SIAM J. NUMER. ANAL. - D 1983 Society for Industrial and Applied Mathematicy
Vol. 20, No. 1, February 1983 0036-1429/83'2001-0014 $01.25 /¢

A QUADRATICALLY CONVERGENT
KRAWCZYK-LIKE ALGORITHM*

G. ALEFELDt anp L. PLATZODER$

Abstract. In this paper we introduce a method for computing a solution of a nonlinear system, which
is similar to that proposed by R. Krawczyk [Computing, 4 (1969), pp. 187-201]). Our method, however,
needs considerably less work per step. Starting with an interval vector, we give a criterion under which
the method is convergent to the solution of the system if a solution is contained in the interval vector. If
the starting vector contains no solution then the method will break down after a finite number of steps.

1. Introduction. In 1969 R. Krawczyk [2] introduced the operator
(0) k(x, Y) = m(x) = Yi(m (x)) + (E - Y (x))(x — m (x)),

where f: 8 < V,(R)-> V,.(R) denotes a mapping f, x< 8 is an interval vector, m(x) is
the center of x, Y is a real n Xn matrix, E denotes the unit matrix and f'(x) is the
interval arithmetic evaluation of the derivative of f over the interval vector x. The
result k(x, Y) is an interval vector. Using this operator, Krawczyk considered the
iteration method

(1) x=kx* Y)Nx*, k=0

If the interval vector x° contains a zero x* of f, then (1) is well defined. Under some
additional assumptions it holds that lim, . x* = x*, that is, the bounds of the sequence
{x*} converge to x*.

In 1977 the method (1) was reconsidered and discussed by R. E. Moore in a
series of papers starting with [3].

In order to get faster than linear convergence in (1), it is necessary to modify the
matrix Y with k. More precisely, the relation limy.. Yx =f(x*)"" should hold. Here
f'(x*) denotes the derivative at the point x*. In this case, (1) requires computing the
inverse of a real matrix in each step. Taking into account 2n”~ multiplications for
forming the product Yf'(x), then (1) needs 3n° multiplications per step for large n.

In this paper we introduce a quadratically convergent algorithm which needs
fewer multiplications for large n. The proposed algorithm needs the amount necessary
for performing the triangular decomposition of a nonsingular matrix, namely n>/3
multiplications. Instead of the Krawczyk operator defined by (0), we consider an
operator kn(x, A) defined by

() kn(x, A) = m(x) - IGA (A, f(m (x)) - {A - (x)} - {x—m(x)}).

For an arbitrary interval matrix X and an interval vector y we denote by IGA (X, y)
the interval vector which results if the Gaussian algorithm is applied.
Note that in (2) the coefficient matrix is a point matrix, which implies that kn

(x, A) can always be computed (eventually after performing row or column exchanges)
if A is nonsingular.

Before introducing our iteration method we discuss some preliminaries.

2. Notation and preliminaries. It is assumed that the reader has a certain knowl-
edge of the elementary concepts of interval analysis to the extent that one can find,
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. example, in [1]. Proofs of the following rules may be found in [1] or they are
1ementary. As already mentioned, m(x) always denotes the center of the vector x.
g}le A is an interval matrix then m(A) is defined in an analogous manner.
Let A be a point matrix, let B be a symmetric interval matrix (B=-B) and let ¢
@‘ a symmetric interval vector (¢ = —c). Then

p) (AB)c= A(Bc).

Let A, B be point matrices and let ¢ be an arbitrary interval vector. Then
[ ABJec A(Bo)

Let A be a point matrix and let B and C be interval matrices. Then

15 A(B+C)=AB+AC.

Let B be a symmetric interval matrix (B = —B). Then for an arbitrary interval matrix
d it holds that

® AB=|AlB

‘where |A| denotes the absolute value of the interval matrix A. |A| is defined in the
*followmg manner. For a real compact interval A =[a;, a,] one first defines

: |A| = max {ail, |aal}.
‘If A=(Ay) is the given interval matrix, then
|Al=(Ay).
‘It A=[a,, a;] is a given interval, then one defines the width of A as
d(A)=a:-ay,
._'-' and using this, the width of a given interval matrix A = (A;) is defined as
| d(A) = (d(Ay).

Subsequently we will use the following rules:

) AcB>>|A|S|B|,
(8) d(Ax=B)=d(B),
(9) d(AB)=|Ald(B).

