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On improving approximate triangular factorizations
iteratively

Gorz ALEFELD and JoN G. RoRNE

Summary. Newton’s method applied iteratively to the improvement of an approximate
triangular factorization of a matrix is discussed in detail. Particular consideration is given to
the effect of rounding errors on the convergence of the iteration. It is shown that on a computer
employing fixed length floating-point arithmetic Newton’s method converges with an arbi-
trary starting value after 2n—1 steps to the same value as that obtained by Gaussian elimi-
nation. Finally, a new method is proposed for the iterative improvement of bounds for the
elements of the triangular factorization where the effects of the rounding errors are also
considered.

1. Introduction

It is frequently necessary to solve a system of linear equations 4= = b for a variety
of right-hand sides b. Since this is often done by factoring 4 as (I + L*) U* and
then solving the resulting simpler sets of equations, it is important to calculate L*
and U¥* as accurately as possible.

With this in mind J. W. ScamipT [3] recently proposed to apply Newton’s method
in order to correct an approximate factorization of a non-singular matrix 4. ScEMIDT
also proved directly that Newton’s method in this case has second order convergence.

In this paper, we show that Newton’s method applied to the correction of an
approximate factorization yields the exact factorization after a finite number of
steps if no rounding errors occur. This is a special case of a more general result: Let
the computation be contaminated by the effects of a rounding procedure. Then it
turns out that Newton’s method gives the exact same result as Gaussian elimination
after at most 2n. — 1 iteration steps. (See Theorem 1 below.) Seemingly nothing can
be gained using Newton’s method in this context.

A new method is now proposed where the elements of L* and U* are enclosed by
lower and upper bounds. It is shown that the bounds converge to the exact values
assuming no rounding errors occur. At each step it is shown that the widths of the
~ enclosing intervals are approximately squared. After proving this a framework for
a detailed discussion of rounding errors in this method is presented.
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2. The iteration method

Suppose we are given a real nonsingular » by n matrix 4 with rows already arranged
in such an order that it possesses a factorization 4 = (I + L*) U*, where I denotes
the identity, L* is a strictly lower triangular matrix and U* is an upper triangular
matrix with nonvanishing diagonal elements. Denoting by L a strictly lower tri-
angular matrix and by U an upper triangular matrix then, for given 4,

FL U =A—(I+L)U

defines a nonlinear mapping from R* to R*. Solving the equation F(L, U) =0
is therefore equivalent to computing L* and U*. Given an approximation (L™, U @)
to (L*, U*) we can use Newton’s method, the general form of which is

F'(zm) (D) — gm) f Fzm) =0, m=0,1,2,...,
to solve this equation. Since
F'(Lew, U™ (L, U) = —(I + L™) U — LG
we get the following iteration method:
—(I + L) (U — Ty — (Lt — L) T 4 4
— I+ Lm)U™ =0, m=0,12,..

This form has been given in [3].
A simple manipulation gives

(I + L) Um+l) L (Lt — [m) Jm = 4| =012 .5 (1)
For ease of notation we define
ALm+1) — (Alg;-“ﬂ)) c— [m+l) __ [ (m)_

When we perform (1) on a computer using fixed length floating-point arithmetic of
relative machine precision eps than the following formulas result:

For 1 = 1{1)n:

For k = ¢(1)n:
(a) (m 1) ﬂ( T Edl(m 1)u(m} 2 z(m),utmﬂ})
j=1
Fork =17+ 1(1)n (i < n): > (2)

(b) zi?n} ﬂ{ (m) (a”“ Z'Al“" nu(m)

i

Z‘E(mlu(mql 1 l(ml( (m) __ [m+ll))}
u
Y,

Here we have assumed that the » by » matrix 4 may be represented exactly on the
computer under consideration. All values computed by (2) are machine numbers.



On improving approximate triangular factorizations iteratively 9

Furthermore we assume here and in the sequel that floating point expressions are
computed in the “natural order” from left to right. For example

fUarby + ash, + asbs) = fU{fl(flla:by) + fllazh,)) + fUasbs)).

