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Abstract - Zusammenfassung

A New Class of Interval Methods with Higher Order of Convergence. In this paper we introduce a
new dass of interval methods for endosing a simple root of a non linear equation. For each non negative
integer p we describe an iterative procedure belonging to this dass which requires p+ 1 function values
and an interval evaluation of the second derivative per step. The order of convergence of the iterative
procedure grows exponentially with p. For p~4 this order is strictly greater than

C+:SY+2.
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Eine neue Klasse von Intervall-Methoden mit höherer Konvergenzordnung. In dieser Arbeit wird
eine neue Klasse von Intervall-Methoden zur Einschließung einfacher Wurzeln einer nichtlinearen
Gleichung vorgestellt. Für eine gegebene ganze Zahl p ~ 0 wird ein Iterationsverfahren beschrieben, das
p + 1 Funktionsauswertungen pro Schritt sowie eine Intervallauswertung der zweiten Ableitung benötigt.
Die Konvergenzordnung des Iterationsverfahrens wächst exponentiell mitp. Für p2:4 ist die Ordnung
größer als

C +(5)P+2.

1. Introduction

Interval arithmetie pro vides a useful tool for eonstrueting root finders with global
eonvergenee and automatie error bounds. Interval arithmetie is nothing else but a
natural extension ofthe usual arithmetie between numbers to an arithmetie between

intervals. Let A=[al,a2J, B=[b1,b2J be two bounded and closed intervals ofthe
realline and 1et * denote any of the arithmetic operations +, -, x, -;-. Then the
eorresponding operation for intervals is defined as

A*B={a*b;aEA,bEB}. (1.1)

For the properties of interval arithmetic we refer to Alefeld-Herzberger (1983).

* This paper was written while the second author was visiting the University of Karlsruhe.
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The set of all bounded and cIosed intervals of the realline is denoted by I (IR).Any
real number x is identified with the trivial interval [x, x] = {x} EI (IR).Besides the
above introduced arithmetic operations, in I (IR)we mayaIso define the intersection

AnB={x; xEA and xEB},

as weIl as the complementary operation

(1:2)

v A v B=[mi~ {al,bd, max {az,bz}]. (1:3)

If we consider the set I (IR)partially ordered by the inc1usion ~, then (1:2) and (1:3)
are the corresponding lattice operations

A nB=inf{A,B}, A v B=sup {A, B}.

With any interval A = [al' azJ we associate the following three important quantities:
the diameter of A

d(A)=laz-all, (1.4)

the absolute value of A

I (I I I '1
IA I=max II all, IaZlf, (1.5)

the midpoint of A

m(A)=(al +az)/2. (1.6)

In the proof of our main result we will frequently use the following relations
concerning the diameter and absolute value of an interval.

A~B~d(A):::o;;d(B),

d(AIB)=d(A)+ d(B),

IA+BI:::O;;IAI+IBI,IABI=IAIIBI,

d(AB):::o;;1A Id(B)+d(A) IBI.

For details see Alefeld-Herzberger (1983).

(1:7)

(1:8)

(1~9)

(1:10)

The notation introduced above is sufficient for understanding the numerical
methods to be presented in this paper. However, we strongly advise the reader with
no background in interval arithmetic to consult Alefe1d-Herzberger (1983). Also
for the readers who are interested in applications we recommend the use of
PASCAL-SC, a powernd language which supports interval arithmetic (see
G~Bohlender et al. (1987»). We mention that the implementation of interval
arithmetic on a digital computer is done in such a way that the interval solution
resulting from interval arithmetic operations incIudes all rounding errors which may
have occured because of the finite mantissa. Thus interval arithmetic controls the

accumulation of the rounding errors, a property which is not shared by the usual
floating point arithmetic.

