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Wir betrachten Modifikationen zweier Iterationsverfahren von J. W. Schmidt, die unter geeigneten Bedingungen mono-
tone Einschliefungen fir die Lisung einer nichtlinearen Gleichung liefern. Das erste Verfalren hat die Konvergenzordnung
3, und im skalaren Fall erfordert es zwei Funktions- und eine Ableitungsberechnung pro Iterationsschritt, wihrend das

weite die Konvergenzordnung 1 + Y2 hat und nur zwei Funktionsberechnungen pro Schritt erfordert.
We consider modifications of two iterative procedures of J. W. Schmidt which, under appropriate conditions provide

monotone enclosures for the solution of a nonlinear equation. The order of convergence of the first method is 3 and in the
sealar case it requires two function- and one derivative-evaluation per iteration step, while the second one has the convergence

order equal to 1 4 /2 and it requires only two function-evaluations per step.
PaccMoTpuM MOgEPMKALKME ABYX MeToja Wrepanuu BoemeHunix E. B. Imugra. IIpn nmogXoasmux yeio-

BHAX 3TH MeTONE o0ecredHBal0T MOHOTOHHEIE BIOMEHUA IJIA pelleHNA HeJnHeHHoro ypaBHeHuA, I'Iepnmﬁ
METOT HMeeT NOPHAIOK CXOTHMOCTH OT 3, 4 B CHAIADHOM Ciy4dae TPEﬁyI-DTCH OBA BHIYMCJIEHUA liJYHRIIHH H

OIHO BHUMCJIEHHE IPOU3BONHOM Ha mar urepanun. BTopoil MeTOR mmeeT MOPAIOK cxommyMocTé ot 1 4+ )2
H TpebyeT TOJBKO BA BEYHC/IeHHA QYHKIUMH Ha IOAT,

0. Introduction

Suppose that the real function f+ R — R is convex and strictly increasing on an interval [a, b] for which fla) < 0 <
< f(b). If f is twice continuously differentiable on [a, b] then it is well known from J. B, Fourier’s work from 1818
(see [1, p. 248]) that the Newton-Fourier iterative procedure

Set y,=a, z,=0; for n=0,1,... compute

Tpil = Zp ”"f!{zn}_lf(zn) s Ynt+1 = Ya — f'(2a) 72 flyn) (e}

produces two sequences {¥n}neo, {2n)n—o that are monotonically convergent {rom below and from above to the unique
zro z* of f on [a, b] 1.e.:

I SEYr1 ST S 2041 S, limy, = limz, = 2*. : (2)
1l—+oo fl=+20
It can be proved that (see [3, p. 70]):
a1 — Ynsal | [ (=2¥) |
lim = 3
o= 0O Zn — :%;'.2 zfl(Z*) E ( )

which shows that the diameters of the intervals enclosing the root are @-quadratically convergent to zero.

. We note that the Newton-Fourier method requires the evaluation of two functions and one derivative per
lteration step. J. W. ScEMIDT [5] has shown that with the same amount of work it is possible to produce enclosing
%quences with a higher order of convergence. The two iterative procedures considered by J. W. ScaMIpT in the
‘8bove mentioned paper can be described as follows: A

