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Abstract - Zusammenfassung

On Higber Order Centered Forms. If the real-valued mapping f has a representation of the form
f(x) =f(c) +(x-cYh (x), x EX, tben we introduce an interval expression wbich approximates tbc range
of values off over tbe compact interval X with order n + I. The weIl known centered form is tbe special
ca sc n = I of this resuIt.
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Über zentrierte Formen höherer Ordnung. Für den Fall, daß f eine Darstellung der Form
f(x) =f(c) +(x-c)"h (x), XE X, besitzt, geben wir eine intervallmäßige Auswertung an, die den
Wertebereich über dem kompakten Intervall X mit der prdnung n + 1 approximiert. Für n = 1 erhält
man die bekannten Aussagen über die zentrierte Form.

1. Introduction

A fundamental property of interval arithmetic is the fact that it aIlows to include the
range of values of (rational) functions. It is weIl known that the distance of such a
result to the exact range is strongly dependent on the representation ofthe function.
For details see, for example, the discussion in Chapter 3 of [1]. In this paper we
discuss a generalization of the foIlowing weIl known facts:

Let the real valued function fbe defined on the real compact interval X ~ IR.Assume
that for some CEX the function f can be represented as

f(x)=f(c)+(x-c). hex), XEX=[Xt>Xz], (1)

where h is a continuous real function defined on X. Let d (X) = Xz - Xl be the width

(or diameter) of the interval X and denote by q (A, B) the Hausdorff distance of two
compact intervals A = [al' az] and B = [bl, bzJ:

q(A,B)=max(lal-b11,laz-bzl). (2)
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Assume furthermore that h(X) denotes areal compact interval with the properties
that h(X)Eh(X), XEX, and that

d (h (X)) ~ (J. d (X) (3)

where (J is areal nonnegative constant.

Then it is weIl known (see [IJ, [3J, [5J, [6J, [7J, for example) that the real compact
interval f(X) defined by

f(X):= f(c)+(X -c). h(X) (4)

has the so-caIled quadratic approximation property which means the following:

Let

W({, X)= {f(x) IXEX} (5)

be the range of values of f over X. W (f, X) is a compact real interval. It then holds
that

q (W(f, X), f(X))~K' {d(X)f (6)

where K is areal nonnegative constant. FurthermoreW (1,X)~ f (X). The
representation (1)off (x) is usually called a centeredform off See, for example, [IJ,
[3J, [5J, [6J, [7]. In this note we show that (6)is only a special case of a more general
result. We first consider a simple example.

2. Example

Let
x-I

f(x)=x2. -=f(c)+(X-C)2. h(x),
x+l

X = [ -et, etJ,et< 1
where

x-I
c=O and h(x)=-.

x+l

A simple discussion yields for the range of f over X = [- et,etJ the interval

W(f, X)= [
- et2 (1+et)

~1
,0 .

-et

Defining
[ -et, etJ2:= W(X2, [-et, etJ)= [0, et2J

yields

fS(X):=[-et,etJ2. [-et,etJ-l _
[

-et2(I+et) 1
[- et,etJ + 1 1- et ' 0J'
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where the index S stands for square. On the other hand defining [-IX, 0:]2as the
product of the two factors [-IX, 0:] and [ -IX, IX]we get

.- - - [-0:,O:J-l_
[

-0:2(1+1X) IX2

.

(1+0:)

]fp (X) . - [ 0:,0:] . [ IX,IXJ . - , ,
[ - 0:,0:]+ 1 1- IX 1- 0:

where the index P stands for product.

Obviously it holds that

IX2 (1 + IX)

q(W(f,X), fp(X»)= =0 ((d(X))2)1-0:

whereas (in this example even

q(W(f,X), fs(X»)=O

from which it follows, of course, that)

q(W(f,X), h(X»)=O((d(X))3).

3. Results

The result of the example from the preceding chapter is covered by the folJowing
main result of this paper.

Theorem: Let the real valued function f be defined on a compact interval X c IR.
Assume that for some c E X and for some integer n ~ 1 the function f can be represented
as

f(x) =f(c)+(x-ct. h(x) (7)

where h is a continuous function defined on X. Assume that h (X) is areal compact
interval for which

h(X)Eh(X), XEX (8)

(9)

and

d(h(X»)~a. d(X)

hold. Defining the compact interval f(X) by

f(X):= f(c)+ W(x-ct,X). h(X) (10)

then it follows that

f(X)Ef(X), XEX (11)

(12)

0

and

q(W(f,X),f(X»)~K. (d(x»)n+l

where K is a non negative constant.

