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1. Introduction

In [1] we have considered the nonlinear equation f(x) = 0 where f is a continuous

dilierentiable real function of a real variable. We suppose that f is strictly monotone

on an interval XO. Without loss of generality we may assume that f is strictly

increasing on XO. We assume that by using interval arithmetic methods it is possible

to compute two positive numbers tl' t2 such that 0 < tl ~ f' (x) ~ t2 for all x E XO.

Let us denote by L the interval [tl,t2]' We suppose that the derivative f' (x) E IR,

x E XO, has an interval extension f' (X) , X S XO, satisfying the following conditions
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f' (x) E f I (X) ,

f'(X) ~ f'(Y),

d(f' (X)) ~ c d(X) ,

XEX~X<>

X~Y~X<>

X~X<>

where c is a constant independent of X and where d denotes the diameter of an

interval. Furthermore we assume that these three relations also hold for the second

derivative of f. Together with fand its derivatives we consider its divided differences

f[x,y]

{

f( x ) - f ( y)

x - Y

f'(x)

ifx:f:y

ifx=y

{

ffx,z l-f ry,zl
x - y

f[x,y,z] = fll~X)

if x:f:y

if x=y

Then for any nonnegative integer p we can define the following iterative procedure.

AIgorithm S: For k = 0,1,... DO through ESp

k k
x = m(X )

if k = 0 then Qk = L, yk = XÜ & GOTO EI

else

Mk = {f[xk, xk-l,p] + ~fll(Xk-l) (Xk - xk-l,p)} n L

yk = { xk - f(xk)jMk } nyk

Qk = {f[xk, xk-l,p] + ~fll(Xk-l) (yk - xk-l,p)} n L
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El Xk,l = { xk - f(xk}/Qk} nXk

if p = 0 then xk,p = xk & GOTO ES

else

xk,l = m(Xk,l}

Mk,l = {f[xk, xk,l] + ~f"(Xk} (Xk,l- xk)} nL

yk, 1 = { xk,1 - f(xk, l}/Mk, 1 } nXk,1

Qk,l = {f[xk, xk,l] + ~f"(Xk} (yk,l- xk)} nL

Xk,2 = { xk,l - f(xk,l}/Qk,l } n yk,l

if p = 1 then GOTO ES

else for i = 2,3,...,p DO through E2

xk,i = m(Xk,i}

E2

Mk,i = { f[xk,i-l , xk,i] + ~ f" (Xk) (Xk,i - xk,i-l) } nL

Xk,i+1 = { xk,i - f(xk,i}/Mk,i } nXk,i

Xk+l = Xk,p+l 0ES

For S we have the following result.p

Theorem. Assurne that f(x} = 0 has a zero x* in XÜ. Moreover assurne that the

assumptions mentioned before hold. Then the sequence {Xk} generated by S isp

convergent to x*. Moreover the sequence of diameters {d(Xk}} converges to zero

with R-order UJ defined as
p

j 2 2 IUJ = (f + 2f +2 - 1 + l2f +2 + 9f - 20f f +2 - 4f +2 + 2f + 1 )/2p P p P P pp P P
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where f. denotes the j-th Fibonacci number, Le.J

f = 0, f1 = 1, f.+1 = f. + f. 1 '
0 J J J- j = 1,2,...

0

A proof can be found in [1].

Under the assumption that the cost of an interval evaluation of the second derivative is

about the same as a function evaluation, the efficiency index of the algorithm in the

sense of Ostrowski is given by

p+2
eff(S ) = ..;c;;::-pp.

In tableI wegivethevaluesof UJ and (UJ )1/(p+2) for p =0,1,2,...,10.P P

Table L Order and efficiency index of Sp

P UJp
p+2..;c;;::-

UJp

0 2.OOOOOOOOOOOE+00 1.41421356237E+oo

1 3.73205087570E+oo 1.55113351807E+oo

2 6.46410161514E+oo 1.59450925267E+oo

3 1.1000000000oE +01 1.61539426620E+oo

4 1.82736184955E+01 1.62294608383E+oo

5 3.00996688705E+Ol 1.62638403519E+oo

6 4.92032386541E+01 1.62741835990E+oo

7 8.01372644808E+01 1.62756060099E+oo

8 1.30176682947E+02 1.62724640258E+oo

9 2.11151549918E+02 1.62677223759E+oo

10 3.42166585524E+02 1.62624684244 E+oo
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It can be proved that

(
1+""

)p+2 for p ~ 4 ,UJ > 2P

1. p+2~ - 1+""
I m y UJp - 2 '

p-+oo

p+2~ - 9~ -
max y UJ~ - -y UJ7 - 1.627... .
p~O P

2. The Method for Systems

In the present paper we show how the method repeated in the introduction can be

generalized to systems of equations and give some applications to the algebraic

eigenvalue problem. For the formulation of the method we need some definitions.

