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Abstract — Zusammenfassung

A New Class of Interval Methods with Higher Order of Convergence. In this paper we introduce a
new class of interval methods for enclosing a simple root of a nonlinear equation. For each nonnegative
integer p we describe an iterative procedure belonging to this class which requires p+ 1 function values
and an interval evaluation of the second derivative per step. The order of convergence of the iterative
procedure grows exponentially with p. For p=4 this order is strictly greater than

(1 +2]/§)*’+2‘
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Eine neue Klasse von Intervall-Methoden mit hoherer Konvergenzordnung. In dieser Arbeit wird
eine ncue Klasse von Intervall-Methoden zur EinschlieBung einfacher Wurzeln einer nichtlinearen
Gleichung vorgestellt. Fiir eine gegebene ganze Zahl p >0 wird ein Iterationsverfahren beschrieben, das
p+ 1 Funktionsauswertungen pro Schritt sowie eine Intervallauswertung der zweiten Ableitung bendtigt.
Die Konvergenzordnung des Iterationsverfahrens wichst exponentiell mit p. Fiir p = 4 ist die Ordnung

rofer als —~
g (1+]/5)p+3

2

1. Introduction

Interval arithmetic provides a useful tool for constructing root finders with global
convergence and automatic error bounds. Interval arithmetic is nothing else but a
natural extension of the usual arithmetic between numbers to an arithmetic between
intervals. Let A=[a,,a,], B=[b,,b,] be two bounded and closed intervals of the

real line and let * denote any of the arithmetic operations +, —, x, <. Then the
corresponding operation for intervals is defined as
A+*B={axb;ac A, beB}. (1.1)

For the properties of interval arithmetic we refer to Alefeld-Herzberger (1983).

* This paper was written while the second author was visiting the University of Karlsruhe.
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The set of all bounded and closed intervals of the real line is denoted by I(R). Any
real number x is identified with the trivial interval [x, x]={x} e I (R). Besides the
above introduced arithmetic operations, in I (R) we may also define the intersection

AnB={x;xeA and xeB}, (1:2)
as well as the complementary operation
A v B=[min {a,,b,}, max {a,,b,}]. (1.3)

If we consider the set I (R) partially ordered by the inclusion <, then (1.2) and (1.3)
are the corresponding lattice operations

AnB=inf{A4,B}, A v B=sup {4, B}.

With any interval A=[a,, a,] we associate the following three important quantities:
the diameter of A

d(Ad)=|a,—a,|, (1.9)
the absolute value of 4
[Aj=max {[a,|,|a,i}, (1.5)
the midpoint of A
m(A4)=(a, +a,)/2. (1.6)

In the proof of our main result we will frequently use the following relations
concerning the diameter and absolute value of an interval.

A< B=-d(4)<d(B), (1.7)
d(A+B)=d(A)+d(B), - (1.8)
|A+B|<|A|+|B|,|AB|=|4]||B|, (1.9)
d(AB)<|A|d(B)+d(A)|B|. (1.10)

For details see Alefeld-Herzberger (1983).

The notation introduced above is sufficient for understanding the numerical
methods to be presented in this paper. However, we strongly advise the reader with
no background in interval arithmetic to consult Alefeld-Herzberger (1983). Also
for the readers who are interested in applications we recommend the use of
PASCAL-SC, a powerful language which supports interval arithmetic (see
G. Bohlender etal. (198?)). We mention that the implementation of interval
arithmetic on a digital computer is done in such a way that the interval solution
resulting from interval arithmetic operations includes all rounding errors which may
have occured because of the finite mantissa. Thus interval arithmetic controls the
accumulation of the rounding errors, a property which is not shared by the usual
floating point arithmetic.

In Section 2 we review some well known results on the interval Newton method and
on a class of Newton-like methods which require p+1 function values and one
interval evaluation of the first derivative per iteration, and which are convergent
with Q-order p+2. For p=0 this reduces to the interval Newton method.
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In Section 3 we present a new class of iterative procedures for enclosing roots of
nonlinear equations which require p+ 1 function values and one interval evaluation
of the second derivative. The corresponding order of convergence grows exponen-
tially with p. For p>4 the order is strictly greater than

(1+215)"”‘

Section 4 contains some variants of the iterative procedures described in Sections 2
and 3 together with the results of some numerical experiments.