The special case n = 1 of this theorem is the quadratic approximation property
discussed in Chapter 1.
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Before we go into the details of a proof of this theorem we inc1ude some remarks.

a) Because of (12) we call (7) a centered form of order n+ 1. (Note that so-called
standard centered forms of higher order were also introduced in Chapter 2.4 of [7].
These forms, however, do not exhibit higher than second order of convergence.)
Methods which inc1udethe range of values with arbitrarily high order were already
introduced in [2]. See also [4].

b) Because of CEX =[XI'XZ] we have OEX -c and therefore

(
{

[o,max {(Xl-c)n,(xz -e)n)], n=2,4, ...

}
W (x-cf,X)= .

[(Xl-cf, (xz -cf], n= 1, 3, 5, ...

Hence the interval W(x-cf,X) which is needed in (10) can easily be computed.

c) The inequality (9) holds, for example, if h (x) is a rational function and if the
interval h (X) is computed by replacing the variable X by the interval X and by
performing all operations following the mIes of interval arithmetic.

d) The example from Chapter 2 shows that in general (12)does not hold if instead of
(10) one uses the interval

(13)

fp(X) =f(e)+(X -cr. h(X)

where (X -cr is computed as the product of n intervals X -co

e) If f is a polynomial whose derivative has a zero c of order n > 1 (with
n < m = degree of f) then

where
f(x) =f(e)+(x-cf. h(x)

fn) (e) fn+1) (c) Fm) (c) m-n
h(x)- + (x-c)+ ... + (x-c).

n! (n+ I)! m!

Of course such a c is not known in general (if it exists at all) and therefore even for
polynomials it is not an easy task to find a representation (7) of fex) with n> 1.
(Therefore it must be stressed that the theorem is only oflimited practical value.) If
on the other hand the derivative offhas no zero in X then computing the exact range
is trivial. 0

For the proof of the theorem we need the following result whose proof is given in the
appendix of this paper.

Lemma: Let the assumptions of the theorem hold. 1f

Ih(w)1 =min Ih(x)1xeX
then

f(c)+ W(x-e)~X).h(w)c f(e) + {(x-cf . h(x) IXEX) = W"(f,X). (14)
0

Proof of the Theorem:
A) It holds that

f(x) = f(c)+(x-er. h(x)Ef(c)+ W(x-cr, X). h(X)= feX)
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which is (11). It follows that W(f,X)c feX) and therefore that

q(w(f, X),f(X») <d (f(X») -:-d(W(j, X»).

See [1], Chapter 2, Theorem 11.

(15)

B) From the inclusion relation (14) of the Lemma it follows that

d(W(j, X»)> Ih(w)l. d(W(x-e)",X)).

See [1], Chapter 2, (9) and (14).

C) From the definition of feX) by (10) we get that

d(J(X»)~d(h(X»).1 W(x-e)~X)1 +d(W(x-e)",X)).1 h(X)1

where the absolute value 1.1 of an interval A = [abaZ] is defined to be
IA I:=q(A, (0,0]).

See [1], Chapter 2, Definition 8, (10) and (12).

D) It holds that W(x-e)",X)c(X -e)R whereon the right hand side the product of
n factors, all equal to X - e, has to be performed.Therefore,sinced(X)= IX - X I,

and
IW(x-e)",X)1 ~ I(X-etl ~ IX -XIR=(d(X»)"

d(W(x-e)", X))<d(X -e)R)< (d(X»)R.

See the remarks at the end of Chapter 2 in [1] for the last ~-sign.

E) From the triangle inequality for the Hausdorff distance it follows that

Ih (X)I = q (h (X), [0,0])

<q (h(X), h(w»)+q (h(w), [0,0])

=q(h(X), h(w»)+ Ih(w)1

and therefore that

Ih(X)I-1 h(w)1<q(h(X),h(w»).

Since h(w)Eh(X) it followsthat

q (h (X), h (w») ~ d (h (X»)

(see [1], Chapter 2, Theorem 11) and therefore that

Ih(X)I-' h(w)l~d(h(X»).