In proving the next theorem we assume that the following rules hold for the
floating-point operations. Let « be a machine number and 0 the floating-point zero.
Then _

fllx —z) =0, flO0-z) =fl(x-0) =0, fllz 4+ 0) = =.

Theorem 1. Suppose the n by n mairizx A has a triangular factorizatvon
A = (I + L*) U* and that (L, T) is an approzimation to (L*, U*) which has been
computed by Crout’s variant of Gaussian elimination (see for example [4], p. 1661i.)
using a compuler with relative machine precision eps. Then for all starting values which
are sufficiently close to (L, U), Newton’s method (2) performed on the same computer
gves exactly the same values after at most 2n. — 1 steps. These values remain unchanged
by Newton’s method. (Sufficiently close means starting values which guarantee the
feasibility of the vteration (2).)

Proof. The nontrivial elements of the matrices I = (I;;) and U = (@;;) are com-
puted by the following formulas (see, for example, [4], p. 185£f.):

For 7 = 1(1)n:
For k = +(1)n:
i—1_
g =fl (ask -2 Iifﬁjk).
j=1
Fork =74+ 1(1)n (z < n):

_ 1 1’—1_
Eki — ﬂ (,.._ (akg —— 2 ijﬁﬁ)) .
i=1

Ui

In the first'step of Newton’s method we get from (2) (a) for z = 1

This means that for arbitrary starting values (L®, U®), the matrix U® has the
same elements as U in the first row. I7® has, in the same manner as U®, the same
values in the first row as U. Again this follows from (a) for 7 = 1. We therefore get
for the first column of L®

1= (% (s + 19wt — url))) — 7 (&) T, 2<k<n
U1 (2531 ;
This means that after the second iteration step both the first column of L® and the
first row of U® have the same values as those computed by (2'). We now show the
following: If the first 7 rows of U® and the first 7 columns of L have the same
values as those computed by (2’), then U®+D) has at least in the first 7 + 1 rows
(and L+ at least in the first ¢ columns) the same values as those computed by (2').
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For 7 = 0 this assertion has been shown above. For z > 0 it follows by mathe-
matical induction in the following manner. At first we remark that L+ and U+b
have the same elements in the first # columns and first 2 rows as L™ and U have,
that is these elements are identical to those of I and U. This follows immediately
from (a) and (b). Therefore using (a) we get for row 7 + 1 of U®™*D that

(m+1) _ (m+1) tm} (m) (m+l}
Uitk = ﬂ (aiﬂ E 2 Al:-l—l; ik 2 zs-{—lj ik )
j=1

=fl (Gaﬂ,t —‘Z EEH,:."'&';’I:) = Gzt t+1=k=mn.
1=1

To complete the proof we have to show the following: If for some m = 0 the first ¢
rows of U and the first © — 1 columns of L™ have the same elements as the cor-
responding rows and columnsof I and U, then L@™+D has at least in the first 7 columns
(and U+ at least in the first ¢ rows) the same elements as L (and ) have. For
7 = 1 we have proved this assertion above. For 7 > 1 we again remark that it fol-
lows from (a) that U@+D has at least in the first 7 rows the same elements as U has.
Similarly, it follows from (b) that LD has at least in the first 2 — 1 columns the
same elements as I has. For column 7 of L1 it follows using (b)

N 1 i—1 . _
4:?}1) = fl (W (afki _ E—Alf;;? +1) {m} E E(m) (m +1) ztm}( ::n) :_:_n+ll)))
Wig j=1

1 —1 5
:ﬂ(‘;“(@ki—o‘l—,glkfﬁﬁ"i"o))=lk£, 1=k =n.
Uii j=1

After at most 2n — 1 steps we therefore arrive at the pair (L, ﬁ)_. 0

- We therefore have the negative result that nothing is gained using Newton’s
method (2) in order to improve an approximate factorization computed by Gaussian
elimination.

