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Summary. In this paper we introduce the set of so-called monotone iter-
ation functions (MI-functions) belonging to a given function. We prove nec-
essary and sufficient conditions in order that a given MI-function is (in a
precisely defined sense) at least as fast as a second one.

Regular splittings of a function which were initially introduced for lin-
ear functions by R.S. Varga in 1960 are generating MI-functions in a nat-
ural manner.

For linear functions every MI-function is generated by a regular split-
ting. For nonlinear functions, however, this is generally not the case.

Subject Classifications: AMS (MOS): 65115,CR: G1.5.

o. Introduction

In his famous book "Matrix Iterative Analysis" Varga [8J has introduced the
concept of a regular splitting of a matrix. See also [7]. Until now regular
splittings of matrices remained a fundamental tool for the investigation and
comparison of iteration methods' for linear equations in finite dimensional
spaces.

In 1972 one of the authors [lJ generalized the concept of a regular splitting
to nonlinear mappings in partially ordered Banach spaces. Aseries of results
for iteration methods generated by nonlinear regular splittings could be
proved. Among these results are, for example, convergence theorems for the
nonlinear total step method and single step method, respectively, if these meth-
ods are used to compute zeroes of M-functions. M-functions are important
nonlinear generalizations of M-matrices. They'were introduced by Rheinboldt
in [5]. See also [4].

In the present paper we consider the monotone behaviour of iteration meth-
ods which was discussed several tim es in the past. See, for exam pie, the mon-
ography by Schröder [6]. It turns out that regular splittings are playing again
a fundamental role.
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The paper is organized as follows:
In Sect. 1-4 we discuss some preliminaries. In Sect. 5 we introduce the

concept of a monotone iteration function (MI -function). Theorems 1 and 2
contain results on the monotone behaviour of sequences produced by MI-func-
tions. Theorem 3 contains a necessary and sufficient condition for the global
convergence of the iteration method belonging to an MI-function.

In Sect. 6 we define in a natural way a relation h'>-gfor two MI-functions
("The iteration method belonging to h is at least as fast as the iteration meth-
od bel onging to g"). Theorem 4 contains necessary and sufficient conditions für
h'>-g to hold.

In Sect. 7 the definition of a regular splitting for a nonlinear mapping from
[IJ is repeated. Theorem 5 shows that given a regular splitting we can define
an MI-function in a natural way.

Section 8 repeats the definition of a regular splitting of a matrix introduced
by Varga [8] and demonstrates that it is covered by the nonlinear definition.

In Theorem 6 of Sect. 9 we prove necessary and sufficient conditions for
h'>-g if hand g areMI-functions generated by regular splittings.

In Sect. 10 so-called additively composed regular splittings are introduced.
In this case Theorem 7 contains again necessary and sufficient conditions for
h'>-g. Using results of Woznicki [9J and of Csordas and Varga [2J we can show
that a sufficient condition from [IJ for h'>-g is not necessary.

In Theorem 8 of Sect. 11 we prove that in the finite dimensional case with
the natural partial ordering every linear MI-function is genera ted by a regular
splitting of some linear function.

The final example in Sect. 12 shows on the other hand that for nonlinear
MI-functions this is in general not the case.

1. Partial Ordering

Assurne that X is a set in which a partial ordering is introduced via a (re-
flexive, antisymmetric and transitive) relation ">". We assurne that X is direct-
ed downwards and upwards. By this we mean that given a, bEX there exist
f, CEX such that

< <-f = a = c, f<b<c
hold.

Assurne that a sequence (ak) in X is monotone increasing, that is

ao<al <al <... .

Then we write akj. Analogously we write ad if the sequence is monotone de-
creasmg.

2. Convergence

We assurne that in X a convergence definition "~" is given which is in the
following sense compatible with the order relation" >": If (ak) is a sequence in



Regular Splittings and Monotone Iteration Functions 215

X then there is at most one aEX such that ak-+a. Furthermore the properties
(C1)-(C6) below have to hold. In formulating these properties we use the fol-
lowing notation: If ak-+a and akj then we write akja. Similarly akta means
that ak-+a and akt.

