sense. Our
numerical experiments show that the two methods of the present paper compare
well with the above methods of Alefeld and Potra as well as efficient solvers of
Dekker, Brent, and Le. The second method in this paper has the best behavior
of all, especially when the termination tolerance is small.

1. INTRODUCTION

In arecent paper, Alefeld and Potra [2] proposed three efficient methods
for enc10sing a simple zero X* of a continuous function fex) in the interval
[a, b] provided that f(a)f(b) < O. Starting with the initial enclosing interval
[al, bd = [a, b], the methods produce a sequence of intervals {[an, bn]}~l
such that

(1) E
r b '~

[ b lr- r-r- 1.1 r~ l.l
X* Lan+l, n+lJ ~ an, nJ ~ ... ~ LUl, UlJ = LU, Uj,

(2) lim (bn - an) = O.n-+oo

The asymptotic efficiency indices of each of those three methods, in the sense of

Ostrowski [10], are Y2 = 1.4142... , ~ = 1.5874... , and 1(3 + JT3)/2 =
1.4892. .. , respectively. The numerical experiments in that paper show that
the practica1 behavior of those methods is comparable to that of the efficient
equation solvers of Dekker [6] and Brent [5], although they perform slightly
worse on some problems.

Although there are many enclosing methods for solving the equation

(3) fex) = 0,

where fex) is continuous on [a, b] and has a simple root x* in [a, b], most
of them do not have nice asymptotic convergence properties of the diameters
{(bn- an)}~l . For example, in case of Dekker's method, the diameters bn- an
may remain greater than a relative large positive quantity until the last iteration
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when a "<>-step" is taken. In case of Le's Algorithm LZ4 of [8], the conver-
gence properties of {(bn - an)}~ 1 have not been proved except that the total
number of function evaluations will be bounded by four times that needed by
the bisection method, which is also the upper bound of the number of function
evaluations required by our second method in this paper. For other examples,
like Brent's method, the Illinois method, the Anderson-Björck method, the Reg-
ula Falsi method, Snyder's method, the Pegasus method, and so on, only the
convergence rate of {Ixn-X*I}~l ' where Xn is the current estimate of X*, has
been studied and not the convergence rate of the diameters (bn - an) .

In case fex) is convex on [a, b], the c1assicalNewton-Fourier method [10,
p. 248], J. W. Schmidt's method [12], and the methods of Alefeld and Potra
[1] produce a sequence of enc10sing intervals whose diameters are superlinearly
convergent to zero. The highest asymptotic efficiency index of those methods,
1.5537..., is attained by a method of J. W. Schmidt [12] and a slight modifi-
cation of this method due to Alefeld and Potra [1].

In the paper of Alefeld and Potra [2] three iterative methods are proposed that
produce enclosing intervals satisfying (1) and (2) without any convexity assump-
tions on f. Surprisingly enough, under appropriate smoothness assumptions,
one of the methods of [2] has the efficiency index 1.5874..., which is higher
than the efficiency index of the above-mentioned method of J. W. Schmidt [12].

In the present paper two new algorithms for enc10sing zeros of nonconvex
functions are presented. Our first method requires at most 3, while our second
method requires at most 4 function evaluations per step. Both methods reduce
the length of the enc10sing interval by at least one half at each step, so that in
the worst case scenario our methods require 3 times, respectively 4 times, more
function evaluations than the bisection method. As the bisection method, or
the methods of Brent [5], Dekker [6], or Le [8, 9], our methods are applicable
to rather general problems involving discontinuous functions and derivatives,
multiple zeros, etc. (see Theorem 3.1). However, in case of simple zeros of
C3-functions we can prove that, asymptotically, our first method requires only
2, and our second method only 3 function evaluations per step. Moreover, in
this case the sequence of diameters {(bn - an)}~l converges to zero with R-
order at least 1 + V2 = 2.414... for our first method, and R-order at least
2 + vs = 4.236. .. for our second method. Hence the corresponding efficiency

indices are VI + V2 = 1.5537... and </2 + vs = (1 + VS)/2 = 1.618... ,
respectively. As far as we know, the latter is the highest efficiency index for
iterative methods that produce monotone enc10sing intervals for simple zeros
of sufficiently smooth functions.