Choose y,, 3, € [@, b] such that f(y,) <0, fly,) =0; for 2 =1,2,... compute

- Zn=Yn — ' (¥n) "1 f(Wn) » Ynt1 = Yn — 6f(ym 2a) "t flyn) (4)
Zn = Yn — 6f(yﬂ —1s yﬂ) “lf(yn} 3 Yn+1 = Y — 6f{ym Zn) —lf{yn} 3 [5)
'thare df(, y) denotes the divided difference of f at the points z and y. The sequences produced by either (4) or (5)
Wlisfy (2). Moreover, J. W. Sceupr has proved that the sequence {y,} given by (4) is Q-cubically convergent while
the sequence {ya} given by (5) has the R-order of convergence 1 + 2 .Remarkably enough the iterative procedure
Y requires two function- and one derivative-evaluations (the same as the Newton-Fourier method), while the itera-
Ve procedure (5) requires only two function-evaluations per step (with the exception of the first one).
the T_he major inconvenience connected with the iterative procedures (4) and (5) is the fact that in many cases
Point 2, produced by them may fall outside the interval [, b] where f is supposed to be increasing and convex
ind then the convergence may break down. In the above quoted paper of J. W. ScemapT the fact that z; belongs to
E" b]is taken as a hypothesis of the convergence theorem. The paper [5] contains only results on the order of con-
ez"%eﬁce of the sequence {y,)}. The order of convergence of the sequence {z,)} is discussed in [7]). As with many
. “Closing methods we would be naturally interested in knowing the order with which the diameters of the enclosing
rvals converge to zero.
8 In Wwhat follows we will try to fix these inconveniences by considering the following modifications of J. W.
CRMIDT’s iterative procedures:

Set yo=a, z=0; for n=0,1,9,... compute

u. Yns1 = Yn — 5f{?}m 23) 7 flyn) Zny1 = Ynr1 —F Wns2) 1 f(Y0) Zns1 = inf {244, 25} {6)
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——
or ~
yn+l = Yn — éf{yﬂ, zﬂ)-lf{yn) y En-,'-l L ?,’n+1 T éf(ym y#+i)-1f(yil+1) y Zpe1 = inf {zﬂ-i—'.l) Zn} . {7}

We will study the above iterative procedures in partially ordered Banach spaces, in a framework simijly,
that considered by J. W. SceMipT [5]. However, for reasons of convenience, we will make some simplifying asgyp,
tions. Thus we will assume that all divided differences of f on [a, b] are invertible (which ensures the uniqueneg, 01:
the root) and we will consider a simpler, but more restrictive, Lipschitz condition on df which turns out, howeye,
to be satisfied by most examples of interest. (See [4]). !

Also, in order to avoid repetition we will prove most of our convergence results for a ““more general” iteratiy,
procedure of the form

Yn+y = Yn — 6f{ym zﬂ}'lf(yu} ) .?.fn‘.Ll = Kalfn + {1 — %n) Yn+1 5 Kp € [0: 1} » }
Zni1 = Yn+1 — Of (Yn+1> Yn41) 2 f(Yn+1) Zns1 = Inf {Zpg, 2}
which reduces to (8) fora, = 0,7 =0, 1, ... and to (7) fora, = 1,2 =0, 1, ....

The paper is organized as follows: in section 1 we review some basic definitions con cerning partial ordering and
divided differences of nonlinear operators; section 2 contains results on the monotonicity and the convergence of
the iterative method (8); in section 3 we prove some statements about the order of convergence of the enclosing
methods (6) and (7); the last section 4 contains a numerical example.

s

1. Preliminaries

Let us consider a Banach space B partially ordered by a cone K. This means that K is a closed, convex subset of B
which has the property that ¢ K, z 5 0, impliesazx € K forx = 0 and «z € K forx << 0. The partial ordering in B
is then defined by @ < y iff y — 2 ¢ K. The elements of K are called positive. If u < v, then the set [u, 7] =
= {2 € B;u < z < v} is called an interval. '

We assume that the cone K is normal, in the sense that there is a constant y > 0 such that 0 < = < y implies
Hlz|l = yllyll, with y independent of z and y.

We also assume that the cone is regular, which means that every order bounded increasing sequence is conver-
gent in the norm of B.

Finally we assume that the cone K is minihedral, which means that each two-element set {z, y} has a greatest
lower bound z = inf {z, ¥).