(Cl) If ak<b, k=O,1,2,..., and akj then there exists some aEX for which
akja.
(C2) If ak>b, k=O, 1,2, ..., and akt then there exists some aEX for which
akta.
(C3)
(C4)
(C5)
(C6)

If akja then ak<a, k=O, 1,2,....
If ada then ak>a, k=O, 1,2, ....
If {h<ak<ak, k=O, 1,2, ..., fh ja and ada then ak-+a.
If ak~bk, k=O, 1,2, ..., ak-+a,bk-+b then a<b.

From our assumptions the following remarks can be concluded.

Remark 1. A sequence (ak) for which ak=a, k=O, 1,2, ..., holds is convergent to
a.

Remark 2. Every subsequence of a monotone convergent sequence is conver-
gent (to the same limit as the original sequence).

3. Example

Suppose that X is areal Banach space and that K is a reproducing (i.e. K - K
= X) and (closed) cone. K is assumed to be regular in the sense of Krasnosel-
skii [3]. Let" <" be defined as usual via the cone and let" -+" denote norm
convergence. Then (C1)-(C6) hold.

4. Special Case

X=JRn. K=JR: ={x=(xV)lxv::::O,v=1,2, ...,n}.

5. Monotone Iteration Functions (MI-Functions)

Assume that a set X is given which is equipped with a partial ordering and a
convergence definition as described above. Besides X we consider a partially
ordered set Y which is directed downwards and upwards.

Let now a function

f:X-+Y
be given. Then a function

g:XxY-+X

is called a monotone iteration function (MI -function) belonging to f if g has the
following properties:

(Mi) g is (weakly) monotone increasing with respect to both arguments;
(M2) g(x,f(x))=x for XEX;
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(M3)
{

x<g(X,y)=> f(g(X,y))<y

}
for XEX, YEY;

x >g(x, y) =>f(g(x, y)) > Y
(M4) If Xkj x or xdx then for all YEY it follows that g(xk, y)-g(x, y).

The set of all MI-functions belonging to f is denoted by MI (f). The follow-
ing result holds for MI-functions.

Theorem 1. Assume that f: X- Y is given and let gEMI (f). Assume that for XEX
and YEY a sequence (ak) in X is defined by the iteration method

ao=x,

ak+ 1= g(ak, y), k=O, 1,2, ....
(5.1)

Then the following hold:

f(x)<y=> f(ak)<y,

f(x» y=>f(ak) > y,

k=O, 1,2, ...,ak j.

k=O, 1,2, ...,akt.

(5.2)

(5.3)

Proof We prove (5.2). Assume therefore thatf(x)=f(ao)<Y' Then it suffices to
conclude that (for arbitrary k > 0) -

ak <ak+ 1 (5.4)

(5.5)

and

f(ak+ 1)< Y

follow from
f(ak)<y. (5.6)

By (5.6) and (MI) we have

ak+ 1 = g(ak, y) > g(ak,f(ak)) = ak

where the last = -sign follows from (M2). Hence (5.4) holds. From the last
inequality we have ak< g(ak,y) and the first part of (M3) yields

f(g(ak,y))<y

which - using the definition of ak+1 - states that (5.5) holds. The proof of (5.3)
can be performed similarly. 0

In the next Theorem we consider two elements ~EX and XEX for which
for some YEY the left-hand side of (5.2) and (5.3), respectively, hold. In this case
the corresponding sequences Üh) and (äk) are monotonically converging to so-
lutions fl:and ä of f(x)= y, respectively.

Theorem 2. Assume that f: X- Y is given and let gEMI (f). Furthermore assume
that for ~, XEX and YEY it holds that

<-~=x, f(~) < Y< f(x). (5.7)

Let the sequences (fl:k)and (äk) in X be defined by

!Jo;;;;;;J, gk+1= g(gk'Y) (5.8)
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and

ao=x, ak+ 1= g(ak' y), (5.9)

respectively. Then

{hjg, akta, g<a

(5.10)

(5.11)

(5.12)

gk < ak, k=O, 1,2, ...,

and
j(g) = j(a)= y.

Proof By (5.7) the statement (5.10) holds for k=O. Assurne that (5.10) is true
for some k~O. Then by (MI) it follows that

gk+ 1 = g(gk' y) ~ g(ak, y) = ak+ l'

Therefore (5.10) is proved by mathematical induction. From Theorem 1 we
have

gk j, akt.

From (5.10) and (5.13) it follows that

(5.13)

<-gk=a/, k, 1=0,1,2, ....