This paper improves the results of [2] in two ways. First, by making better use
of available information, we obtain a higher efficiency index. Second, our new
algorithms do not use the exact solution of a quadratic equation at each step.
Instead, we use 2 or 3 Newton steps to get a convenient approximation. This
modification saves the work of computing the square root, makes the subroutine
program much simpler, and preserves the good convergence properties. For
convenience of comparison, we list the three algorithms of [2] in the Appendix
of this paper.

In our numerical experiments we compared our methods with the methods in
[2], with the methods of Dekker [6] and Brent [5] which are used in many stan-
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dard software packages, and also with the AIgorithm LZ4 of Le [8]. The results
are presented in §5. The numerical results show that the two methods of the
present paper compare weIl with the other six methods. The second method in
this paper has the best behavior of aIl, especiaIly when the termination tolerance
is small.

In §6, we show that in a certain sense our second method is an optimal
procedure.

2. PRELIMINARY SUBROUTINES AND LEMMAS

In this section we present some notations and results to be used later. We
assume throughout that f(x) is continuous on [a, b] and that f(a)f(b) < O.
We consider a point CE [a, b].

Subroutine bracket(a, b, c, Ci,b, d) .
If f(c) = 0, then print c and stop;
If f(a)f(c) < 0, then Ci= a, b = c, d = b;
If f(b)f(c) <O,then Ci=c, b=b, d=a. 0

After caIling the above subroutine, we will have a new interval [Ci,b] c [a, b]
with f(Ci)f(b) < o. Furthermore, we will have a point d ~ [Ci,b] such that if
d < Ci then f(Ci)f(d) > 0; otherwise f(d)f(b) > O.

Subroutine Newton-Quadratic(a, b, d, r, k).
Set A = f[ a, b, d], B = f[ a , b] ;
If A = 0, then r = a - B-l . f(a);
If A. f( a) > 0, then ro = a , else ro = b ;
For i = 1, 2, .. . , k do:

P(ri-d P(ri-d
ri = ri-l - P'(ri-d = ri-l - B + A(2ri-l - a - b) ,

r = rk. 0

(4)

The above subroutine has a, b, d , and k as inputs and r as output. It is
assumed that d ~ [a, b] and that f(d)f(a) > 0 if d < a and f(d)f(b) > 0
if d > b. Furthermore, k is a positive integer and r is an approximation of
the unique zero Z of the quadratic polynomial

P(x) = P(a, b, d)(x) = f(a) + f[a, b](x - a) + f[a, b, d](x - a)(x - b)

in [a, b], where f[a, b] = (f(b) - f(a))j(b - a), and f[a, b, d] =
(f[b, d] - f[a, b])j(d - a); note that, P(a) = f(a) and P(b) = f(b). Hence,
P(a)P(b) < o.

Lemma 2.1. (i) Under the above assumptions, rE (a, b).
(ii) Furthermore, iJ{a, b, d} ~ [e, f], and if f(x) is twice continuously

differentiable in [e, f] with f'(x) =1=0 for all XE [e, f] and

J = min If'(x)l- (b - a) max If"(x)I > 0,
e~x~f e~x~f

then

(5) Ir - zl ::;)/( b - a)2k, where A = maXe<x<f If"(x) I
2J ' L = 2k - 1.
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Proof. (i) follows from the monotone convergence of Newton's method on
quadratics, while (ii) follows by remarking that

lAI :s maxe:Sx:SfIf"(x)1

and IP'(x)1 2: (j > 0 for all x E [a, b]. Indeed, we have that

2 lAI 2 L 2k

(6) Irk - zl = Irk-l - zl !p'(rk-dl :s Irk-l - zl A. :SA. Iro- zl ,

where L = 1+ 2 + . . . + 2k-l = 2k - 1. 0

The next lemma can be proved in a straightforward manner; it willbe needed
in §6.