F) Using B)- E) and (12)from Theorem 9 in Chapter 2 of [1] we get from (15) that

q(W(f,X),f(X»)~d(h(X)).1 W(x-c)",X)I+

+d(W(x-ct,X)).1 h(X)I-

-I h(w)l. d(W(x-c)",X))~

~ 2. d (h (X»). (d(X)t.

Using thc assumption (9) we get thc assertion (12) of the theorem with K= 2 (J.D
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4. Remark

It is interesting to note that the proof of the theorem could also be performed by
using the concept of a remainder form off on X introduced by Cornelius and Lohner
in [2], Let therefore feX) again be defined by (10) and assurne that hoEh (X) and
define the compact real interval F (X) by

F(X):= W(f(c)+(x-c)". ho,X)+(X -c)n. (h(X)-ho)

where (X -c)n is computed as the product of n intervals all equal to X -co Set

g(x):=f(c)+(x-c)" ho, R(X):=(X -eI'. (h(X)-ho).

Then F (X) is a remainder form of f on X in the sense of Cornelius-Lohner [2],
Theorem 4. See also [7], Chapter 6.7. Therefore, since hoEh (X) we have by
Theorem 4 in [2] that

q(W([,X),F(X»)s;21 R(X)I <21 X -c In., h(X)-ho I

s; 2 (d(X)t . d (h(X»)

s;2 O'(d(X)t+ 1.

On the other hand it holds that

f(X)= f(c) + W(x-c)",X). heX)

= f(c) + W(x-c)",X) . (ho+h(X)-ho)

c W(f(c)+(x-c)". ho,X)+ W(x-e)",X). (h(X)-ho)

~ W(f(c) + (x-cl' . ho,X)+(X -cY'(h(X)-ho)
=F(X).

Therefore

q (W(f, X),f(X») s; q (w(f, X), F (X»)s; 2O'(d(X)t+ t .

5. Appendix: Proof of the Lemma

We consider first the case that h(w»O and that n is an even integer.We then have

f(c)+ W(x-c)",X). h(w)=U(c),J(c)+max(xt-e)n,(xz-ct). h(w)]
and

W(f, X)= U'(c),J(c)+(v-c)n . h(v)]

with some vEX for which

(v-cY'h(v»(x-e)"h(x) for all XEX.

We only have to show that

(v- er h (v)~max (Xt - C)",(X2-er). h(w).

(
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The validity of this inequality can be seen as folIows.

By the definition of v it holds that

(v-ct h(v)2max{(xI -ct h(XI)' (xz -c)" h(xz)).

By the definition of h (11') and since n is even the inequalities

(Xl -ct. h(XI»(XI -ct. h(11')
and

(Xz-c)". h(Xz)2(Xz -ct . h(11')

hold. Therefore

max {(Xl- ct h (Xl),(xz- ct h (xz))2 max {(Xl- ct . h(11'),(Xz- ct . h(11'))=

=maX(XI -ct,(xz -c),,). h(11')

and the assertion is proved.

Considernowthe casethat h(11')2 0 and that n isanoddinteger.In thiscasewehave

f(c) + W{(x-ct,X). h(11')=

= [f(C)+(XI -ct h (11'),f(c)+(xz -ct h(11')]
and

W(j, X)= [f(c)+(u-ct h (u),f(c)+(v-ct. h(v)]
where u, VEX.

We first show that

f(C)+(XI -ct h(11'» f(c)+(u-ct h(u).

By definition of u it holds that

(u-ct h(u) «Xl -c)" h (Xl).

Since h(11')<h(XI) and (XI-C)II<O it follows that

(Xl-c)" h(W)2(Xl -c)" h(XI)

and therefore the assertion holds.

To complete the proof of(14) under our present assumption we have to show that

f(c) + (xz - c)"h (11')::;J(c)+(v - c)" h (v).

By definition of v it holds that

(v - c)"h (V)2(Xz -c)" h (xz).

Since h (11')< h (xz) and (xz - c)" > 0 it follows that

(Xz-c)" h(11')S;(xz -ct h(xz)

and therefore the assertion holds.

The final part of the proof consists in considering the case h (11') < O. Under this
assumption the proof can again be performed by considering the subcases in which 11
is an even and odd integer, respectively. The details proceed similarly as in the case
h(w»O. We omit the details. 0
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