The definitions listed above can be found in [2, p. 133]. The partial ordering of B induces a natural partial
ordering in the Banach space L(B) of all bounded linear operators acting on B, Namelyif S, 7' € L(B) then S < Tiff
Sz < Tz forall z = 0. A linear operator 7' is called positive iff 7 = 0, where 0 denotes the zero operator. '

In what follows we will consider a nonlinear mapping f: D ¢ B — B where D is an open convex subset of B.
The mapping f is supposed to have a divided difference on D which means that for every pair of elements u,v ¢ D
there is a bounded linear operator §f(x, ») ¢ L(B) such that

Of(u, v) (w0 — v) = flu) — f(v), u,ve D, @)

We note that, in general, the divided difference is not symmetric (i.e. 8f(u, v) % 8f(v, u)). However, it i8
easily seen that (9) implies

Of(v, u) (v — ) = f(u) — f(v) . . (10)
We assume that df is increasing with respect to both arguments i.e.: -
Of(u, v) < 8f(x,y), whenever u<2z and »<y. (1

Also we assume that §f(u, v) is boundedly invertible for all , » € D and that
of(w,v)" =0, w,veD. (12)

Finally we assume that the divided difference is Lipschitz-continuous on D in the sense that there isa constant
B = 0 such that

16f(@, 9) — of(, )| < Bllle — ull + Iy —ol), v z,9eD, (13)

where ||-]| denotes both the norm of B and the operator norm of L(B).
We remark that from (13) it follows that f is Fréchet-differentiable on D and that

fx) = of(=, 2) , ze D (14)
(for a proof see, for example, [4]).

2. Monotone convergence

In the first part of this section we prove a monotone convergence theorem for the iterative method (8) under the

general framework considered in the preceding section. The second part of the section contains some refinements
these results for scalar functions.
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Theorem 1: Suppose that the Banach space B and the nonlinear mapping f: D ¢ B — B satisfy all the assump-
rons made in section 1. Assume also that there is an inferval [a, b] ¢ D which contains @ root * of the equation f(z) = 0
::nd that the value of f at a is negative i.e.:
asz*=b, fl@)=fz¥)=0. (1)
Then the iterative algorithm (8) is well defined for y, = a, z, = b, and the sequences {ya}, {za} provide a monotone
enclosure of the root x* satisfying property (2).

Proof: We will prove the following relations:

Q) fom =0,

(‘.'.1) a) yngz*: b) 2* < za,
(i) a) Yn = Yntis b) zagr S %,
{iV) 3) lim Yn = z* - b) lim 2y = x¥.

We will prove (i) —(iii) by induction. For n = 0 (i) and (i) reduce to (15). From (12) and (15) we have
Y1 = Yo — Of (Yo, 20) "1 f(¥) 2 %o »
while from the definition of the greatest lower bound it follows that
z =inf {z,2)} = z.
Thus (i) — (iii) are true for » = 0. Let us assume that they hold up to some fixed » = 0.
'(ii a) Using (8) we can write '
o* — Yns1 = 2% — Yn + Of(Yn, 20) 2 f(Yn) = Of(Ym 20) 7 {f(yn) — f(@*) — Of(Yns 20) (¥n — 2¥)} =
= Of(Yn, 2a) ™ {0 (yn, *) — Of (¥n, za)} (¥n — 2%) .
This is positive since 0f (¥, 22)"2 = 0, y» — 2* < 0, and Of(yns ©*) =< 6f(Yn, 2n). Hence ynyy < %,
(iib) Using (8) we deduce in a similar manner that
Zne1 — ¥ = Of(Ynt1, Yn+1) " {Of(@%, Yns1) — Of(Ynt1, Ynt1)} (% — Ynsa)
which shows that z* < z, ;. By the induction hypothesis we have z* < z,. Therefore z* < inf {Z, 11, 22} = 2Zp+1.
(i) Using the first equation in (8) we have
fWant1) = fYns1) — f(¥n) — f(Yn, 20) (Yns1 — ¥n) = {6f(¥n) Yn+1) — Of Uns 20)} (Yn+1 — Yn) -

Since by the induction hypothesis ¥ < ynp1 < 2* < 2,41 < 2, it follows that 8f(ys, Yn+1) < Of(¥n, 2a), Which
implies that f(y,.1) < 0.

(iii) From the above results it follows immediately that
Yniz = Yn+1 — Of(Un+15 20 41) " f(Uns1) = Yns1 s
while from the definition of the infimum we have
Zase = Inf {Zp 0, 2041} S 2aqa1 .