In Section 2 we review some weIl known results on the inter val Newton method and

on a c1ass of Newton-like methods which require p + 1 function values and one
interval evaluation of the first derivative per iteration, and which are convergent
with Q-order p + 2. F or p = 0 this reduces to the interval Newton method.
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In Section 3 we present a new dass of iterative procedures for enc10sing roots of
nonlinear equations which require p + 1function values and one interval evaluation
of the second derIvative. The corresponding order of convergence grows exponen-
tially with p. For p2:4 the order is strictly greater than

C+fr
Section 4 contains some variants of tbe iterativeproceduresdescribedin Sections2
and 3 together with the results of some numerical experiments.

2. Tbe Interval Newton Method

Let us consider the nonlinear equation

f(x) =0 (2.1)

where f is a continuously differentiable real function of a real variable. We suppose .

that f is strictly monotone on an interval X(O)E I (IR).Witbout loss of generality we
may assume that f is strictly increasing on X(O):We assume that by using interval
arithmetic methods it is possib1e to compute two positive numbers 11,12such that

0</1sf'(x)SIz, for all XEX(O). (22)

Let us denote by L the inter val [/1,/2l We suppose that the derivative f' (X)EIR,
XE X(O)has an interval extension f' (X) EI (IR),X f; X(O)satisfying the following
conditions

f' (x) Ef' (X), for all x E X f; X(O),

f'(X)f;f'(Y), whenever Xf; Yf;X(O),

d(J' (X))Sc d(X), for all X f;X(O),

(2.3)

(2A)

(2.5)

where c is a constant independent of X.

We note that condition (2.5)implles the Lipschitz continuity of the point derivative.
f' (x). With the above notation the interval Newton method can be defined as
follows.

Algorithm No: for k=O, 1, ... DO through ES

M(k)= f' (X~k»)n L, X(k)=m(X(k»)

X(k+ 1)= {X(k)- f(x(k»)/M(k)} n X(k)ES

In the above algorithm X(k) can be chosen to be any point of the interval X(k).
However, the midpoint X(k)=m(X(k») is a natural choice which is also optimal in

some sense (see Alefeld-Herzberger (1983) pp. 72-75). .

Theorem 1: Let f: X(O) ~ IRbe a continuous1 y differentiable fwiction whose derivative

has an interval extension satisfying (2.2) -(2.5).Suppose that the equation (LI) has a

solution X*EX(O). Then the sequence ofintervals {X(k)}given by the A1gorithm No
satisfies

X* EX(k) for all k2:0,

X(O)::::2X(l)::::2..., lim X(k) = x* .
k-+co

(2.6)

(2:7)
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M oreover the convergence is quadratic in the sense that the sequence of diameters
{d(X(k»)}converges Q-quadratically to zero. D

We note that, unlike the dassical Newton method, the interval Newton procedure
can be used as a test for the existence or the nonexistence ofa solution of(2.1) in X(O).
Thus if (2.2)-(2.5) are satisfied then the following statements hold.

(a) equation (2.1)has no solution in X(O)if and only if thefe is a k ~ 1 such that

X(k) =9=the empty set; (2.8)

(b) if there is a k~O such that

{X(k)- f(X(k»)/M(k)} ~X(k)

then the equation (2.1) has a solution in X(k).

We mention that in case (2.1) has no solution in X(O)then the situation (2.8) will
happen rather rapidly (see A1efeld(1988)).

When implementing the interval Newton method on a computer the value f(X(k»)has
to be evaluated by using an interval extension of the function f Otherwise, the
intersection performed in algorithm No may become empty because ofthe effect of
rounding errors, although (2.1) has a solution in X(O).Therefore, if we consider that
the cost of computingf(x(k») and1' (X(k»)is about the same, then the efficiency index,
in the sense of Ostrowski (1960), of Newton's method is

(2.9)

eff(No)=v2= 1.4 "" (2.10)

We can increase the efficiency index by considering the following dass of iterative
procedures which are obtained from the interval Newton method by using the same
interval derivative for p + 1 substeps.