We now discuss the following problem: Let there be given a system of linear
simultaneous equations. Assume that the data of the given system are known to lie
in certain intervals, that is, let there be given an interval matrix A (the “coefficient
matrix”') and an interval vector b (the “right-hand side” of the system). The set of
solutions of all linear systems described by these data can be enclosed by applying
the Gaussian algorithm in a formal manner (see [1, § 15], for example). The result is
an interval vector IGA (A, b) which can be represented in the following form:

'10) IGA (A, b) = Dy(Ty(* * * Ta-1(Da(Ga-1(- * * (G2(Gib) * - - ).

The matrices Dy, ***, Du, T1,***, Ta-1, Gu, * * +, G-, are certain interval matrices
which are dependent on A and which in the case where A is a point matrix are also
Point matrices. A precise description of these matrices is not of importance in this
Paper. The interested reader may find it in [4]. (H. Schwandt [4] was the first to
state (10).)
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Using the matrices occurring on the right-hand side of (10) we define the interval
matrix '

(11) IGA (A) = Dy(T\(: * * Ta=1(Da(Gn-1°** (G2Gy) * * ).
If A is a nonsingular point matrix, then it is easy to see that
(12) IGA (A)=Dy(Ti(+ ** Tacs@a(Gn-1 * (G2G1) -+ ) =A™

(Choose b := ¢;, 1 =i =n, where ¢; denotes the ith unit vector).
After these preparations we prove the following results.
LEMMA 1. Let A be a nonsingular real point matrix.

a) For an arbitrary interval vector b it holds that

AT'bcIGA (A, D).
b) Ifd(a)=pd(b), B =0, then
d(IGA (A, a))=Bd(IGA (A, b)).
Proof. a) Using (12) and applying (4) repeatedly, it follows that

ATb=IGA(A) - b=Dy(T:(*** Du(Gn-1-+(G2G1)***) b
SDYTi(*  Dal(Guoy v+ (G2Gy) -+ + ) - b}

SDi(Ti(: * Da(Grr -+ (G2(Gyb) - - +)

=IGA (A, b).

b) Using (10) and applying (9) repeatedly it follows that

d(IGA (A, 9)=|Dy|[T| - -  |G2| |Gild (a)
EBIDI] ITI] S leI lGlld(b)
=Bd (IGA (A, b)). 0
LEMMA 2. Let there be given an interval vector x° with d(x°)>9. Assume that
f: B< V.(R)> V,.(R) is a mapping for which the interval arithmetic evaluation f(x°)

of the derivative exists. Assume that the point matrix Bo := m(f(x°) is nonsingular and
that ‘

(13) ' d(kn(x’, Bo)) = ad (x°),

where 0= a <1. Then {'(x°) does not contain any singular point matrix.
Proof. Applying (8) and (9) it follows from (0) that

(14) d(k(x’, B5") =|E-B5'f(x%|d (x°.

We show that for the Krawczyk operator k(x’, By') defined by (0) and the operator
kn(x’, Bo) defined by (2), the inequality

(15) d(k(x’, Bg")) = d(kn(x’, Bo))
holds. If (15) has been shown, then using (13) and (14) it follows that
|E-B3'f(x%|d(x%) = ad (x°).
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App!ylng (6, Cor 3 of Thm. 1.5), it follows that the spectral radius p of the real
matrix |[E-Bg'f(x°)] is less than one. If X e (x"), then (7) 1mplles

|E-Bo'X|S|E-Bs'f(x°).

From the Perron-Frobenius thcory for nonnegative matrices it follows that
p(E-Bg'X)<1. Hence (E-(E—-B;'X)) ™' = X !B exists.
We are now going to prove (15). We apply Lemma 1a) with

A =B,
b := f(m (x°)) - {Bo—f(x")} - {x° - m (x°)}

and get the inclusion relation
Bs {f(m(x%) — {Bo—f(x))} - {x°—m (x)}}
< IGA (Bo, f(m (x%) - {Bo—f (x°)} - {x° - m (x%)}).

Using (2), the right-hand side of this relation may be written as m(x%)—kn(x’, Bo).
We now show that the left-hand side is equal to m(x%) -k(x°, B5'). Then

(16) k(x°, Bo") ckn(x’, Bo)

holds, from which (15) follows.
Using (S5) and (3) the left-hand side of the above inclusion relation may in fact
be written as

B3 {f(m (x*) = {Bo—f (x")} - {x’ - m (x)}}
=Bo f(m(x")—{B5' (Bo—f x")}Hx’ - m (x°)
=B5 f(m(x")—{E-B5'f(x)} - {x"-m(x")}
=m(x)-k(&’, Bo"). 0

As shown in the proof of Lemma 2, formula (15) is a consequence of (16). (16)
means that the result of the Krawczyk operator is always a subset of the corresponding
result of the operator (2). However, as we already have pointed out, the new operator
is much cheaper to evaluate.