According to the induction principle (i)— (iii) hold for all » = 0. From the regularity of the cone K there exist y*
and z* for which ¢ < y* < z* < 2* < b hold such that

lim y, = y*, limz, = z¥.
f—co Ti—CT

From (11) it follows that &f(ya, za) < 0f(b, b)) = B and then by using (iiia) we obtain

0 = f(yn) = 6f(Yns 20) (Un — Yn+1) 2 B(Yn — Yn+1) -
Because B is continuous and {ya} is convergent we have lim B(ys — yn+1) = 0 which implies 0 = f(y*) = 0. Hence
Jy*) = 0. From the definition of the divided differenceﬂ‘;: have

0 =fly*) — flz*) = of(y* =*) (y * — =¥),

® that from the invertibility of 8f(y*, *) it follows that y* = 2*. In order to prove z* = z* let us note that accord-
g to (11) we have

4 = df(a, &) = 0f(Yn yn) = 0f(6,0) = B,
¥herefrom by virtue of (12) it follows that

B = f(Umyn) = 47"
Because flya) =< 0 we can write

Yo — B"if[y,.) g 2, = Ya — Sf@m Ya) " flyn) < Yo — A7 Y(ya) .
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The first and the last term above converge to z*. Therefore, using the normality of the cone, we have lim z, -
Finally from o* < 2, = z, we deduce that limz, == o* [] D ot ;

N~ 0T

Remark 1: By inspecting the proof of the above theorem we realize that the Lipschitz condition (13) hag nﬁt
been used. In proving f(y*) = 0 we have only used the “‘continuity from the left”” of f, which follows from (10) ang
(12). Indeed for any & = 0 we have

Ak < f(z) — fle — b) = 8f(w — h, 2) b < Bk,

so that for any increasing sequence {x,} which converges to x we have lim f(2,) = f(x). However if (13) is not Satis.
-+ 00

fied then f may not be Fréchet-differentiable at all points of D. At such points df(z, z) has to be defined in terms of
the “‘partial derivatives from the left and from the right”’. For example for scalar convex functions we can take

@ 2) =5 {f( =0 +f@=+0}.0
Remark 2: Note that we have not assumed f(b) = 0. It turns out that if in the hypothesis of Theorem 1,
we replace condition (15) by the condition

esbh, fl@=0=/f0), (16)

then the existence of a point a* ¢ [q, 5] such that f(z*) = 0 follows from a result of SouMIDT and LEONHARDY 6],
Thus (16) is more restrictive than (15). In fact it is easy to produce examples satisfying the hypothesis of Theorem |
and for which f(b) = 0 does not hold. However if the domain D is “large enough” we can always find a b wity
f() = 0. Indeed we can prove that if all the assumptions in the hypothesis of Theorem 1, but the existence of
the root a* € [a, b], are satisfied and if

J={zeB;z=a} =D,

then there is a ¢ € J such that f(c) = 0.
To see this we first observe that according to (10) and (11) we have

) — fla) = df(a, %) (x — a) = A(z — a), xed,

where, as before, 4 = df(a, a). If we denotec = a — 4 “If(a) then we have clearly ¢ € J and therefore f(c) = f(a) +
+ d(c —a)=0.7

The next result shows that if there is an iteration step for which z; = 2, then the same is true for all subse-
quent steps. '

Proposition 1: Under the hypothesis of Theorem 1 assume that z, = %, for some k = 1. Then 2, = Zn for
all n = k.