Therefore using (Cl) and (C2) it follows that the first two parts of (5.11) hold.
The third part follows from (5.10) and (C6).

Using (M4) in (5.8) and (5.9) the equations

g = g(g,y), a=g(a,y)

follow. Applying (M3) we get (5.12). 0

We add some remarks to the preceding result:
Assurne that (5.7) hold and that instead of the sequences (gk) and (ak) defined

by (5.8) and (5.9) we have two sequences (~k) and (Xk)for which

~o <~, ~k+ 1<:(~k' y)}
k=O, 1,2,... .

xo> X, Xk+ 1~b(Xk' y)

(5.8')

(5.9')

Such sequences could, for example, be produced by systematically rounding
downwards and upwards if the iteration methods (5.8) and (5.9) are performed
on a computer using a fixed length floating point number system.

We prove that
< - <-~k=gk' ak=xk, k=O, 1,2,.... (5.14)

Because of the first parts in (5.8') and (5.9'), respectively, (5.14) is certainly true
for k=O. If (5.14) holds for some k>O then by (5.8'), (MI) and (5.8)

~k+ 1 <g(~k' y) < g(gk' y)= gk+ l'

Similarly ak+ 1 <Xk+ 1 follows.
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By (C3) and (C4) we have from (5.11) gk <g, ä<äk. Therefore we conclude
that

< <-<-lfk=g=a=xl' k, 1= 0, 1, 2, ...

and we have the

Corollary 1. Assume that Jor the sequences (lfk) and (Xk) the inequalities (5.8') and
(5.9') hold. Then there exists at least one solution oJ the equation J (x) = y between
;&kand Xl where k and 1are arbitrary nonnegative integers.' 0

The next Theorem delivers aglobai convergence result for MI -functions.

Theorem3. Assume that J: X ~ Y is bijective and let gEMI (J). ThenJ - 1: Y~ X
is monotone increasing if and only if the sequence (ak) computed by the iteration
method

ao=x

ak+ 1= g(ak' y), k=0,1,2,...,
(5.16)

is convergent to J-l (y) Jor arbitrary XEX, YEY:

ak ~ J - 1 (y). (5.17)

Proo! a) Assume that J-l is monotone increasing. Choose XEX, YEYarbitrari-
ly, but fixed. Since the partial ordering in Y is directed downwards and up-
wards there exist elements y, YEYsuch that

y:SJ(X)~Y (5.18)

(5.19)
and

< <-y=y=y.

For lf=J-1(y), X=J-l(y) it follows from (5.18) that

< <-lf=X=X. (5.20)

Besides of the sequence (5.16) we consider the two sequences (gk) and (äk) which
are computed by

go=lf, gk+l =g(gk'y), k = 0, 1,2, ...
and

äo = X,. äk+ 1 = g(äk, y), k=O, 1,2, ... .

Because of(5.19) it follows that J(lf)<y< J(x) which together with (5.20) means
that (5.7) of Theorem 2 holds. Therefore, by Theorem 2,

gk jg, ädä (5.11)
and

J(g) = J(ä) = y.

SinceJ is bijective we have g=ä= J-l (y).
We now show that

< <-gk=ak=ak, k=0,1,2,..., (5.21)
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from which because of (5.11) and (C5) the convergence ak~f-1(y) follows. We
now prove (5.21). (5.21) is certainly true for k=O because of (5.20). If (5.21)
holds for some k>O then, using (M1),

gk+1= g(gk' y)~g(ak' y)~g(äk, y)=äk+ 1

and therefore (5.21) holds since ak+ 1= g(ak'y).
b) Assurne now that for arbitrary XEX, YEYwe have that Qk~f-1(y) for

the sequence (ak) computed by (5.16). We have to show that f-l is monotone
increasing. This is the case iff b1<bz follows from f(b1)~f(bz). In order to
prove that this holds, we choose

ao= b1, y= f(bz)
in (5.16).

Then

ak <ak+ l' f(ak):2Y, k=0,1,2,...

hold. For k=O this can be seen as follows:

The inequality f(b1):2 f(bz) is equivalent to

f(ao)= f(b1):2f(bz)=Y.

Furthermore by (M1) and (M2) it follows that

al =g(ao, y)=g(b1,J(bz))'2g(b1,J(b1))=b1 =ao.