2. The Interval Newton Method

Let us consider the nonlinear equation

J(x)=0 ' 21)
where f is a continuously differentiable real function of a real variable. We suppose
that f is strictly monotone on an interval X e I (R). Without loss of generality we

may assume that f is strictly increasing on X‘©. We assume that by using interval
arithmetic methods it is possible to compute two positive numbers [, [, such that

0<l,< f(x)<l,, for all xe X, (2.2)

Let us denote by L the interval [I,,,]. We suppose that the derivative f'(x)e R,
x€ X has an interval extension f'(X)eI(R), X < X satisfying the following
conditions

f(x)ef(X), for all xe X< X9, (2.3)
f(X)< f/(Y), whenever X< Y X©), | (2.4)
d(f" (X)) <c d(X), for all X=X, (2.5)

where ¢ is a constant independent of X.

We note that condition (2.5) implies the Lipschitz continuity of the point derivative
f'(x). With the above notation the interval Newton method can be defined as
follows. :

Algorithm N, : for k=0, 1, ... DO through ES

M®=f(X®) AL, x®=m(X®)
ES | Xkl {x(k) —f(x”")/M“"} A X
In the above algorithm x® can be chosen to be any point of the interval X®.
However, the midpoint xX® =m(X®) is a natural choice which is also optimal in
some sense (see Alefeld-Herzberger (1983) pp.72—75).
Theorem 1: Let f: X©— R be a continuously differentiable function whose derivative
has an interval extension satisfying (2.2)—(2.5). Suppose that the equation (2.1) has a

solution x* € X Then the sequence of intervals {X™} given by the Algorithm N,

satisfies
x*e X® for all k>0, (2.6)

XO2XxMo | lim X®=x*, (2:7)

ko
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Moreover the convergence is quadratic in the sense that the sequence of diameters
{d(X™)} converges Q-quadratically to zero. O

We note that, unlike the classical Newton method, the interval Newton procedure
can be used as a test for the existence or the nonexistence of a solution of (2.1) in X©.
Thus if (2.2) —(2.5) are satisfied then the following statements hold.

(a) equation (2.1) has no solution in X© if and only if there is a k> 1 such that

X® =0 =the empty set; (2.8)
(b) 1if there is a k>0 such that
{x“‘) uf(x”")/M‘k)} cx® (2_9)

then the equation (2.1) has a solution in X™®.

We mention that in case (2.1) has no solution in X® then the situation (2.8) will
happen rather rapidly (see Alefeld (1988)).

When implementing the interval Newton method on a computer the value f(x*) has
to be evaluated by using an interval extension of the function f. Otherwise, the
intersection performed in algorithm N, may become empty because of the effect of
rounding errors, although (2.1) has a solution in X”. Therefore, if we consider that
the cost of computing f(x*)and f* (X*) is about the same, then the efficiency index,
in the sense of Ostrowski (1960), of Newton’s method is

eff(No)=]/2=14 .... (2.10)

We can increase the efficiency index by considering the following class of iterative
procedures which are obtained from the interval Newton method by using the same
interval derivative for p+ 1 substeps.

Algorithm N : for k=0,1, ... DO through ES
X*&0 = X® MO = (XE) AL
for i=0,1,...,p DO through E2

(kD :m(X(k.-n)
Ez X{k,i+ 1) {x{k,i} _f[x{k,i})/M(k)} A X(i‘c,i)
ES X(k+1]:X'(k,p +1)

Theorem 2: Suppose that the hypothesis of Theorem 1 is satisfied. Then the sequence
of intervals generated by Algorithm N , satisfies (2.6), (2.7). Moreover, the sequence of
diameters {d(X™)} converges to zero with Q-order p+2. O

For p=0 Theorem 2 reduces to Theorem 1. Algorithm N, requires p+ 1 function
values plus one interval evaluation of the first derivative per iteration step. Its

efficiency index is given by
+2
eff(N)="|/p+2. 2.11)

It is easily seen that the highest efficiency index is obtained for p=1

3
eff (N,)=]/3=1.4422496 .... 2.12)
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We also have
eff (N,)>eff (N) =eff (N,) > eff (N;)>eff(N,) > .... (2.13)

Of course all this holds under the assumption that the cost of f(x™) is about the same
as the cost of /" (X™). In general the optimal value of the parameter p is to be
established by experimental and theoretical considerations. In the next section we
will see that by using p+ 1 function values and one interval evaluation of the second
derivative we obtain a much higher efficiency index than (2.11).