Proof: Obviously, it is sufficient to prove that 2, = z, implies 2z, < z,. From the definition of the divided
difference we have

Yo = Yn+1 = OfUn Yn+1) " {f(¥n) — f(¥ns1)} -
Therefore by using (8) and the hypothesis z, = z, we get
. Iy — En-l—l = Yno— Ygpl 5f{??m yn)“lf{y»} i af@nﬂ: yn-l—i)'lf(yu-i—l} =
= {0fm Yns1)™" — Of(Yns ya) 1} f() + {8f Fns1s Y1) ™ — 0¥y Y1)} fYns1) -

The last term above is clearly positive, because f(y, 1) < 0 and Of (Yn+1s Yn+1) = 8 Un Yna1)- .
Also 6f (Y, ¥a) = Of (Y ¥n) = Of(Yn, yn+1) Which together with f(y») =< 0 shows that the other term is positive,
too. Hence z,.1 < 2z, [
In the remainder of this section we give some more precise results for scalar functions. Namely we will sho¥
that in this case z, = z, for all indices » that are sufficiently large. Also we will prove that z, = z, forn = 1,2,
in case f’ is concave. ;

Proposition 2: Assume that in the hypothesis of Theorem 1 we have B = R (the set of all real numbers)
endowed with the natural ordering and topology. Then there is a positive integer N such that z, = %, for all n = N-

Proof: According to Proposition 1 it is sufficient to prove that z,,; < 2, for some » = 0. Using (8) and the
definition of the divided difference we have : :

Il = % = Yasr — 20— Of (Ut 1 Ynt1) 1 fYasn) =
= Of(Yn+1, Yns2) 7 {f (U115 Ynr1) Wnsr — 2a) — f(Uns1)} =
= 0f s, Yn+1) " {[FFn 1, Yns1) — 8f(Fm 1, 20)] Wns1 — 20) — flza)} =
= sty Y1) O Fnsts Y1) = fYnsss ) + 8f(Ws 200} (Y — 20) - ,
In deducing the last equality we have used the fact that the first equation in (8) can be rewritten as

Ynol = Zp — éf(ym Zp) "1 f{z,,} .
Let us denote

d, = ﬁf\'ﬁ,e t1 Yasr) — fiYacrs 20) + Of (44ns 2n) - ; {18} i
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Under our assumptions we have lim d, = f'(z*) > 0, s0 that there is an n = 0 such that d, > 0. But then we have
from 17 that Zne1 — 2n = 0. 7=
P rOPOSI tion 3: Uﬂﬂfer the hypothesis of Pwposztmn 2 assume that f' is concave on [a, b]. Then Za = Zy fOT
=12.
Proof: Let us denote by 8%f and 6%, resp., the second and the third, resp., divided difference of f. Under our
agsumptions we have

Of(u,v) =0, 0w, v, w) =0, Bflu, v, w,z) = 0, u, v, W, € [a, b].
The number d, defined in (18) can be written as
dn = Of (Yn+1s Yn+1) + 0 (Yns Yns1s 20) (Yn — Yn41) =
= {0%(Yns Yn+15 2a) — O (Ya, Yot Yns1)} Un — Yni1) Of (Yn, Yn+1) =
= 0%(Yn, Yn+1> Yn+1, 2n) (2n — Yn11) (Yn — Yn+1) + Of(YUm Yns1) -
Because ¥n+1 = = Zny Yn < Yy it follows that d, = 0. Hence, according to (17) Z,+1 = za. The proof is complete

3. The order of convergence

In this section we will prove that the diameters of the enclosing intervals provided by (6) tend to zero Q-cubically,

while those produced by (7) have the E-order of convergence 1 4 /2. In the onedimensional case we will prove some
results similar to (3). In particular it will follow that if f(2*) 5 O then the diameters of the enclosing intervals pro-

vided by (7) converge to zero with @-order 1 + }/2
Theorem 2: Under the hypothesis of Theorem 1 there is a constant u > 0 such that
Hzn+1 — Ynsrll S pllzn — 9all2 llza — 4all,  n=12, ..
Proof: From (8) and (10) it follows that
0=2as1 = Yns1 = Znt1 — Ynt1 = —0f (Un+15 Yns1) P f(Unt1) =
= —0fWnt1> Yn+1) " {f Y1) — F(¥n) — Of(Yns 20) (WUn41 — Yu)} = _
= —0f Fn+1 Yn+1) 2 {0 (Yn Yn+1) — Of(Yns 26)} (Ynt1 — ¥n) - (19)
Using the fact that 0 < yni1 — Yn = 2n — yn &nd .
Of (Ynsts Yns1) 1 = A_"l > 4 = if(a, a), Of (Uns Yn+1) = Of(Yns 2a)