For general k the assertion follows from (5.2).
Since akif-1(y)=bz we have by (C3) that ak~bz, k=0,1,2, Therefore

we have b1=ao~bz' 0

6. Comparison Results

Suppose that for a givenf:X~Ywe have g,hEMI(f). Für XEX, YEYwe con-
sider besides of the sequence (ak) computed by (5.1) the sequence (bk) computed
by

bo=x,

bk+ 1= h(bk, y) k=O, 1,2,.... (6.1)

The analogous statements corresponding to (5.2) and (5.3) read

f(x)~y~ f(bk)~y, k = 0, 1,2, ..., bki (6.2)

(6.3)

and

f(x» y~ f(bk)~y, k=0,1,2,..., bkL

respectively.

The statements (5.1), (5.2) and (6.2), (6.3), respectively, justify the following

Definition. The iteration method (6.1) is at least as fast as the iteration method
(5.1) if for arbitrary XEX, YEY the statements
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f(x)<y~bk>ak'

f(x» y~bk~ak,

k = 0, 1,2, ..., (6.4)

(6.5)k=O, 1,2, ...
hold.

If (6.1) is at least as fast as the iteration method (5.1) then we write h>-g.

Theorem 4. Suppose that f: X ~ Y is given and let g, hEMI (f). 7hen h?:g iff for
XEX, YE Y

f(x)~ y~h(x, y)~ g(x, y),

f(x)~y~h(x, y)<g(x, y).

(6.6)

(6.7)

Proo! a) Assume that h?:g. Iff(x)<y then by (6.4) b1~a1 which means that
h(x,y)~g(x,y). Therefore (6.6) holds. Analogously (6.5) implies that (6.7) holds.

b) Assume now that (6.6) holds. We show that (6.4) is true. If

f(x)~y (6.8)

then we have to show that

bk?:.ak' k=O, 1,2,.... (6.9)

This is obviously true for k = O.
By Theorem 1, (6.8) implies that

f(ak)~y, k=O, 1,2, ... .

Therefore, replacing x by ak, we have from (6.6) that

h(ak' y) > g(ak, y), k=O, 1,2, .... (6.10)

Assume now that (6.9) is true for some k>O. Then by (MI) and (6.10),

bk+ 1 = h(bk, y) > h(ak, y) > g(ak' y) = ak+l'

Therefore (6.9) is true and the statement (6.4) holds. Analogously we can prove
(6.5) by using (6.7). 0

7. Regular Splittings

Assume that a function f: X ~ Yis given. Then a function 1':X x X ~ Yis called
a regular splitting of f if the following properties (Rl )-(R5) hold:

(Rl) r(x, x)= f(x), XEX.
(R2) r(a,x)<r(b,x)~a<b.
(R3) The function 1'(.,x): X ~ Yis for all XEX bijective.
(R4) a < b ~ l'(x, a)?:. l'(x, b).

(R5) H, for the sequences (ak) and (bk) in X, in addition to

r(ak, bk)= Y, k = 0, 1, 2, ... ,
either

akja, bdb
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or

akla, bklb
hold, then r(a, b)= y.

Regular splittings for nonlinear mappings were introduced in [1] as a gen-
eralization of regular splittings of matrices which were introduced by Varga in
[7]. See Sect. 8.

Theorem 5. Assume that r: X x X ~ Yis a regular splitting of some givenfunction
f: X ~ Y 1f g: X x Y~X is defined via

g(x, y)=a if r(a,x) = Y (7.1)

then gE MI (f).

Proof We first note that because of (R3) the function g is welldefined by (7.1).
We now have to show that (M1)-(M4) hold. The proof consists of several steps.

a) Using (R1) it follows from (7.1) that

g(x,f(x))=x

holds. Hence (M2) is proved.
b) We show that g is increasing with respect to the second variable. To

prove this, we note that (R2) can be written as

Yl =r(a, x)~r(b, x)= Yz =>asb.
By (7.1)

a = g(x, Yl)' b = g(x, Yz).