AIgorithm Np: for k=O, 1, ... DO through ES

X(k,O)=X(k), M(k)= l' (X(k»)n L

E2

ES

for i=O, 1, ...,p DO through E2

X(k, i) = m (X(k, i»)

X(k,i+l) = {X(k,i) - f(X(k,i»)/M(k)} n X(k,i)

X(k+l)=X(k,p+l)

Theorem 2: Suppose that the hypothesis of Theorem 1 is satisfied. Then the sequence
of intervals generated by Algorithm Np satisfies (2.6), (2.7).Moreover,the sequence of
diameters {d(X(k»)}converges to zero with Q-order p + 2. D

F or p = 0 Theorem 2 reduces to Theorem 1. Algorithm Np requires p + 1 function
values plus one interval evaluation of the first derivative per iteration step. Hs
efficiency index is given by

P+12~
eff(Np)= V p+2.

It is easily seen that the highest efficiency index is obtained for p = 1

eff(Nl)=V3= 1.4422496 .,..

(2.11)

(2.12)
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We also have

eff(N 1)> eff(N 0)=eff(Nz) > eff(N3)> eff(N 4) > ... . (2.13)

Of course all this holds under the assumption that the cost off(x(k» is about the same
as the cost. of l' (X(k». In general the optimal value of the parameter p is to be
established by experimental and theoretical considerations. In the next section we
will see that by using p+ 1function values and one intervill evaluation ofthe second
derivative we obtain a much higher efficiency index than (2.11).

3. A Class of Secant Type Interval Methods with Higher Convergence Order

Throughout this section we assume that the function f is twice continuously
differentiable on X(O)and that its second derivative fn (x) E IR,XE X(O) has an interval

extension r (X)E I (IR), X s; X(O) satisfying

f" (x) Efn (X), for all XEXS;X(O),

fn (X)f;;fn (Y), wheneverX s; Ys;X(O),

dUn (X»)~c d(X), for all X s;X(O),

(3.1)

(3.2)

(3.3)

where the constant c is independent of X.

Together with fand its derivative we will also use its divided differences

f[x,y]=
{ (~(.X)-f(Y»)f(X-Y) if X=FY

fex) ifx=y,

f[x,y,z] = { ~[X,z] - f[Y,z])f(x- y) ifx=F Y
f(x)f2 ifx=y.

(3.4)

(3.5)

As in the previous section we assume that condition (2.2) is satisfied. Then for any
nonnegative integer p we can define the following iterative procedure.

AJgorithm Sp: for k=O, I, ... DO through ES

X(k)= m(X(k»

if k=O then Q(k)=L & GOTO EI

else

M(k) = {f[X(k), X(k-l,p)] +t fn (X(k-l»(X(k) -X(k-l,P»} n L

y<k)= {X(k)_f(X(k»fM(k)} n X(k)

Q(k) = {f[X(k), X(k-l,p)] +t fn (X(k-l»(y<k) - X{k-l,P»} n L
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Ei X(k, 1)= {X(k) - f(X(k»)/Q(k)} n X(k)

if p = 0 then X(k,P>,=X(k)& GOTO ES

else

X(k, 1) = m (X(k, 1»)

M(k, 1) = {fE X(k), X(k,1)] +t f" (X(k»)(X(k, 1)- X(k»)}n L

y<k, 1) = {X(k, 1) - f(X(k, 1»)/M(k, 1)} n X(k, 1)

Q(k,1) = {f[X(k), X(k,1)]+t f" (X(k»)(y<k,1)-X(k»)} n L

X(k,2) = {X(k,1) - f(X(k, 1»)/Q(k,1)} n X(k,1)

ifp = 1 then GOTO ES

else für i=2,3, ...,p DO thrüugh E2

X(k, i) = m (X(k, i))

M(k,i) = {f[X(k,i-1), X<k,i)] +t f" (X(k»)(X(k,i) -X(k,i-1»)} n L

X(k,i+ 1) = {X(k,i) - f(x(k,i»)/M(k,i)} n X(k,i)E2

ES x(k+ 1) = X(k,p+ 1)