Assume that f: D ~ jRn--ijRn is a mapping which has continuous partial derivatives.

Then for every pair x,y E D we define an nxn matrix f[x,y] by

(1) f[x,y]ij =

1
x.-y. { fi(x1,...,Xj'Yj+1'''''Yn)-J J

- f.(x 1'''''x. 1,y .,...,y )}I J- J n for Xj f Yj

8f.
I

ax: (xl''' .,Xj'Yj +1'" .,yn)J
for x. = y. .J J

The matrix f[x,y] is called a "Steigung" or a divided difference operator. It was used

by J. W. Schmidt in [3] where the generalization of the Regula falsi to systems of

equations was investigated.
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For a given mapping f: D ~ !Rn-!!Rn and a fixed z E D we define <Pz:D ~ !Rn-! L(!Rn)

by

<pz(x) = f[x,z]

and similarly 1/Jx: D ~ !Rn -! L(!Rn) by

1/J (z) = f[x,z] .x

We define the divided difference operator of the second order f[x,y,z]1 by applying (1)

to the columns of 1/J . f[x,y,z]3 is definedsimilarly.The divideddifferenceoperatorsx

of the second order are bilinear operators.

For a mapping f: D ~ !Rn-! !Rn which has second order partial derivatives with an

interval arithmetic evaluation for an interval vector [u] ~ D , we define three

dimensional arrays of intervals 6 ([u]) = (6 ([u])'. k)' s = 1,2,3, as folIows:s s IJ

( alf.([u])
for j = k

1 1

2" Ox
J

if.([u])
for k > J

61([u])ijk = 1 &jOxk

0 otherwise

1 a2fi([u])
for j::= k2 2äx.

J

62([u])ijk ::= i
0 for k > j

if.([U])1
for k < j

OxjOxk
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A3([u]).'k
= ! ß2f i([u])

1J 2 OxjOxk
for i,j,k = 1(I)n

Using these arrays it can be shown that

1
(f[x,y,z] (y-z»ij E (Al(x Uy Uz)(y-z»ij ,

3
(f[y,z,x] (y-z».. E (A2(x UYUz)(y-z».. ,q q

1 3
«f[x,y,z] + f[y,z,x] )(y-z»ij E (A3(xUy Uz)(y-z»ij

where x Uy UZ denotes the smallest interval vector containing x, y and Z .

Now we set

DS(X,U)=

r f[x,u]

~ f[u,x]

l !<f[x,u] + f[u,x])

for s = 1

for s = 2

for s = 3 .

Assume that the mapping f: D ~ !Rn !Rn has partial derivatives of second order which

can be evaluated in the interval arithmetic sense. Assume that [L] is an interval matrix

with f' (x) E [L] for all x E [xf and that Gaussian elimination can be performed with

[L] and an arbitrary interval vector (u]. (The result is denoted by IGA ([L],(u]) .)

For a given interval vector [x] we denote by m[x] the center of [x]. Let P ~ 0

be some fixed integer. Then we consider the following iteration methods for s = 1,2,3 .
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Algorithm SS :p
For k = 0,1,... DO through ES

k k
x = m([x] )

if k = 0 then [Q]k = [L], [y]k = [x]o & GOTO EI

else

EI

[M]k = {bs(xk,xk-l,p) + l:.s<[xt-1)([x]k - xk-l,p)} n [L]
k k k k k

[y] = {x - IGA([M] ,fex »} n [x]

[Q]k = {bs(xk,xk-l,p) + l:.s([x]k-l)([y]k- xk-l,p)} n [L]

[x]k,1 = {xk - IGA([Q]k,f(xk»}n [y]k

if P = 0 then xk,p = xk & GOTO ES

else

xk,l = m[x]k,1

[M]k,1 = {b (xk,l,l) + l:. ([x]k)([x]k,1 - xk)} n [L]s s

[y]k,1 = {xk,l - IGA([M]k,l,f(xk,I»} n [x]k,l

[Q]k,1= {bs(xk,l,xk) + l:.s([x]k)([y]k,1- xk)} n [L]

[x]k,2 = {xk,1 - IGA([Q]k,l,f(xk,I»} n [y]k,1

if P = 1 then GOTO ES else

for i = 2,3,...,p DO through E2

xk,i = m[xt,i

E2

[M]k,i = {bs(xk,i,xk,i-l) + l:./[x]k)([x]k,i - xk,i-l)} n [L]

[x]k,i+l = {xk,i - IGA([M]k,i,f(xk,i»} n [x]k,i

ES [x]k+ 1 = [x]k,p+ 1

G. Alefeld et al.

0
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If f(x*) = 0 for some x* E [xf (under our assumptions x* is unique) then x* E [x]k,

k ~ O.