Therefore we have shown that Yl~YZ implies g(X'Yl)<g(X,yz).
c) The mapping

g(x,.): Y~X

is bijective. This is an easy consequence of (R3).
d) If g(Xl'Yl)=g(XZ'Yz) and Xl :S;xz then Yl > Yz. This can be seen as fol-

lows:

By (7.1) the equation x=g(Xl>Yl)=g(XZ'Yz) can be written as

r(x, xl)= Yl, r(x, xz)= YZ'

If Xl <xz then by (R4)

Yl =r(x,xl»r(x,xz)=Yz.

e) From Xl <xz, YEYit follows that g(Xl,y)~g(xz,Y). The proof is as fol-
lows:

Given YEY then c) implies that there exists a Yl E Ysuch that

g(Xl' Yl)= g(xz, y). (7.2)

By d) Yl ~y. Applying b) it follows together with (7.2) that

g(Xl' y)< g(Xl' Yl)=g(xz,y).
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b) and e) therefore show that (MI) holds for the mapping g defined by (7.1).
f) (M3) holds, that is

X~g(x,Y)=:;.f(g(x,y))<y

}
. X y.lOr XE , YE .

X> g(x, y)=:;.f(g(x, y));?::y

T0 see this, define a = g(x, y). Then by (M2)

g(a,f(a))=a= g(x, y).

By assumption x<a. Hence applying d) we conclude that f(a)~y, that is
f(g(x, y)) < y.

This is the first part of (M3). The second part can be proven similarly.
g) We show that (M4) holds.
Assume first that Xkj x.
We define the elements of the sequence -(ak)via (7.1):

ak = g(Xk' y)

Since xk i we have by (MI)

if r(ak, Xk)- y.

ak= g(Xk' y) ~g(Xk+ l' y)= ak+ l'

Hence akj. By (C3) we have Xk2::Xand therefore by (MI)

ak = g(Xk' y) < g(x, y).

Hence akja for some aEX.
We now set bk=Xk and b=x. Then (R5) implies that r(a, b)= y, or by (7.1)

that
a = g(b, y).

We have therefore proved that Xkj X implies g(Xk' y)~g(x, y) which is the first
part of (M4).

The second part follows similarly. D

In view of Theorem 5 it is c1ear that Theorems 1-3 can be reformulated for

regular splittings. These specializations have essentially been proved in [1].
The linear case deserves particular interest. It will be discussed in the next
Seetion.

8. Regular Splittings of Linear Mappings in IRn

Let X = Y =IRn and assume that both spaces are partially ordered by IR':- (see
Sect. 4). Let f be a linear mapping. Then

f(x)=Ax, xEIRn, (8.1)

with areal (n, n) matrix A. If M and N are real (n,n) matrices such that

A=M- N, M-1 ~O, N~O, (8.2)
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where ">" is defined via the elements, then it is easy to see that

r(xl,xz)=Mxl-Nxz, Xl' XZEJRn, (8.3)

is a regular splitting of the mapping (8.1). The corresponding MI-function, de-
fined by Theorem 5, reads

g(X, y)= M-l Nx+ M-l y, X,YEJRn. (8.4)

(8.2) is the famous definition of a regular splitting of the matrix A introduced
by Varga in [7]. See also [8].

Under the assumptions of this section Theorem 3 implies the following

Corollary 2. Let A = M - N be a regular splitting. Then A - 1 >0 ifJ the iteration
method

Xk+l =M-1Nxk+M-ly, k = 0, 1, 2, ...

is Jor all y and Jor all Xo convergent to the solution X= A - 1 Y oJ the equation Ax
=y. 0

This is essentiaIly the weIl known result on regular splittings of matrices
proved by Varga. See [8J, Theorem 3.13.

9. Comparison of MI-Functions Generated by Regular Splittings

Assurne that r, s are two regular splittings of the function J: X ~ Y. Let g and h,
respectively, be the corresponding MI-functions defined by (7.1). If h>-g we
also write

s>-r

and caIl the regular splitting s at least as fast as the regular splitting r.

Theorem 6. Let rand s be two regular splittings oJJ: X ~ Y. Then s>-r ifJJor
a, b, XEX

r(a,x)=s(b, x)?J(x)=>a ~b,

r(a,x)=s(b, x)< J(x)=>a> b.