Lemma 2.2. Let In = (n + vI + n2)1/(n+l)for n = 1, 2, 3, ... ; then h > In
for all n =1=2 .

3. ALGORITHMS

In this section we present two algorithms for enc10sing a simple zero x* of
a continuous function f(x) in [a, b] where f(a)f(b) < O. These two algo-
rithms are improvements of the methods in [2]. The first algorithm requires at
most 3, and asymptotically 2, function evaluations per iteration, and the sec-
ond algorithm requires at most 4, and asymptotically 3, function evaluations
per iteration. Under certain assumptions the first algorithm has an asymptotic
etnciency index VI +..j2 = 1.5537... and the second algorithm has an asymp-
totic index (1 + JS) /2 = {/2 + JS = 1.6180... . In the following algorithms,
# < 1 is a positive parameter which is usually chosen as j1 = 0.5.

Algorithm 1.
1.1 set al = a, bl = b, Cl= al - f[al, btJ-lf(ad;
1.2 call bracket(a}, bl , Cl, a2, b2, d2);
For n = 2, 3, ..., do:
1.3 call Newton-Quadratic(an,bn, dn, Cn,2) ;
1.4 call bracket(an, bn, cn, an, bn, dn);
1.5 if If(an)I < If(bn)1, then set Un= an , else set Un= bn;
1.6 set cn = Un- 2f[an, bn]-l f(un);- -
1.7 if ICn- uni> 0.5(bn-an) , then cn= 0.5(bn+ an), else cn = cn ;
1.8 call bracket(an, bn , cn, an, bn, dn) ;
1.9 if bn- an < #(bn - an), then an+l= an, bn+l= bn, dn+l= dn, else call

bracket(an, bn, 0.5(an+ bn), an+l, bn+l, dn+d. 0

Algorithm 2.
2.1-2.2: same as 1.1-1.2;
For n = 2, 3, .. . , do :
2.3 call Newton-Quadratic(an,bn, dn, cn, 2);
2.4 call bracket(an, bn, cn, an, bn, dn);
2.5 call Newton-Quadratic(an,bn, dn, cn, 3);
2.6 call bracket(an, bn, cn, an, bn, dn);
2.7-2.11: same as 1.5-1.9. 0
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The following theorem is a basic property of the above two algorithms, whose
proof is straightforward and hence will be omitted.

Theorem 3.1. Let f be a realfunction defined on [a, b] such that f(a)f(b) < 0,
and consider one of the Algorithms 1 or 2. Then either a zero of f is found in
a finite number of steps, or an infinite sequence of intervals [an, bn] is produced
such that

f(an)f(bn) < 1,

an :::;an+l :::;bn+l :::;bn,

bn+l - an+l :::; !(bn - an),
lim an = x* = lim bn,n-+oo n-+oo

f(x* - O)f(x* + 0) :::;O. 0

Corollary 3.2. Under the hypothesis of Theorem 3.1, assurne that f is continu-
ous at x*. Then x* is a zero of f. 0

4. CONVERGENCE RESULTS

In §3 it is easy to see that the intervals {[an, bn]}~l produced by either
Algorithm 1 or Algorithm 2 satisfy that bn+l - an+l :::;f.ll(bn - an) for n ~ 2,
where f.ll = max{f.l, 0.5}. Since f.ll < 1, this shows at least linear convergence.
In what follows we show that under certain smoothness assumptions, AIgorithm
1 and Algorithm 2 produce intervals whose diameters {(bn - an)}~l converge
to zero with R-orders at least 1 + v'2 = 2.414... and 2 +V5 = 4.236... ,
respectively.

First, we have the following two lemmas.

Lemma 4.1 (Alefeld and Potra [2]). Assume that f is continuously differentiable
in [a, b] and f(a)f(b) < 0, and x* isasimplezeroof f(x) in [a, b]. Suppose
that Algorithm 1 (or Algorithm 2) does not terminate after a finite number of
iterations. Then there is an n3 such that for all n > n3, the quantities cn and
Un in step 1.6 (or in step 2.8) satisfy that

(7) f(cn)f(un) < O.