Theorem 3: Let f: X(O)-t1Rbe twice continuously differentiabk Suppose its first
derivative satisfies condition (2.2) and that its second derivative has an interval
extension satisfying (3.1) -(3.3). Assume also that the equation (2.1) has a root
x* EX(O).Then the sequence of intervals generated by AIgorithm Sp satisfies (2.6),(2.7).
Moreover, the sequence of diameters {d(X(k»)} converges to zero with R-order wp
defined as

wp=(fp+2fp+2 -1 +V12f;+2 +9 f;- 20fpfp+2 -4fp+2 +2fp+ 1)/2 (3~6)

where Jj denotes the j-th Fibonacci number, i.e.

fo = 0, f1 = 1, h +1 = h + h - 1, i = 1, 2, ... . (3.7)

Proof: We wirst prove (2.6). This is clearly satisfied for k =0. Suppose it is satisfied
für a certain k?::O.To prove that (L6) holds with k replaced by k+ 1 we use the
identity .

x* =x- f(x)jf[x,x*].

Then for any point u we can write

x* =x- f(x)/{f[x,u] + fEx, u,x*] (x* -u)}.

Frorn the mean value theorem for second order divided differences it follows that

x* EX- f(x)j{f[x, u] +t f"(U)(V -u)},

for any intervals U, V satisfying

X,U,X*E U~X(O), X*E V~X(O).
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By using this fact we ob ta in successiveIy

X*E.y<k),X*EX(k,l), X*EX(k.i+1), i=l, ...,p.

F or i = P this reduces to

X* E X(k,p+ 1) =X(k+ 1)

which proves that (2.6) holds for any k? O.

The inclusions from (2:7) are obvious. In fact, we have

.X(k) ~ y<k) ~X(k,l)~ y<k,1)~X(k,2) ~ ... ~X(k,p+1)= X(k+1).

Because X(k)is the midpoint of X(k) and by (2.2) it follows that

d (X(H 1»)::;; d (y<k»)::;; d (X(k) - f(x(k»)/ L)::;; t d (X(k»).

According to (2.6) this implies that lim X(k)= x*.
k-oo

Let us now establish the order of convergence ofthe sequence {d(X(k»)}.It will be
convenient to denote by c a generic constant which depends on fand p but is
independent of k. Because the value of this constant does not matter we convene to
write c+ c= c, c x c= c etc. as long as we perform a finite number of operations (the
number of operations may depend on p but not on k)~In our majorizations we will
often use the following obvious facts

If(x)1 ::;;12d(X) whenever x,x* EX sX(O),

d(1/S)::;;d(S)/1f wheneverSsL.

Let us fix an arbitrary k?l and denote

X(k,O)=X(k), ~k,i=d (X(k,i»),i =0,1, ...,p + 1;

~k=d(X(k»), 'lk=d(X(k-1,p»), (k=d(X(k-1»).

Clearly,

~k= ~k,O= ~k-1,P+1' rlk= ~k-1,P' (k = ~k-1'
From the definition of M(k) we have

d(M(k»)::;;td (J" (X(k-1»)) IX~) -X(k-1,p)1 +tlf" (X(k-l»)1 d(X(k) - X(k-1,p»).

Because

X(k) s X(k-1,p>, X(k-l,p) E X(k -l,p), d (J" (X(k-1»))::;; c d (X(k-l»),

If" (X(k-l»)I::;; If" (X (0»)1=c

we can write

d (M(k»)::;;CRk-11Jk + ~k)=c(1Jk (k + ~k)'

By using (3.8) and (3.9) we obtain

d (y<k»)::;; cd (M(k») d (X(k»)::;; c (1Jk(k + ~k) ~k'

75

(3.8)