E. Kaucher and S. M. Rump [9] have considered an iterative method using (2),
which is similar to (1). Their experience is—probably as a consequence of (16)—that
the accuracy obtained for k - is better with (1).

3. The algorithm. Let there be given an interval vector x°’c ¥ and a mapping
f: B V,(R)-> V.(R) for which the interval arithmetic evaluation of the derivative
exists. We then consider Algorithm A below
For large n thxs algorithm needs n>/3 multiplications per step (besides computing
f(m(x*)) and f(x*)). This is the number of operations necessary for performing the
triangular decomposition of A,. Of course, we assume that the statement B, := A, is
performed by storing the tnangular decomposition of A,. The same holds for the
statement B, := Bi-,. The use of n? additional storage places might be considered as
a disadvantage of this algorithm.
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ALGORITHM A

Bo = m(f'(x%)
x' == kn(x’, Bo) Nx°
Fork=1do
begin
Ay = m(f(x*)
Compute kn(x*, A;)
If d(kn(x*, A;)) S ad(x*) then
begin :
x**1 = kn(x*, A,) Nx* (*)
Bi = A
end
else
begin
Bi = Bi
Compute kn(x", Bx)
x“*! = kn(x*, Ac) Nkn(x, B) Nx* (++)
end
end

We now prove the following.

THEOREM. Let there be given a mapping f: B< V,(R)-> V,(R) and an interval
~ vector X< B with d(x°)>¢ for which §(x°) exists. Assume that Bg = m(f(x%) is
nonsingular and that

17) d(kn(x’, Bo)) = ad (x°)

where 0Sa<1. _ .
a) If x° contains a zero x* of f, then Algorithm A is well defined and limy.co X" =
x* holds. If for some norm

(18) . d((f'(x))y) =clldx)|

holds, then Algorithm A is at least quadratically convergent.

b) If x° contains no zero of f, then after a finite number of steps Algorithm A
breaks down because of empty intersection.

Proof. a) Because of Lemma 2, none of the matrices A, k =1, is singular if (17)
holds. Therefore A is well defined as long as no empty intersection occurs. For the
following reasons the intersection is not empty: If x* contains a zero x* which is
assumed for k = 0, then for an arbitrary nonsingular point matrix X the relation

x*ek(x:, X
holds. This was already proven in [2]. In a similar manner the relation
x* ekn(x*, X)

can be shown. We omit the details. Hence it is clear that in performing Algorithm
A, neither at (¥) nor at (#+) can the intersection be empty. Furthermore x* € x**' holds.
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We now prove that
dx)sa“dx®, k=1,

;" holds. Because of 0Sa <1 and x*€ x*, k =0, it then clearly follows that limy e x" =
x*. From the assumption (17) the assertion holds true for k = 1. Assume now that

(19) d(x*)sa*d(x°)

for 1 Sk s ko, which we have just shown to be true for ko= 1 by assumption. If now
x**lis computed by using the statement (*), that is, if

x“o*! = kn(x*, A,) Nx*

" holds, then it follows that

(20) d(kn(x®, Ax)) S ad (x),

and because of the induction hypotheses (19) we finally have
d(x**") s o " d(x%. |

If on the other hand x*' is computed by the statement (**), then

(21) d(x*"") S d(kn(x*, By)).

The way By, is formed shows that there is a k where 0<k = ko—1 such that
By, = Ag=m(f(x).

Because of (*) we have for this L

(22) d(kn(x", AQ) S ad (x“)

and therefore

(23) dx**") s ad (x5).

Using mathematical induction we now prove the following:
(24) dx*"Nsa'd(x¥), 0sjsko-k.

For j =0, (24) is identical to (23). If (24) holds for some j 20 (j <ko— k) then applying
(7) and (24) it follows that

d(f(m&xE*N) + {Biy - P} FH T —mxFTY
- IB%_r(xGnn)ld(xEﬂn)
Sa’ B, - (xd (x)
=a!*'d(§m x) + B~ F(x} - xF—m (x ).
Taking into account (22) and applying Lemmalb), it therefore follows that
d(knx**'*", B)) s« d(kn(x*, By)) S a'*2d(x5).
Therefore it also holds that

d(x**?) sdkn(x*"*", By)) S a'*2d(x5),

which completes the proof of (24). For j = ko= k, (24) reads

d(xo*Y) g g komk*1 4 (xK),
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Using (19) with k = £ we finally have the assertion
dx*™) S e d )

- We are now gomz to prove the statement concerning the order of convergence
No matter whether x*** is computed using (*) or (+#), we have—because of forming
intersections—