Lemma 4.2. Under the assumptions of Lemma 4.1, also assume that f(x) is
three times continuously differentiable on [a, b]; then

(i) for Algorithm 1, there are an r) > 0 and an nl such that for all n > nl

(8) If(cn)1 :::;rl (bn - an)z(bn-l - an-d,

where Cn is defined in step 1.3;
(ii) for Algorithm 2, there are an rz > 0 and an nz such that for all n > nz

(9) If(cn)1 :::;rz(bn - an)4(bn-l - an-d,

where cn is defined in step 2.5.

Proof. By Theorem 3.1, bn - an -t 0 and x* E (an, bn). Since x* is a simple
root, f'(x*) i= O. Therefore, when n is big enough, f'(x) i= 0 for all x E
[an, bn]. For simplicity, we assume that f'(x) i=0 for all x E [a, b]. Also, it
is easy to see that in both algorithms we have that

bn - an :::;f.l(bn-l - an-d < (bn-l - an-d.
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Since AO= mina<x<b 1f'(x)1 > 0 and bn-an --t 0, then for any fixed 0< t5< AO
there is an nI such that for all n > nI we have that bn - an < 1 and

(10) t5n = AO- max If"(x)l(bn - an) > t5> O.
a5,x5,b

(i) For Algorithm 1, when n > nI, suppose Zn is the unique zero of
P(an, bn, dn)(x) in [an, bn]. Then using the error formula for Lagrange inter-
polation, we see that

If(zn)1 :S;Allzn - anllzn - bnllzn - dnl
(11) 2

:S;O.25AI(bn - an) (bn-I - an-d , where Al = 3\ max If"'(x)l.. a5,x5,b

By Lemma 2.1 and (10),

(12) ICn- znl <; (IDaXa<x2::nlf"(X)I) 3 (bn - an)' < 12(bn - an)'

< A2(bn- an)2(bn-I - an-d, where A2= (maXa5,X5,bIf"(x) I)
3

2t5 .

Combining (11) and (12), we have that

If(cn)1 :S;If(zn)1 + (max If'(X)I )ICn - znl :S; 'I (bn- an)2(bn-I - an-d,
a5,x5,b

where rI = 0.25AI + A2maxa<x<bIf'(x)l.
(ii) For Algorithm 2, when ;1> nl , we have that

(13) If(cn)1< 'I (bn - anf(bn-l - an-d,

where Cn is given by 2.3. Suppose Zn is the unique zero of P(an, bn, cn)(x) =
P(an, bn, dn)(x) in [an, bn]; then as in Alefeld and Potra [2], we deduce that
there is an n2 (we can choose n2 > nd such that for all n > n2

(14)
where A3 = 2 (O.25~~) .

Finally, similar to (12), by Lemma 2.1 and (10),

If(Zn)1 < A3(bn - an)2If(cn)l,

(15)
ICn- znl < A4(bn - Cln)8 < A4(bn - an)4(bn-l - an-d,

h 1 - (maXa5,X5,bIf"(X)I )
7

w ere 11.4- 2t5 .

Combining (13), (14), and (15), when n > n2 > nI, we get

(16) If(cn)1< If(zn)1 + max 1f'(x)llcn - znl < r2(bn- an)4(bn-I - an-d
a5,x5,b

with'2 = AerI + A4maxa5,x91f'(x)l. 0

The following two theorems show the asymptotic convergenceproperties of
AIgorithm 1 and Algorithm 2, respectively.
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Theorem 4.3. Undertheassumptionsof Lemma 4.2, thesequenceof diameters
{(bn-an)}~I producedbyAlgorithm 1 convergestozero, andthereisan LI > 0
such that

)

(17) bn+I - an+I ::;LI(bn - an)2(bn-1 - an-d,

Moreover, there is an NI such that for all n > NI

'Vn= 2, 3, . .. .

we have

Hence, when
iteration.