(3.9)
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In a similar manner we deduce that

d (Q(k»):s;C((k 17k+ d(y<k»)}:s;C(11k(k + (17k(k + c;k)c;k}:S;C17k(k>

~k, 1 = d(X{k, 1»):s;Cd (Q{k»)d (X{k»):s;Cc;k17k(k,

d (M(k, 1)}:s;c (c;~+ d (X(k, 1)}}:s;c (~~+ ~k17k(1\),

d (y<k,1»):S;Cd (M{k, I)} d (X{k, 1)}:s;c (~~+ ~kYJk(k) ~k17k(k'

d (Q(k,I»):s;C(~~+ d (y<k,1»)}:s;c ~~,

~k.2 =d (X{k,2»):s;C d (Q{k,1»)d (X(k, 1»):s;c aYJk(k'

We will prove that

v v2f.+ -1 f.rf.. 0 1 1t;k,j:S;C<;k 1 1 17klL,k1,J=" ...,p+ . (3.10)

This has been already verified for j = 0, 1,2.

Suppose that(3.1O) holds for j=O, 1,. .., i with 2:S;i:S;p.From the last equations in
algorithm Sp we deduce that

d (M{k,i»):s;c(d(X (k»)d(X{k,i-l») +d(X{k,i»)}:s;

< C(1-2f' 1]fi-1 rfi-I + ;;2f,+1- 1 nfi rf, ) < C ev2finfi-1 rfi-I
- '>k k '>k L,k ',k 'ok - .k ',k '>k ,

1'. =d (X(k,i+1» ) <cd (M(k,i) } d (X{k,i) } <~~I+l -. -

< c ev2finf,-1 rfi-l ;;2fi+l-l 1]1, yfi= C ;;2fi+2-1 1]fi+1 rfi+1
- .k ',k 'ok L,k k l,k L,k k '>k .

This ends the proof of (3.10). By writing (3.10) for j = p,j = p+ 1 and using the fact
that

):: v y,.. v

<"k,p=I1k+l' Sk,p+l =t;k+l, l,k+l =t;k

we obtain

(V <c ;;2fp+2-1' 1fp+I rfp+1
.k+l- L,k k '>k ,

'1 <c)::2fp+l-l 1] fprfp
k+ 1 - <"k k 'ok ,

(k+l =(k'

According to a fesult of J. W. Schmidt (1981) on the R-order of convergence of
coupled sequences it follows that the R-order of convergence of the sequence {(k} is
equal to the largest positive eigenvalue of the matrix

[

2fp+2-1 fp+l fp+I

J
2fp+l -1 fp fp

100

It is easily verified that this is exacHy \Vp'The proof of the theorem is compIete.
0

As with the interval Newton method we note that in the numerical implemen-
tation of algorithm Sp one has to use interval extensions for the function values
f(X{k,i») because otherwise the intervals X{k,i) may become empty although the
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equation (2.1) has a solution in X(O).Under the assumption that the cost of an
interval evaluation of the second derivative is about the same as a function

evaluation, the efficiency index of the algorithm Sp is given by
p+lc

eff(Sp)= V wp.

In Tab1e 1 we give the values of wp and
p+lc

V wp for p=O, 1,2, ..., 10.

(3.11)

Table1

It canbe proved that

1 h

)
P+ 2

> (1+ V 5 for p 2 4,
wp 2

(3.12)

lim P+l;;;- - 1+ 115
p~oo V wp - V J2 '

(3.13)

p+lc fc
max VWp=Vw7=1.62756....
p~O . .

(3.14)

Thus, under the assumption that the cost of fex) is about the same as the cost of
f" (X) we have maximum efficiency for p=7. Of course this result has to be
understood only in an asymptotic sense. In practice the optimal value of the
parameter p is to be determined through numerical experiments. Nevertheless, we
remark that the convergence order of the algorithm Sp grows exponentially with p
while that of the algorithm Np grows only linearly with p.