(9.1)

(9.2)

Proof Let g and h be the MI-functions belonging to rand s, respectively. Then
by (7.1) and part c) of the proof of Theorem 5 we have

g(x, y)=a~r(a, x)= y (9.3)

and correspondingly

h(x, y)=b~ s(b, x)= y. (9.4)

Because of Theorem 4 the proof is complete if the statements

(6.6)~ (9.1) and (6.7)~ (9.2)

are shown. Using (9.3) and (9.4) this needs no additional ideas. 0
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In [1], Satz 2, another condition for s,?:r was proved:
Assume that r,s: X x X-+ Y are two regular splittings of f: X -+ Y. Further-

more suppose that t: Xx X x X -+ Y is a function for which

r(xl> X2) = t(Xl' Xl' X2)

S(Xl' X2)= t(Xl' X2, X2)' Xl' X2EX,

(9.5)

(9.6)

and

hold. If the function

f(Xl'" X2): X -+ Y (9.7)

is for all Xl' XzEX monotone increasing then s>-r.
In Sect. 10 we will show that already in the finite dimensional and linear

case (9.5)-(9.7) are not necessary for s>-r. Hence these conditions are not
equivalent to (9.1), (9.2).

10~ Additively Composed Regular Splittings

Theorem 7. Let Y be a Banach space which is partially ordered by a regular and
reproducing (closed) cone (see Sect. 3). Assume that rand s are regular split-
tings off: X -+ Y which have the form

r(x l' Xz)= <P(x1) + U (Xz), Xl' XzEX
and

S(Xl, X2)= P(X1)+ V(Xz), Xl' X2EX,

respectively. Then s,?:r if and only iffor XEX, pEY

and
<P-1(<P(X)+p)~ P-1(P(x)+ p),

<P-1(<P(x)+p)~ P-1(P(x)+p),

p"?O- ,

p~O.

(10.1)

(10.2)

Proof By (R1) we have

f(x)= <P(X)+ U(x)= P(x)+ V(x), XEX. (10.3)

By (R3) we have that <1>,P: X -+ Y are bijective. For the MI-functions g and h
belonging to rand s, respectively, it therefore follows by Theorem 5 that

and
g(X, y) = <p-1(y - U (x))

h(x, y) = P- 1(y - V(x», XEX, YE Y.
(10.4)

By Theorem 4 we have s>-r if and only if

f(x)< y~ P-1(y- V(x))~ <p-1(y- U(x))

f(x» y~ p-l(y- V(X»)< <P-1(y- U(x»).

Replacing y by p+ f(x) and using (10.3) we immediately get (10.1), (10.2) and
vicevcrsa. 0
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In passing we note that Theorem 7 can also be proved by applying Theo-
rem 6. In this case we don't need (10.4).

Consider now the special case of Theorem 7 in which besides of Yalso X is
areal Banach space (partially ordered as described in Sect. 3) and assurne that
<1>,'l': X ~ Y are both linear. In this case (10.1) and (10.2) which together are
necessary and sufficient for s>-r can be written as a single condition:

<1>- I (p ) < 'l' - I (p ), PEY, p~O. (10.5)

If X=Y=Rn, K=R:,f(x)=Ax where Ais areal (n,n) matrix,iffurthermore

r(xI' X2)= MI Xl - NI X2= <1>(XI)+ U(X2)
and

S(XI,X2)=M2xI-N2x2= 'l'(XI) + V(X2)

are two regular splittings of f, then (10.5) is equivalent to

M -I> M -I
2 = I (10.6)

and we therefore have the

Corollary 3. Let X=Y=Rn, K=R: andf(x)=Ax with areal (n,n) matrix A.
lf /

r(xI,x2)=Mlxl-Nlx2 // (10.7)
and

S(XI,X2)=M2xI-N2x2 (10.8)

are two regular splittings off then s>-r if and only if (10.6) holds. 0

It is easy to see that under the assumptions of Corollary 3 the conditions
(9.5)-(9.7) are equivalent to

N2:s NI. (10.9)

Hence (10.9) is a sufficient condition for s>-r where rand s are defined by (10.7)
and (10.8), respectively.

From the work of Woznicki [9J and Csordas and Varga [2J it is known
that for two regular splittings (10.7) and (10.8) the statement

M"il ::::M11 =:>N2<NI

is not generally true. The example from [2J is as follows. Let

A=!
(

2
2 -1 -~)

and let

A=MI-NI =M2-N2
where

MI = (~ ~),
1

(

4 - 2

)M2=4 -2 5'

NI =~ (~ ~),
1

(

0 0

)N2=4 0 l'
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Then

- 1

(

1 0

)
- 1 1

(

5 2

)Ml = 0 1 and M2 =4 2 4.