3. A Class of Secant Type Interval Methods with Higher Convergence Order

Throughout this section we assume that the function f is twice continuously
differentiable on X ? and that its second derivative /' (x) € R, x € X has an interval
extension f”(X)e I(R), X < X satisfying

f"(x)ef"(X), for all xe X< X, (3.1)
"Xy f"(Y), whenever X< Y X @, (3.2
d(f” (X)) <c d(X), for all X<X©, (3.3)

where the constant c is independent of X.

Together with f and its derivative we will also use its divided differences

| U@ =1 ONxe—y) if x+y
' o= {f'(x) if x=y, (3.4)
_[UTxA—fDn2Dx—y) if x#y
fxy,21= {f" (x)/2 if x=y. (3.9)

As In the previous section we assume that condition (2.2) is satisfied. Then for any
nonnegative integer p we can define the following iterative procedure.
Algorithm S,: for k=0, 1, ... DO through ES

x(k)___m(X(k})

if k=0 then Q%=L & GOTO E1

else

M® = {f{x(kl,x(khl,p}] +%f"(X“‘_”)(X”‘) __x(k—l,m}} AL

YW= {x(’" —f(x"‘))/M{k]} N X®

Q0= {f[x®, x*-1.A] 4.1 7 (X% D) (YW —xE=Lop A [
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E1l X®b_ {x{k} __f(x{k})/Q{k}} A X ®

if p=0 then x*P.=x® & GOTO ES

else ‘

XD =y (X 1)

ME&D — {f [x“‘), s 1}] -i-% i (X{kJ) (X(k. n_ x(’")} Ry s

Y& D = (x &1 _ f(x D)/ pfEDY ~ XD

QB ={f[x, x5V +5 £ (XB) (Y& X} n L

X(k,z):{x(k,ll_f(x(k.l))/Q(k.l}} A X & 1)

if p=1 then GOTO ES

else for i=2,3,...,p DO through EZ

x(k"):m(X("’a)

M®ED = {f[x(k’i" 1), x{k,c]] +% f“ (X(RJ)(XU:,:) — xki= 1))} AL
E?2 XWitl)_ {x(k,i} —f(x(k"))/M”"‘"} A X &0
ES X&+D_ ytp+1)
Theorem 3: Let f: X©—>R be twice continuously differentiable. Suppose its first
derivative satisfies condition (2.2) and that its second derivative has an interval
extension satisfying (3.1)—(3.3). Assume also that the equation (2.1) has a root
x*€ X©. Then the sequence of intervals generated by Algorithm S, satisfies (2.6), (2.7).

Moreover, the sequence of diameters {d(X™®)} converges to zero with R-order w,
defined as

W=, 4250 — 1V 1212, +9f2 201 £, ., —4f,r2+2f,+1)/2 (3:6)

where f; denotes the j-th Fibonacci number, i.e.

j;f):;o!flzla_ﬂ+1:f;+ﬁ—lai=1=23"" (3?)

Proof: We wirst prove (2.6). This is clearly satisfied for k=0. Suppose it is satisfied

for a certain k>0. To prove that (2.6) holds with k replaced by k+ 1 we use the

identity . ’
x*=x—f(x)/f [x,x*].

Then for any point u we can write

x*=x—f()/{f [x, ul +f[x,u,x*] (x* —u)} .
From the mean value theorem for second order divided differences it follows that
x*ex—f(x)/{f[x,u]l +5 " (U)(V-u)},
for any intervals U, V satisfying

X xFe UsX® xFeVaX®,
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" By using this fact we obtain successively

i da e ol =3 S W =D L W T N N
For i=p this reduces to _

x* EX(k,p+l)=X{k-+ 1)
which proves that (2.6) holds for any k>0. -
The inclusions from (2.7) are obvious. In fact, we have
XS yR s YED Sy S Xk 5 5yl yk+1)
Because x® is the midpoint of X® and by (2.2) it follows that
d(X* V) <d(Y®)<d (x®@ — f(x®)/L) <3 d(XP).