. we obtain

0=zp01— Wnti = A‘l{éf{ym Zy) — éf(ym Yns1)) (2o — Yn)
so that from (13) and the normality of the cone we have

Nznsr — Ynsill = f«ﬁ“zﬂ — Ynsall Hlza — ¥all » (20)
where u; = fy||4-1||. The first equation in (8) can be rewritten as
Yn+1 = 2n — Of(Yn, 2a) 1 f(2n) - (21)

Using (11), (12) and the fact that ¥, << y» =< yn11 < 2, it follows that
Of Yns Yn) "2 f(28) — OF (Yns 2a) "2 F(20) = Of (F» Yn) ™ {Of (Ums 20) — OF (Yn> Yu)} Of (s 20) * f(2n) =

: = 0f (Yns Yn) " {0 (Yns 20) — Of(Fn> Yn)} (2n — Yn11) = 0.
We deduce that

0= 2 — Ynt1 = f(¥Uns 2a) 7 f(20) = Of (U, ¥n) 1 f(24) -
On the other hand from the third equation in (8) and the fact that y, < 2z, < z, We have

0= —_(En — Yn) — Of(Uny Yn) 2 f(yn) £ —(2n — Yn) — Of(Yns Yn) 2 flyn) .
The above inequalities imply that

0=z —Yn = 6f(§m Yn) ™t {f(2n) —“ﬂyn} R 5f@m Yn) (Zn — Ya)} =

= af@m Ya)i {Qf{zm Ya) — 5f@m Ya)} (2n — Yn) = Aul{aﬂzm Yn) — 6f@m Yn)} (2a — Yn) .
Using again (13) and the normality of the cone we get '
) _“z?l = yrl-!-lH g ﬂl”zn ST yn“ Hzn e gﬂ“ - (22)

Finally (20) and (22) imply the inequality stated in our theorem. ]

; Corollary 1: Under the hypothesis of Theorem 1, the sequence {|lzn — yall} of the diameters of the enclosing
intervals produced by the iterative method (6) converges to zero Q-cubically.

Corollary 2; Under the hypothesis of Theorem 1, the sequence {||zy — yﬂ[!} of the diameters of the enclosing
intervgls produced by the iterative method (7) converges to zero with R-order 1 + }J2
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Proof: Note that in this case
Hza — Tall = llza — Yn-all Z Yl|zn-1 — Yn-all 0
Proposition 4: Under the hypothesis of Proposition 2 suppose that f is twice continuously differentiable o,
(a, ). Then
[2ns1 — Yntal - f(z*) S
oo |Zn — ynl: |20 — g‘ni 2f’($*}

Proof: As in the proof of Proposition 3 we denote by 6%f the second divided difference of f. Using (19) and (g
we can write

Zn+l — Ynt1 = ““5f('__5’-n+ls ynfl)_l 523’(%, Yn+ls Za) (Yn+1 — 2n) (YUns1 — Ya) =

= 5f{§n+l; Yu+t Y i azf{yﬂ: Yusls Zp) 6f{ym Zn)"lf(yn) (Y241 — Za) .
If we denote

ﬁﬂ = 6f{§n-§-1) yﬂr—{—l)_l azf{ym Ynt1s :ﬂ} 6f{ym zﬂ}_z L]

then according to (21) we have

Zni1 — Yns1 = —PBaf(Ya) f(24) - (23)
From Proposition 2 it follows that z, = Z,. Therefore the third equation in (8) can be rewritten as
Zn = Yn — Of (Yn Yn) 7 f(¥n) - (24)
Consequently