Hence we have two regular splittings of A with MZl ~ Ml-l. However, Nl and
N2 are not comparable. Because of Corollary 3 we therefore have the result
that (10.9) is not necessary for s>-r.

11. Linear MI-Functions in JRn

In this seetion we consider X =Y= JRn,K = JR:, again.

Theorem 8. Let g: JRnXJRn~JRn be linear (which means that g can be repre-

sented in the form g(x, y)= Tz with z= C}EJR2n and Tan (n,2n) matrix). Then
gis an MI-function ofsomefunctionf:JRn~JRn ifand only if(8.1), (8.2) and (8.4)
hold. In other words: Every linear MI-function g: JRnXJRn~JRn is generated by a
regular splitting (8.3).

Proof a) In Sect. 8 we have shown that (8.1), (8.2) and (8.4) imply that
gE MI (f).

b) Assurne on the other hand that g is linear and gEMI (f) for some f The
linearity of g implies that

g(x,y)=Rx + Sy, x, YEJRn, (11.1)

with two real (n, n) matrices Rand S. Because of (MI) it follows that

R>O, s>O. (11.2)

By (M2) we have

Rx+Sf(x)=x, xEJRn. (11.3)

Similarly the first part of (M3) implies the statement

x<Rx+Sy=> f(Rx+Sy)~y, x, YEJRn. (11.4)

Consider now a solution u of the equation

Su=O. (11.5)

Then for every real A the vector y=AU is also a solution. Now we choose x=o
and y = AU, AEJR,in (11.4). Then it follows that

f(O)<AU, AEJR.

If U=F0, then we can choose AEJR such that this last inequality no longer holds.
Hence U= 0 and S is nonsingular.

We define
M = S- 1, N=S-lR, A=M-N. (11.6)
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Then, by (11.3),
f(X)=S-1 (x -Rx)=Ax, xEIRn, (11.7)

which is (8.1). Similarly (11.1) and (11.6) imply

g(x,y)=Rx+Sy=M-1 Nx+M-1 y
which is (8.4).

From (11.2) and (11.6) it follows that M- 1 = S?:.O. Therefore in order that
(8.2) holds we have finally to show that N = S- 1R > O. In order to prove this
we define for given x, yEIRn the vector pEIRn by

Rx+Sy=x+p. (11.8)

Then (11.4) reads

O~p=>f(x+ p)< y.

Since by (11.7)

f(x+ p)=S-1(X+ p- R(x+ p))
and by (11.8)

y=S-1(X+ p-Rx),

this statement can be written as

p~0=>S-1 Rp>O.

From this it folIows that N = S-1 R?: O. 0

12. Example: An Iteration Method for Computing the Square Root

In this section we consider the real compact intervals X = [0,1], Y= [0, -!]. X
and Yare assumed to be ordered in the natural way. Let

f: [0,1] ~ [0, -!J
be given by

f(X)=X2, xE[0,1].

a) If g: [0,1J x [0, -!]~ [O,1J is defined by

g(x,y)=X-X2+y, xE[0,1], YE[O,-!J, (12.1)

then gEMI (f). We omit the details of a proof. We have

f-1(y)=vy, YE [O,-!].
Hence

f-1: [0, -!]~[O,~]

is monotone increasing. From Theorem 3 (or in this elementary example by
direct discussion) it folIows therefore that the iteration method

ak+1 =ak-a;+y, k=O, 1,2, ..., aoE[O,~]
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produces for each YE[0, iJ a sequence (ak)for which

ak~-Vy
holds.

b) Consider now the function

g(x, .): [0, iJ~[O, !J, (12.2)

where g(x,y) is given by (12.1). g(x,.) isfor no XE[O,!J bijective. Part c) of the
proof of Theorem 5 therefore shows that g(x, y) from (12.1) cannot be defined
by a regular splitting off via (7.1).

This example shows that the concept of an MI -function is more general than
the concept of a regular splitting. Note, however, that for X = Y = JRn, K = JR:,
we have shown in Theorem 8 that a linear MI-function is essentially the same
as a linear regular splitting.
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