According to (2.6) this implies that lim X® =x*.

k=

75

Let us now establish the order of convergence of the sequence {d(X™)}. It will be
convenient to denote by ¢ a generic constant which depends on f and p but is
independent of k. Because the value of this constant does not matter we convene to
write ¢+ c=c, ¢ x c=c etc. as long as we perform a finite number of operations (the
number of operations may depend on p but not on k). In our majorizations we will

often use the following obvious facts

| f(x)] <1, d(X) whenever x,x*e X< X,
d(1/S)<d(S)/I; whenever SCL.
Let us fix an arbitrary k>1 and denote
X®O=XO £ —d(X®D) i=0,1,...,p+]1;
E=d(X®), ;=d(X*1P), {=d(X*D).

Clearly,
ék:‘:k,ozék—l,pi—l: ’?ktgk—l,ps Gi=&x-s-
From the definition of M® we have

AMO)<Ed(f" (XED)| XO—xE=1P| 43 7 (XE D) d(XO— X1

Because

X”‘}QX”‘_I’”, xk=1.p) X"‘_l’p), d(f” (X“‘_”))Scd(X”‘_“),

L (XE D)< (X =c
we can write B '
AM®) < (Gmy et E) =l &).
By using (3.8) and (3.9) we obtain
d(Y®)<c d(M®)d(XP)<c(n, L+ E) &,

(3-8)
(39)
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In a similar manner we deduce that
d(Q9) <c(leme+d(YV) <c (et b+ ) &) <cml,,
&1 =d(X*) <cd(QP)d(XP) <c&m s,
dM®&D)<c(G+dX®M)<c(EG+Eml),
d(Y*D)<cd(M*V)d(X*V)<c(&+Emld Eemeles
d(@* ) <c(E+d(YEM)<c &,
&2 =d(X*P)<cd(QM)d(X*D) <c Em e
We will prove that
i j<c &l nlilfs, j=0,1,...,p+1. (3.10)
This has been already verified for j=0, 1, 2.
Suppose that (3.10) holds for j=0, 1, ...,i with 2<i<p. From the last equations in
algorithm S, we deduce that
d(M*) <c(d(X®)d (X D) +d(X®) <
<e(Gl - -+ Gl i g e Gl L,
S =d(X*D) <cd(MED)d(X )<

el Rl gl pme G ve aina (e,

This ends the proof of (3.10). By writing (3.10) for j=p, j=p+ 1 and using the fact
that

qk,p=’?k+la gk_p-g-l ng+1, [.-'k+l =)
we obtam
G <cgTrtpforsffon,

sy SC e " e Lo,

" .
Ck+1=Ck-

According to a result of J. W.Schmidt (1981) on the R-order of convergence of
coupled sequences it follows that the R-order of convergence of the sequence {¢,} is
equal to the largest positive eigenvalue of the matrix

2fp+2_1 fp+1 fp+1
2fp+1_1 .];a fp
1 0 0

It is easily verified that this is exactly w,. The proof of the theorem is complete.

O

As with the interval Newton method we note that in the numerical implemen-
tation of algorithm S, one has to use interval extensions for the function values
f(x*?9) because otherwise the intervals X*? may become empty although the
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equation (2.1) has a solution in X®. Under the assumption that the cost of an
interval evaluation of the second derivative is about the same as a function

evaluation, the efficiency index of the algorithm S, is given by

p+2
eff(S,)=" |/w,.

In Table 1 we give the values of w, and

r+2
|/ w, for p=0,1,2,...,10.