J(za) = f(2n) — f(Fn) — Of(Yns Yn) (20 — ¥n) =
= {8f(@ns 22) — Of(Fn> Yn)} (2n — Yn) = O*f(Fn Yns 2n) (2n — Yn) (2n — Yn) «
Using again the third equation in (8) and 2z, = 2z, we get
f(¥n) = —&f Fns Yn) (22 — Yn) - (25)
Substituting these expressions for f(z,), f(ya) in (23) gives
Znt1 — Yn+1 = Bn0%(Yns Yns 21) O (Yns Yn) (26 — ¥n)? (20 — ) -
For n — co in this relation we obtain the desired result. ]

Corollary 3: Under the hypothesis of Proposition 4 suppose that f” (x*) 5 0. Then the sequence {|2a — Yal} of
the diameters of the enclosing intervals produced by (T) converges to zero with Q-order 1 + 2.
" Proof: For (7) we have y» = y,_, so that by using (24) and (25) we have
Zn — Ef_" =ZIn —Yn-1= —5f{yﬂ-—1: yn)—lf(yﬂ-—l) s 6f{yn—1: yn)ul 5f(yn~z, yn—!.) (zﬂ—l el yﬂ-l} .
Thus lim (J2n — ¥al/l2a—1 — ¥a-1l) = |f (™) [f (z*)] = 1 so that by using Proposition 4 we deduce that
=00 &
_ I f}f{z*)
7o
Our Corollary follows then from a result of [9]. OJ

For the definition of the @-order and the R-order of convergence and the relation between these two notations
the reader may consult, for example, [8].

2

B [2s41 — Ynr1l 0.

. nwoo lzn — Unl? |21 — Y1l

4. A numerical example i
We will give only an example in the onedimensional case (a rather “ill-conditioned” one) to illustrate the importanc®
of taking the infimum in (8). We want to find a monotone enclosure for (1/11)¥11 ¢ [0.1, 1.0], by using the iterative
procedures (6) and (7). It is easily seen that the function f(z) = 11z'* — 1 and the points ¢ = 0.1, b = 1.0 satisfy
the hypothesis of Theorem 1. The results obtained by applying (6) and (7) are given in tables 1 and 2. .

We note that both methods take the infimum 11 times. After that method (6) needs 6 steps to attain f“_ﬂ.
accuracy (18 digits) while method (7) needs 7 steps. (In the tables are only displayed 12 digits of the mantissa.) This
is in accordance with the respective orders of convergence. We also note that without taking the infimum the solu-
tion would have been much slower (if not impossible because of the overflow). We have worked out several multi-
dimensional examples (some of which arise from discretizing nonlinear integral equations or nonlinear two-pol
boundary value problems) that exhibit the same pattern of behaviour. However, taking the infimum in the mult-
dimensional case has a more dramatic effect because in many cases z,..; is sensibly closer to the root than bO‘fh Zs-
and 2,.,. We conjecture that there are multidimensional problems for which the infimum must be taken snfinitely
many times but we have not been able to find such an example so far.
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Table 1. Results for method (6)

n Un Zn Zn

1 0.181818181809 1 209335.010110
2 0.256198341760 1 6783.60629225
lE) 0.649855750431 1 1.20601852658
11 (.678883880368 1 1.01459626279
12 0.703896078337 0.916682000648 0.916682000648
13 0.744859870517 0.834351242786 0.843351242789
14 0.792482522776 0.805028398613 0.805028398613
15 0.804066504121 0.804133125087 0.804133125087
16 0.804133097492 0.804133097503 0.804133097503
17 0.804133097503 0.804133097503 0.804133097503
Table 2. Results for method (7)
Fi Yn Zn Er!

1 0.181818181809 1 1037653.16044

2 0.256198341760 1 22173.4151338
IE} 0.649855750431 1 1.36250590216
11 0.678883880368 1 1.09261792176
12 0.703896078337 0.957216014306 0.95721601430
13 0.733544662495 0.875553625862 0.87555362586
14 0.774865855929 0.820824556317 0.82082455631
15 0.801021492377 0.804746555927 0.80474655592
16 0.804121155031 0.804133330360 0.80413333036
17 0.804133097486 0.804133097503 0.80413309750
18 0.804133097503 0.804133097503 0.80413309750
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