3. Iterative improvement of bounds

In this section we propose a method which improves lower and upper bounds for
the elements of L* and U* iteratively. We suppose that the elements of L* and U*
are enclosed in compact mtervals LY and UY:

0) 0)
l* & L‘} B ’u,,-f (= Uij . (3)

Such intervals could, for example, be computed from an error estimation or one
could compute such inclusion intervals by simply applying Gaussian algorithm and
rounding outwards in a systematic way during the elimination process. (See, for
example, [1], pp. 218.) We again denote by F(L, U) the mapping from R* to R*"
defined by

FLU)=A—(I+L)T.
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Since
F(L*U% —-FLU)=—I+L*»U*-U)—(L*—L)U

it follows that
—{I+L)T={I+LHU*-U)+L*—-L)T.

Solving alternately for a row of U* — U and for a column of L* — L and assuming
for the moment that the elements of the underlined matrix L* are known, we get
the following identities after some simplification:

For v = 1(1)n:
i 1
ul:*k = Qi — A.« :} Z E;}( uj'k)s = k g n,
j=1
1 i—1 i
321-:—aks~2_-52}uff“.$£(--—uﬁ), 1< k=mn.
Wij i=L i=1
If we set
l‘ — l(ol - L:?), ‘uﬁ e u:?} € U:}U)
and using
(0 (
ely, IL;eLy,

then because of (3) we get by the property of inclusion monotonicity of interval
arithmetic (see, for example, [1], p. 7),

IA

n

b

u3 € {aik — Z' Lmuw} Z L{m Um ;‘}c’)} Al =08, 1=k
i=1 }

1 ;
g:._ € {uw}(ah _ Y‘L(l?) ;(‘}} Z L;{;)(U(Ol (0}))} L(O) L(l}, i<k<m.

ii j=1 i=1

The systematic repetit,ion of these arguments gives us the following iteration method:

For v = 1(1)n

U(m+1) _ { ik — 2 le 1Julm) Z L{m} U(m+1} [m})} n U(m;
n,

||/\
H/\

(4)

it

L}{?ﬁ-l} — {_1__ ( ZL(m 1) (m) Y‘L}:;:)(ngnw—ll u(m}))} nL(k??,\’

(m i
ut. } 1

T2 ke,

As for the first step one can show that the following result holds. Details of the proof
are omitted.
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Theorem 2. Let the matriz A have a factorization A = (I 4+ L*) U*. If (3) holds
and if we choose I{P) € LY, u{® € U™, then for all m = 0 we have

wp € U, IeLl. 0

Remarks.

1. It is interesting to note that the feasibility of (4) is guaranteed for starting
intervals which have arbitrarily large but finite width. The only divisions occur
during the computation of L{T*V. Since 0 % u}; € U™ it is always possible to
choose 0 = u{™ € U!™ which guarantees the feas1b111ty of (4).

2. Note that it is not necessary to choose /™ € L™, u{ ¢ U™ in order that
Theorem 2 is valid. The same is the case for the next theorem. On the other hand
this choice is quite natural since [f; € L, u}, € U™ by assumption.

The following theorem may be verified using essentially the same techniques as in
Theorem 1 and we therefore omit the details.

Theorem 3. Under the assumption of the preceding theorem, method (4) gives the
exact factorization after at most 2n — 1 iteration steps. (Here we again assume that
all operations are performed without rounding errors.) ]

For the proof of the next theorem and in the sequel we need some additional
concepts. For a real compact interval 4 = [a,, a,] we denote

d(A) S a-2 - ar]_
as drameter or width of A4.
Similarly
14| := max {|a,|, |a,|}

is called absolute value of A.
We list some simple rules, the proofs of which may be found in [1], p. 201f., for
example.
@) A S B=>|4| < |B| -
(b) d(4) = |4 — 4|
() a e R=>d(a) =0
(d) d(4 £+ B) =d(4) + d(B)
(e) d(4B) = d(4) |B| + |4]| d(B)
(f) a € R =>d(aB) = d(Ba) = |a| d(B).