Proof. As in the proof of Lemma 4.2, we assume without 10ssof generality that
f'(x) #- 0 for all XE [a, b]. Take NI such that NI > max{nI, n3}. Then by
Lemma 4.1, (7) holds for all n > NI . For steps 1.6-1.8 of AIgorithm 1 and the
fact that un, cn E [an, bn] we deduce that

(18) hn - an::; ICn- uni, 'Vn> NI.

From step 1.6 we also see that

(19) ICn - uni = 12f[an, bnrIf(un)1 ::;~ If(un)l.

Finally, since CnE {an, bn} , we have that If(un)1 ::; If(cn)l. Combining that
with (18) and (19), we have

A 2

(20) bn-an::; Aolf(cn)l, 'Vn> NI.

Now by Lemma 4.2, If(cn)l::; rl (bn - an)2(bn-1 - an-d; hence

",.., 'A 2 17 '2" ,...~
,L.i) On - an ::; AOrI (..on- an) ~On-I - an-I), "In > NI.

Since {(bn - an)}~I converges to zero, if NI is large enough, then

an+I= an and bn+I= hn.

n > NI , Algorithm 1 requires only two function evaluations per

hn - an < f.l(bn- an) , 'Vn> NI.

This shows that for all n > NI we will have an+1= an
taking

{
2 (bn+I - an+l)

}LI ~ max ,rl, (b - )2(b - )'AO n an n-I an-I

and using (21), we obtain (17). 0

Corollary4.4. UndertheassumptionsofTheorem 4.3, {Gn}~1 = {(bn-an)}~1
convergesto zero with an R-orderat least 1+ Vi = 2.414... . Since, asymp-
totically, Algorithm 1 requires only two function evaluations per iteration, its
efficiency index is VI + Vi = 1.5537... .

Proof. By Theorem 4.3, {Gn}~I converges to zero and Gn+I::;LIG~Gn-I i for
n = 2, 3, ..., and the result followsby invokingTheorem 2.1 of [11]. 0

Theorem 4.5. Under the assumptions of Lemma 4.2, the sequence of diameters
{(bn- an)}~ I produced by Algorithm 2 converges to zero, and there is an L2 > 0
such that

(22) bn+I - an+I ::; L2(bn - an)4(bn-I - an-I), 'Vn = 2, 3, ... .

and bn+1 = hn. By

n = 2, 3, .. . , NI ,
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Moreover, there is an N2 such thatfor all n > N2 we have

an+l = an and bn+l- hn.

Hence, when n > N2, AIgorithm 2 requires only three function evaluations per
iteration.

Proof. The proof is almost the same as that of Theorem 4.3. We assurne that
f'(x) # 0 for all x E [a, b]. Take N2 such that N2 > max{n2, n3}. Then,
when n > N2, as in the proof of Theorem 4.3, we have that

hn - an :S }olf(en)l.
(23)

Now by Lemma 4.2, If(en)l:S r2(bn - an)4(bn-l - an-d. Therefore,

~ ~ 2 4

bn - an :S AOr2(bn - an) (bn-l - an-d,
'in > N2.(24)

The rest of the proof is similar to the corresponding part of the proof of Theo-
rem 4.3 and is omitted. 0

Corollary 4.6. Under the assumptions ofTheorem 4.4, {en}~l = {(bn -an)}~l
converges to zero with an R-orderat least 2 + .J5 = 4.236 Since asymp-
totically,AIgorithm 2 requiresonly threefunction evaluationsper iteration, its
efficiency index is {/2 +.J5 = 1.618 0

5. NUMER!CAL EXPERIMENTS

In this section we present some numerical experiments. We compared our
methods with the methods in [2], with the methods of Dekker [6] and Brent [5],
and also with the Algorithm LZ4 of Le [8]. In our experiments, the parameter
J1 in all the methods of this paper and [2] was chosen as 0.5. For Dekker's
method we translated the ALGOL 60 routine Zeroin presented in [6] into For-
tran; for Brent's method we simply used the Fortran routine Zero presented in
the Appendix of [5], while for the Algorithm LZ4 of Le we used his Fortran
code. The machine used was Encore-Multimax, and double precision was used.
The test problems are listed in Table 5.1. The termination criterion was the one
used by Brent [5], i.e.