Furthermore it has been proved under appropriate assumptions that the R-order of

convergence of SS is the same as in the one dimensional case.p

4. Applications

In general the method SS seems not to be very attractive for systems in n unknownsp

since one needs approximately n3 interval arithmetic evaluations for the second order

partial derivatives. However, there are some important cases in which one needs less

work.

a) Consider the nonlinear integral equation

1

f K(t,s,x(t»dt = x(s) ,
0

SE [0,1]

for the unknown function x(s). For the numerical solution of this equation we choose

equidistant points s. =!.. , i = O(l)n , and use one of the weIl known numerical1 n

integration formulas. Omitting the discretization error, we get a nonlinear system

f(x) = 0 with

n

fi(xo,...,xn) = xi - L Wj K(~'~'Xj)
j=O

i = O(l)n ,
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for the unknowns x. , i. = 0(1)n, which are considered as approximations to x(!),1 n

i = 0(1)n . It followsthat

8f.
~ = 8..- w. K (l!x. )
vx. IJ J u n'n' JJ

i = 0(1)n , j = O(l)n

and

ß2f.
1

ox:GXkJ
[

- w. K (1 ! x.)

~ J:" u'u' J

for J = k

, i = 0(1)n , j = 0(1)n , k = 0(1)n .

ot herwis e

(b.. denotes the Landau-symbol, K and K~ u uu

partial derivative with respect to the third variable of

only (n+1)2 elements different from zero.

denote the first and second order

K). Hence in this case fIt has

b) A similar result as in a) holds if a solution of the boundary value problem

y" = f(t,y)

y(a) = a, y(b) = ß

is approximated by the usual method of differences.

c) Even more spectacular than in the two proceeding examples is the saving of

arithmetic operations for the algebraic eigenvalue problem. Consider the eigenvalue

problem for the matrix A. If we define the vector x = (zT,.\) T then

Az = .\Z

Tz z = 1
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is equivalent to the nonlinear system

where

f(x) = 0

n

f.(x) = (a.. - x 1) x. + \' a.. x. ,
1 11 n + 1 L Ij j

j=l
j:fi

n

fn + 1(x) = 1: ZT - 1
i=l

In this case we get

uf .(x)1
Ox. =

J

a.. - 8.. x 1IJ Ij n +
- x.

1

2 x.
j

L 0

ß2f. (x)1 -

Ox. Oxk -J

0

- 8..
Ij

- 8ik

2 8jk
0

a.. - 8.. y 1IJ Ij n+

f[x'Y]ij =

- X.
1

x. + y.j j
0

i = 1 (1) n

lSi sn 1 S j Sn

j = n+1lSi sn

i=n+1 , 1 S j S n

i =j =n+1

lSi sn

lSi sn

,1sjsn,lsksn

,1sj sn,k=n+1

lSi sn j = n+1 1 < k <n+1, - -

i = n+ 1 , lSj sn, lSk sn+l

i=j =n+1 1 < k <n+1, - -

i=j =n+1

19

1 S i S n , 1 S j sn

1 S i S n , j = n+1

i =n+1 , 1 S j sn
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Hence the second derivative is constant and many of its elements are equal to zero.

Similarly f[x,y] can be formed nearly without arithmetical work. Hence SS can bep

performed with simple available operators.

4. Numerical Examples

a) The matrix

A =

72

1

-57

-17

has an eigenpair x = (zT,,\)T which is containedin the intervalvector

The following table II contains the numerical results obtained by applying S3 forp

different values of p. For a fixed p the integer k denotes the number of iteration

steps until the lower and upper bounds of the iterates [x]k differ by at most one unit

of the last digit in the mantissa. ( We are using a computer with 12 decimal digits in

the mantissa.) f denotes the number of function evaluations and IGA is the number

of applications of Gaussian elimination.

33 16

-24 -10

- 8 - 4

r [-0.765, -0.764] 1

I [ 0.611, 0.612]0
[x] =

. [ 0.203, 0.204]

[ 0.991, 1.001]
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b) The matrix

has an eigenpair x = (zT,Al , which is contained in the intervalvector

[ 0.127 , 0.128 ]

[ 0.254 , 0.255 ]

[xf =

[ 0.508, 0.509]

[11.991 , 12.01 ]

Table 11

P k f IGA

0 2 3 4

1 1 3 4

2 1 3 4

3 0 3 4

4 0 3 4

5 0 3 4

6 0 3 , 4

-2 1 0 27 -18 - 6

-8 4 0 54 -36 -12

-8 -5 6 81 -54 -18
A =

-8 -5 -6 117 -72 -24

. -8 -5 -6 129 -78 -30

l -8 -5 -6 129 -60 -48



22 G. Alefeld et al.

The values in table III have the analogous meaning as in table II .
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Table III

P k f IGA

0 2 3 4

1 1 3 4

2 1 3 4

3 0 3 4

4 0 3 4

5 0 3 4

6 O. 3 4

7 0 3 4