Theorem 4. Let d™ := max {max {d(L{"), (U} Then it kolds for (4) that

1=ij=n

dm+l) < oc(d(m))z

with a nonnegative real number o, which is independent of m: The widths of the inter-
vals are approximately squared in each step.
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Proof. (Mathematical induction) Applying the rules (a)—(f) we get from (4):
For 7 = 1(1)n: )

For k =i(1)n:

d(U};?Hl) < E’ld(Lg‘“) (m}l = Zd (m)) |U(mT1) u(_;‘n)

: 7
=1

_+_ Z [L{m)l d U(mrll)

b 4")
Fork =1+ 1(1)n T < n):
d(f(m*l}) & I (m) {Zd L(m*l)) fu{m}l +Zd {m)) IU(m +1) ,u;:n)
i=1
-+ Z‘ fL(m)I d(U;:n+1])}
)
Now define
For ¢ = 1(1)n:
(i1 _
2 B ]Uw}i R ILm)J X&) 5 k =(l)n,
Xik = § j=t
| 0, otherwise, L 4")
( ;
b = | o Z B 1T + 2 (A + IEl s, k=15 + L(n,
| 0, othermse, )
and finally
x = max {max {xip, ﬁki}}.
1=ik=n
Using definition (4'') we immediately get from (4’) for 7 = 1 that
AUE™) S opdm)p, 1<k<mn,
and
AULE™Y) = fu@™)?, 1<k <n.
Assume now that for the first + — 1 rows and columns
AUF™Y) = apd™)?, 1<k<n )
(4}!!
dLED) < fud™P, 1<k<n

hold (1 =7 < ¢ — 1). Thisis certainly true for 7 = 1. Then we get from (4') and (4"')

AVE™) = T 0y 1UR) @) + 3 @) + 2 1 @ = (@2,
j=1 j=1
Ll .
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Similarly,

L@ < Ulm { X B 1UQ] (@) ): dm)2 Z L9 o d(m)}
i=1 =1

= Bud™)?, i<k <n.
From these relations the assertion

dm+1) < x(dm)2

follows. [}

4. Discussion of rounding errors

Method (4) performed on a computer using finite precision arithmetic may behave
quite different from the theoretical behaviour. In order to discuss this point in detail
we first list some preliminaries.

We assume that the four arithmetic operations for intervals are performed in
such a manner that the lower endpoint of the exact result is rounded downwards to
the next machine number and rounding is performed in the analogous way for the
right endpoint of the exact result (if rounding is necessary at all). For details see, for ‘
example, [2]. If * denotes one of the arithmetic operations -+, —, X, [ for real
intervals and if

A*B = [(4*B),, (4*B),],
then we have for the actually computed interval
fUA*B) = [(1 — &) (A*B);, (1 + &) (A*B),]. (5)

Here we have |¢|/2, |&|/2 = eps (= machine precision) and the signs of ¢ and &,
have to be chosen in such a manner that

—g(A*B); =0, &(4*B), = 0.
Therefore we can also write
fl(A*B) = A*B + [—¢&,(A*B),, e,(A*B),) < A*B -+ §[—|4*B|, |A*B|]
= A*B + |4*B|[—§, &], (6)

where Z = max (g, |es]) =< 2eps. We therefore have the following inequality for
the width of the computed interval:

d(fi(A*B)) < d(A*B) + 25 |A*B|.

It shows that the absolute value of 4*B is essentially responsible for the difference
between the exact width and the computed one.

Before coming back to the iteration method (4) we consider the following
problem:
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Let there be given machine intervals (that means real intervals the endpoints of
which are machine numbers), say,

00: Al]a BO: DU; Al: Bl: -Dla ey An—l’ Bn~ls Dn—l
and a machine number «,,.
The expression
1
Rn =i {Co - Ao(Bo — Do) — Al(Bl - Dl) T -An—l(-Bn—l - an)}

a'ﬂ

now has to be computed.
Theoretically we can use the following algorithm:

Sg:: Oﬂ,
(S8)3 8i:=8i4 — 4;4(Biay — Diy), 175 m,
My r=Nla.

In practice, however, we are actually performing the following operations:
(8) 3 Si:=fU8iy — f4ia - fUBiy — Diy))), 1=i=nm,
Rn = fi(gﬂKan) .