Table 1

W

|

p+12/—
Wp

200000000000 E + 00
3.73205080757 E+00
6.46410161514 E + 00
1.10000000000 E + 01
1.82736184955 E+ 01
3.00996688705 E + 01
4.92032386541 E+01
8.01372644808 E+01
1.30176682947 E+02
211151549918 E4+02
342166585524 E+02

—

1.41421356237 E+00
1.55113351807 E+00
1.59450925267 E+-00
161539426620 E+00
162294608383 E +00
1.62638403519 E+00
1.62741835990 E +00
1.62756060099 E +00
1.62724640258 E+00
1.62677223759 E+00
1.62624684244 E+00

It can be proved that

1+ 5712
wp>( 2]'[) for p>4, (3.12)
+2 1+)/5

lim " /w, = ][, (3.13)

p— 2 ; X

2,~— 9 .
maxﬂl/wp: w; =1.62756 .... (3.19)
p=0 - :

Thus, under the assumption that the cost of f(x) is about the same as the cost of
f7(X) we have maximum efficiency for p=7. Of course this result has to be
understood only In an asymptotic sense. In practice the optimal value of the
parameter p is to be determined through numerical experiments. Nevertheless, we
remark that the convergence order of the algorithm S, grows exponentially with p
while that of the algorithm N, grows only linearly with p.

4. Practical Procedures and Some Numerical Results

In this section we give some modifications of the algorithms N, and S,. With the
same number of function evaluations per step, but with a slight increase in the
number of arithmetic operations we obtain enclosing intervals which are in most
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cases contained in the corresponding intervals given by N, and §,. Although this
will not change the order of convergence of the respective procedures we will obtain
in many cases a faster reduction of the diameters of the enclosing intervals, especially
during the first iterations. For a motivation of such modifications see Alefeld-

G. Alefeld and F. Potra:

Herzberger (1983, pp. 76 —78).

Algorithm MN,:set MUV =L

E2
ES

for k=0, 1,... DO through ES

x® = (X®), x*k0=x® x*0_ x®
YW= {x® uf(x‘k’)/M{k_”} AX®
7y, x”‘), M®B — f’ (ZU‘]) AL
for i=0,1,...,p DO through E2
XD = (xhd _ £ (5 D) MB) A XD

X+ _ yikp+l)

Algorithm MS,: for k=0, 1, ... DO through ES

El

E2
ES

x("):m( X{k})

if k=0 then QW =L & GOTO E1

else

M® = {f[x® x&-1.P] 4 TE-D(X® _xE=LPN ~ [
Y® = {x® — f(x®)/M®) A X

Q(k)___ {f[x“", x(k—l,p)]_|_ j_ﬂc—l)(y(kl _x(k—l.p})} AL
XD = [x0 _ £(x0)/00} ~ x®

xUe0) — (k)

W= Xl y x0 T0_L ()

if p=0 then GOTO ES

else

fori=1,2,...,p DO through E2

x50 — iy (X ®9)

M — {f[x{"’i_l}, x(k,ﬂ] 4 7% (X{k,n —x"“"_l))} nL
YD = (ke _ f(xkD)/pf6D) XD

QD = { fxUi=1 xhd] 4 TR (yld _ xki-Dp ~ T
X kit — (3D _ £( D)0k~ kD
X&) _ ykp+1)
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It is easy to prove that Theorem 2 and Theorem 3 remain valid if we replace the
algorithms N ,, S, by the algorithms MN,, MS , respectively. We have apphed the
algorithms N % M N,, S,, MS, to the following example considered in Alefeld-

Herzberger (1983, pp. 77 —78).
Example: f(i)z x?(3x*+]/2sin x)—]/§/19, X©@=10.1,1].

We have stopped the iterative procedure when the diameter of some inclosing
interval became less than 10~ '°. The number of function evaluations (4 f), as well
as the number of interval evaluations of the first derivative (3 f”) or the number of
interval evaluations of the second derivative (3 f”) are given in Table 2.

Table 2
N, MN, S MS,

‘ +f _ */ ¥ f #*f # f #* [ #f #* 1

0 6 6 5 S 6 5 5 4 ]
i 1 7 4 6 3 6 3 5 2

2 8 3 7 3 6 % 5 2

3 8 2 7 2 7 2 6 2

4 9 2 7 2 7 2 6 1

s 9 2 8 2 7 1 6 1

6 10 2 9 7 7 1 6 1

7 10 J 2 10 2 7 1 - 6 1
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