(25) b - a :S2. tole(a, b),

where [a, b] is the current enc10sing interval, and

tole(a, b) = 2 -Iul- macheps+ tol.

Here, u E {a, b} is such that If(u)1= min{lf(a)l, If(b)l}, macheps is the
relative machine precision, whichin our case is 2.2204460492504x 10-16, and
tol is a user-given nonnegative number.

Owing to the above termination criterion, a natural modification of the sub-
routine bracket was employed in our implementations of all the methods in this
paper and in [2]. The modified subroutine is the following:
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Subroutine bracket(a, b, c, Ci,b) (or bracket(a, b, c, Ci,b, d)).
Set J = A' tole(a, b) for some user-given fixed A E (0, 1) (in our experi-

ments we took A = 0.7) ;
if b - a ::;40, then set c = (a + b)j2, goto 10;
if c ::; a + 20 , then set c = a + 20 , goto 10;
if c ~ b - 2J , then set c = b - 20 , goto 10;

10 if f(c) = 0, then print c and terminate;
if f(a)f(c) <O,then Ci=a, b=c, (d=b);
if f(b)f(c) < 0, then Ci= c, b = b, (d = a);
ca1culate tole(Ci, b) ;- -
if b - Ci::; 2. tole(Ci, b) , then terminate. 0

In our experiments we tested all the problems listed in Table 5.1 with different
user-given tol (tol = 10-7 , 10-10, 10-15, and 0). The total number of func-
tion evaluations in solving all the problems (145 cases) are listed in Table 5.2,
where BR and DE stand for Brent's method and Dekker's method, respectively,
and "unsolved" means a problem is not solved within 1000 iterations. From
there we see that our two methods compare well with the other six methods.
The second method in this paper has the best behavior of all, especially when
the termination tolerance is small. This reconfirms the fact that the efficiency

TABLE 5.1. Test problems

function f(x) [a, b] parameter

sinx - xjl [njl, n]
-2 Eil (li - 5)2j(x - i2)3 [an, bn]

an = n2 + 10-9
bn = (n + 1)2- 10-9 n = 1(1)19

axebx [-9,31] a=-40,b=-1
a=-100,b=-2
a = -200, b = -3

xn -a [0, 5] a=0.1,I,n=4(2)12
[0.95, 4.05] a = 1, n = 8(2)14

sinx - 0.5 [0, 1.5]

2xe-n - le-nx + 1 [0, 1] n = 1(1)5,15,20

[l + (1 - n)2]x - (1 - nx)2 [0, 1] n = 1, 2, 5, 10, 15, 20

X2- (1 - xt [0, 1] n = 1, 2, 5, 10, 15, 20

[1 + (1 - n)4]x - (1 - nx)4 [0, 1] n = 1, 2, 4, 5, 8, 15, 20

e-nx(x - 1) + xn [0, 1] n = 1, 5, 10, 15, 20

(nx - l)j(n - l)x) [0.01, 1] n = 2, 5, 15, 20

{o

ifx=O
-2 [-1,4]

xe-x otherwise

{ ; ,:, Hin X - I) if X 0

[-104, nj2] n = 1(1)40
20 otheTWlse

{ ,- 1859 if x> ",,-,

. l+n
n = 20(1)40

e(n+l)x/2XI03- 1859 if xE [0 2XIO-3] [-104, 10-4]
. , l+n n = 100(100)1000

-0.859 if x < 0
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TABLE5.2. Total number of function evaluations in solving all
the problems listed in Table 5.1

TABLE5.3. Total number of function evaluations in solving
xn = 0 in [-1, 10] for n = 3, 5, 7, 9, 19, 25

index is an asymptotic notion. In order to give an interesting example where
methods having higher efficiency index are oütperformed by methods with lower
efficiency indices, we compare those methods with the bisection method, solving
the problem

xn = 0, n = 3, 5, 7 , 9, 19, 25
with the initial interval [a, b] = [-1, 10]. The results are listed in Table 5.3,
where BIS stands for the bisection method.