For the fo]lowing considerations we are defining ¢ as ¢ := 2 eps.
Assume for the moment that Sy = 8y = C,, 8y, ..., 8,_; have already been com-
puted. Then we have from (6)

fUBa-1 — Dpy) S By — Day + |Baoy — Dy [—5 €],
fYAnsfUBys — Dpy)) € Ana(Buy — Dyy + |Byy — Dyy| [—5, €])
“+ | Ayi(Byosi = Dy i
+ 1Byy — Dl [—5, €]) [ [—5, €]
S Apa(Bus — Dyy)
+ 1Apal 1Bay — Dysl [~26 — €, 26 + o]
and therefore
8n S Su1 — 44 1(Bay — D)
— Ayl 1By — Dyy| [—26 — 2,26 + &2]
+ |8p1 — 4n1(Bacy — Dyy)
— [Apal 1Bay — D] [—26 — &2, 26 + €%][[—e, ¢]
S Su1 — 4w a(Boy — Dpy) + |8 [—5, £]
+ [Aual 1Brs — Dol [—3¢ — 32 — &2, 36 + 3¢ + &3], |

M
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Using mathematical inducation we now show that

n—1
gn - Sn e [_8, 8]‘_2 [St!
e oy 8)
4 [—3c — 3e2 — &3,3¢ + 32 + %] 3 |4;] |Bi — Dj

i=0
holds. For n = 1 we have from (7) using 8, = S, = 0,
gl = So — Ao(By — Dy) + [S-o| [—e, €]
4 |4,| |By — Do) [—3e — 3% — &3, 3¢ + 3&* 4- &°]
=8; + [—¢, €] |8y + [—8e — 3e2 — &3, 3e + 3e2 4 &3] |4, | By — Dol

and therefore the assertion holds for n = 1. If (8) holds for some n = 1, then replacing
n by n 4+ 1in (7) and using (S) we have

§n+1 g gn _ An(Bn - Dn) _}' [_53 8] 1’§nl

4 [—8e — 362 — 3, 3 + 362 + &8] |4,] |B, — Dyl
g Sn—!-l + [""8) 8] Z: [Stl
=0

4 [—3¢ — 36 — &3, 3 + 362 + 3] 3 |4,] |B; — Dil

i=0

which is (8) with n replaced by n + 1. Employing (6) once more we have the final
result

[—e, e]- )

We are now using (8) and (9) in order to discuss the behaviour of (4) with respect to
rounding errors.

Let UM (v < k < n)and L{P (¢ < k =< n) be given as machine intervals for some
m = 0 and for ©* = 1(1)n.

Let U@+Y and L{7*Y be defined by (4) and define

~ —1
U;?Tl) - {(L - 2 L{m+1),u;£%l Y1 L{m)(U(m+1) {m})} n U{;T),
1

= (10)

1 i—1_

(m+1 +1 ( (m)

L {(, ap — X L ulp — ZL‘""(U}?‘ '— )| 0 Lk
1 i=1 j=1

and
Ueti= gy, EFi=ylE™), (11)

that is T"*D and L{?*V denote the evaluation of (10) using floating point interval
arithmetic.
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Applying (8) and (9) to (11) we arrive at the followmg relations:
For 7 = 1(1)n:

For k = i(1)n:
U(mﬂ-l) = U(m+1) 4 [—“8 8] T(m+}.}
where

2i—2

(a) e Z' 1S5l

i-1
+(3+3s+e2)2<rL§;"+*’1 W]+ 12 T30 — ). |

j=1 (12)

For k =17 + 1(1)n:
L(mﬂ] e L(mu} _|__[ e, 8] T(mﬂ

where

1 21—-1
B e {Zu’?ww (3+ 3¢ + )

(E IL(mJ 1) (m)[ 214 Z IL{m}‘ IU(m+1) u;:n) )}

1

(8; and T'; are the actually computed intermediate results if algorithm (8) is used

for the computation of U{F™ and L{"*V respectively. These intermediate results

are also dependent on 7 and k. For ease of notation we suppress this dependency).
Using (12) we now prove that the following relations hold:
For 7 = 1(1)n: '