4. Practical Procedures and Some Numerical Results

In this section we give some modifications of the algorithms Np and Sp' With the
same number of function evaluations per step, but with a slight increase in the
number of arithmetic operations we obtain enclosing intervals which are in most

p+2 -
p wp tlwp

0 2.00000000000 E + 00 1.41421356237 E+OO

1 3.73205080757 E+OO 1.55113351807 E+OO

2 6.46410161514 E +00 1.59450925267 E+OO
3 1.10000000000 E + 0 1 1.61539426620 E + 00

4 1.82736184955 E + 01 1.62294608383 E + 00
5 3.00996688705 E +01 1.62638403519 E+OO

6 4.92032386541 E+OI 1.62741835990 E + 00

7 8.01372644808 E +01 1.62756060099 E +00
8 1.30176682947 E +02 1.62724640258 E + 00
9 2.1l151549918E +02 1.62677223759 E +00

10 3.42166585524 E +02 1.62624684244 E + 00
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cases contained in the corresponding intervals given by Np and Sp' Although this
will not change the order of convergence ofthe respective procedures we will obtain
in many cases a faster reduction ofthe diameters ofthe enclosing intervals, especially
during the first iterations. For a motivation of such modifications see Alefeld-
Herzberger (1983, pp. 76-78).

Algoritbm MNp: set M(-l)=L

for k=O, 1, ... DO through ES

x(k)=m(X(k»), X(k,O)=X(k), X(k,O)=X(k)

y<k)= {X(k)- f(X(k»)/M(k-l)} n X(k)

Z(k) = y<k) V X(k), M(k) = f' (Z(k») n L

for i=O, 1, ...,p DO through E2

E2 X(k,i+l) = {X(k, i) - f(X(k,i»)/M(k)} n X(k,i)

ES X(k+ 1) =X(k,p+ 1)

Algoritbm MSp: for k=O, 1, ... DO through ES

X(k) = m (X(k»)

if k=O then Q(k)=L & GOTO EI

else

M(k) = {J[X(k), X(k-l,P)] + T'k-l) (X(k) - X(k-1,P»)} n L

y<k) = {X(k)- f(X(k»)/M(k)} n X(k)

Q(k)= {J[X(k), X(k-1,p)] + T'k-l)(y<k) - X(k-l,p»)}n L

X(k,1) = {X(k) - f(X(k»)/Q(k)} n X(k)EI

X(k,0) = X(k)

U(k) = X(k, 1) V X(k), T'k) = t f" (U(k»)

if p = 0 then GOTO ES

else

for i=I,2, ...,p DO through E2

X(k,i)= m (X(k,i»)

M(k, i) = {J[X(k,i-l), X(k,.)] + T'k)(X(k,.) -X(k,i-l))} n L

y<k,i) = {X(k,i) - f(X(k,i»)/M(k,i)} n X(k,i)

Q(k, i) = {J[ X(k,i-1), X(k,i)]+ T'k) (y<k,i) - X(k,i-l))}n L

x(k,i+ 1) = {X(k, i) - f(X(k,i»)/Q(k,i)} n y<k,i)E2

ES X(H1)=X(k,p+l)
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It is easy to prove that Theorem 2 and Theorem 3 remain valid if we replace the
algorithms Np, Spby the algorithms M Np, MSp, respectiveIy. We have applied the
algorithms Np, MNp, Sp,MSp to the following exampIe considered in Alefeld-
Herzberger (1983, pp. 77 - 78).

Example: f(x)=x2(tx2+V2sinx)-V3/19, X(Ü)=[O.1,1l

Wehave stopped the iterative procedure when the diameter of some indosing
interval became less than 10-10. The number offunction evaluations (:#=f), as weIl
as the number of intervaI evaluations of the first derivative (=#=1') or the number of
interval evaluations of the second derivative (=#=f") are given in Table 2.

Table 2
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6 Computing 42/1

Np MNp Sp MSp
p

*1 *1' *1 *1' *1 *1" *1 *1"

0 6 6 5 5 6 5 5 4

1 7 4 6 3 6 3 5 2

2 8 3 7 3 6 2 5 2

3 8 2 7 2 7 2 6 2

4 9 2 7 2 7 2 6 1

5 9 2 8 2 7 1 6 1

6 10 2 9 2 7 1 6 1

7 10 2 10 2 7 1 6 1
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