6. DISCUSSION

We notice that our AIgorithm 2 is an optimal procedure in the following
sense. It is clear that Algorithm 2 improves our Algorithm 1 by repeating 2.3-
2.4 in 2.5-2.6. If we repeat 2.3-2.4 a total of k times, then we get an algorithm
of the form

AIgorithm 3
3.1-3.2: same as 2.1-2.2;

for n = 2, 3, ... , do
3.3 call Newton-Quadratic (an, bn, dn, cn, 2) ;
3.4 call bracket(an, bn, cn, a~1), b~l), d~l));

3 2k I 11 N Q d
.

(
(k-l) b(k-l) d (k-l) ~ k 1). + ca ewton- ua rahe an , n , n , cn , + ;

3 2k 2 11 b k (
(k-l) b (k-l) ~ - -b d ). + ca rac et an , n , Cn, an, n, n;

3.2k + 3 - 3.2k + 7: same as 2.7-2.11. 0

tal BI B2 B3 Alg.l Alg.2 BR DE LE

10-7 3139 2895 2580 2800 2604 2693 2658 2643

10-10 3447 2995 2773 2990 2708 2794 2819 2808

1 unsolved

.10-15 3672 3017 2948 3134 2746 2860 2955 2971

1 unsolved

0 3714 3041 3007 3137 2793 2873 2936 3025

4 unsolved 3025

tal BI B2 B3 Alg.l Alg.2 BR DE LE BIS

10-7 402 510 384 355 349 434 1340 185 174

10-10 561 718 529 521 461 611 1987 237 234

10-15 785 1034 721 757 746 867 2 unsolved 377 325

0 2219 2959 1793 2208 1830 2624 6 unsolved 1680 921
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It is clear that AIgorithms land 2 are special cases of Algorithm 3. Fur-
thermore, similar to Theorem 4.3 and Theorem 4.5, we see that for AIgorithm
3,

(bn+l - an+d ::; Lk(bn - an)2k(bn-l - an-d, n = 2, 3, ... ,

for some Lk > O. Hence, Algorithm3 has an R-orderat least 7:= k+v'l+ kJ.,
which is the positive root ofthe equation t2-2kt-1 = O. Since asymptotically,
AIgorithm 3 requires k + I function evaluations per iteration, its efficiency index
is h = (k;t-vll + k2)IJ(k+l). By Lemma 2.2, h < h, for all k i= 2. Therefore,
Algorithm 2 is the optimal choice.

7. ApPENDIX

In what follows we list the three algorithms proposed in Alefeld and Potra
[2], assuming that f(x) is continuous on [a, b] and f(a)f(b) < O. For con-
venience, we use the names BI, B2, and B3 for the first, the second, and the
third method in [2], respectively.

AIgorithmBI
set al = a, b1= b, for n = 1, 2, ... do:
B1.1 Cn= an - f[an, bn]-1f(an);
B1.2-B1.5: same as 1.4-1.7 in Algorithm lofthis paper;
B1.6 call bracket(an, bn, cn, an, hn) ;
B1.7 if hn - an < f.1(bn- an), then set an+l= an, bn+l= hn;

else call bracket(an, hn, O.5(an+ hn), an+l , bn+l). 0

Algorithm B2
set al = a, b1 = b, for n = 1, 2, ... do:
D 2 1 ,.. - rr f rn h 1-1 {( n )

.
JJ .. <-n- ""n - Lwn, vnJ J ,wn ,

B2.2 call bracket(an, bn, cn, an, bn) ;
B2.3 cn = the unique zero of P(an, bn, cn)(x) in
B2.4 call bracket(an, bn, Cn, an, bn) ;
B2.5-B2.9: same as B1.3-B1.7. 0

[an, bn] ;

AIgorithmB3
set al = a, b1= b , for n = 1, 2, ... do :
B3.1 Cn= O.5(an+ bn);
B3.2-B3.6: same as B2.2-B2.6;
B3.7 call bracket(an, bn, cn, an+l, bn+l)' 0
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