Hork =i{1)u:
U(m 1) = U(m 1) i [—-6, é‘] ,?.{m-! 1)
where
=l 1) . = ( =(m+ i
(a) T;? 1 A\-“:Tml—l)m m)! _|_ 51 |L(mli :;n 1) A ?.Egs 1) (13)
7

Fork =7+ 1(1)n:
L™ S LE* 4 [—e, 7D
where

i
=( R o
(b) kr:z+1) - { Z‘ {m 1) I (m) | L9 IL(m)| ,r(m+1]} Ts,?ﬂl .

(m)
Iu”“ j=1

-

The proof follows by mathematical induction on 2: For 7 = 1 we have from (4), (10)
and (11) that

U{m+l) U(m +1) 'g r;:+l) = gz, 1<k< n,
and therefore using (12)
U(mTI] C Ul‘m-rll I [—8 8] ?.(m+1) U{m-‘-l) _+_ [—5 8] r(mTl)

2 Numerische Mathematik 12
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where 7{7*1) = F{#*1) = (. Therefore the first part of (13) holds for + = 1. Similarly
using the second part of (12) we have

L(m+1) = L(m+1] L [——8 E] ,r(m+1)’ 1<k<mn,

where

2
B = o «{gjmf + 3+ 36 + &) |L@ [T — ‘;?’1}

and since

(m+1) _ 7 (m+1)
Llu - Lkl

the second part of (13) also holds for v = 1 (with 731 = r{7*1).
Suppose now that (13) holds for the first + — 1 rows and columns, respectively.
Then we have from (12) for the 7th row

U{m+1) [ U(m+1) e [__s E] ?’(m+”.

Using (10) and the induction hypothesis it follows that

U(mﬂ) < oz “Z L(mﬂlu(m) E L(m) {m+1} {m}) + [—&, €] ?,.(m+1)

i=1

i—1
S oa— 5 (T + [—a ) ofp

EL(m} {m+1} £ [__s 8] 1r.(m+1} (m}) CX [__6, 8] ,rtm+1!

CZ U(m +1) 3 [——8, 8] r{m+1).
The relation
T + im+1
Li_?ﬂ} e L}::z 1) 4+ [—-8, 8] ?'k’:-H )

is proven analogously.

The derived relations may be interpreted in the following manner: Suppose that
all elements of L* have absolute value not greater than one. If the widths of the
intervals L{ are small, then 1L‘,¢;?”[ and — because of forming intersections — also
|L{*1)] is not much greater than one. Under the similar assumption that the widths
of bhe U are small it follows by the same reasoning that

T+ — o) < TP — U] = dUP)

since U@ < UM, i € U™, and hence [P — 4™ is small.

Therefore for sma]l widths of the enclosing intervals in the mth step, it follows
from (12) that the difference 27"V between d(T{**V) and d(T{**?) is essentially
dependent on the behaviour of the size of the elements |u{}| and of the computed
intermediate sums. The same is true for the difference 2er{?*? between d(L{**V
and d(L{7*"V) with the additional property that small va,lues of [u{™| can make the
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estimation of this difference even worse. From (13) we have
d(U(m-rl]) = d(Uth)) + 28—(m+1} }

(14)
ALE™) < ALED) + 267D,

Assume again that L* has elements with absolute value not greater than one and
that the widths of the L{™ are small. Then we conclude from (13) (a) that the be-
haviour of 7{"*1 is essentially dependent on the size of the elements [u{}"|. The same
is true for r‘m U with the additional property that again small values of [u{"| can
make 7{**1) even larger. Since both the first terms of the right-hand sides in (14)
are by Theorem 4 approximately the squares of the same terms in the preceding
step one can get slowly growing bounds for d(U{#*") and d(L{?*") if the elements
of U* above the main diagonal are not too large in absolute value, if the elements
of L* are in absolute value not larger than one and if finally the absolute value of
the intermediate results are not too large. Otherwise, one has to use higher precision
in order that the bounds become more accurate.
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