(25) d(x**")sd(kn(x", A.))

where Ax =m(f'(x*)). Using (2), the representation (10) and the formulas (6), (8) and
(9) we get

d(kn(x", A)S [P [Tal - - * 1Gucal * - [Gal 1G] d (AL —F(x")} - {x* = (x")})

26

) sH-}-d(&") dx)

where

(27) IDiITal* * * [Gueal + * + |Gal 1G] S H.

with a point matrix H which is independent of k. (Note that thc matrices occurring
on the left-hand side of (27) are dependent on k. Since A, ef(x*) s §'(x°), since f'(x%)
may be considered to be a compact set of matrices and since finally {'(x°) does not
contain any singular point matrix, the product on the left-hand side of (27) may be
bounded independently of k). Using (18) and some monotone vector norm and finally
using the norm equivalence theorem, we get from (25) and (26) the assertion

ld&x**)ls vlld ).

b) If the intersection at () or (#) is never empty, then in the same manner as
before one shows

dx**Y)sa*'d(x°.
Because of

f:fafzu

it follows hm;....nx = x* where x* is some vector. From this fact it follows that also
limy v 7 (§ (3*)) = £ (%) Because of () and (++), we have

x**'gkn(x*, A,).
Since kn(x, A) depcnds continuously on x and A, we have
¥* =kn(3*, £(3*) =¥*~IGA (F(&*), {3*) =5* - ) '{x*)

for k - <0 and hence the contradiction {(x*) = ¢ follows. O
Let us close this section with some remarks on the condition (17) wkuch is thc
central assumpnon in our theorem. This condition holds for example, if kn(x’, Bo) < x°
and if kn(x ?o) contains no boundary point of x°. (In the more general case where
, it can be shown—using Brouwer's fixed point theorcm——mat inx"a
WO I" of [(x) = ¢ exists.) However, (17) can hold without ka(x®, Bo) =x° bcmg true.
In passing we note that the assumption (18) which we have used for proving the

statement about the order of convergence is not a very strong condition. See [1, § 3],
for example.
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4. Numerical examples.
Example 1. Let there be given the nonlinear system

x? +x§ -—l)
xf +x3

f(x)= (

where x=(x1, x2)". If we choose the interval vector

*~ (o)

then the condition (17) does not hold. Therefore a bisection procedure is used until
this condition holds. One of the two interval vectors appearing during this process is
stored in a last-in-first-out array. The bisection procedure is continued using the other
one until either the condition d(kn(x’, Bo)) <d (x° holds or a specific criterion for
nonexistence of a solution holds.

We have used the same bisection process as it was discussed in [7, pp. 1058-1059].
After four bisection steps we get the interval vector

. ([0.5, 0.75])

[0.5,0.75]

for which d(kn(x’, Bo)) = ad (x°), a <1, holds. After the first step of Algorithm A we
obtain

x'Nkn(x', A;) =9

from which we conclude that this last x° does not contain a solution of f(x) = 0.

The next interval vector for which the condition d(kn(x°, By)) Sad(x°),a <1,
holds is .

xo—'( [0.75,1] )

[0.5,0.75)/)°
After 5 steps of Algorithm A where the statement (*) was always performed, the
interval vector could no longer be improved using the machine under consideration.
Table 1 contains [|d (x*)|le.

TABLE 1

k Il (x*)lleo

0.25x10°
0.1062 x 10°
0.2149x107!
0.7897x1073
0.1073x10°*
0.1994x 10~
0.1066x10°"

s W= O

Example 2. We consider the nonlinear boundary value problem

y'=ytsiny, y0)=0, y(1)=1,
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If one chooses n points in the interval (0, 1) in equal distance from each other and
approximates the derivative by the central differences of the second order, then one
gets the nonlinear system of simultaneous equations

2x;—x;+h2(x1 +sin x;) =0,
=X+ 2% =X +hA(x +sinx) =0, i=2(1)n-1,
—Xn-1+2x, +h3(x, +sinx,)—-1=0,

where h=1/(n+1).

We choose n =25 and compute an mtcrval vector x° which includes the unique
solution of this system by applying [8, 13.4.6¢]. For this interval vector we have that
d(kn(x°, Bo))Sad (x°), a <1. After 8 iteration steps of Algorithm A the enclosing
interval vector could no longer be unprovcd using the machine under consideration.
Subscqucnt!y, we tabulate the iterates X'i; which enclose the approximation for y(3).
The iterates x*, k =2, 3, have been computed by the statement (¥), whereas (++) was
used for k-4(1)8 All rounding errors have been taken into account during the
computation process.

TABLE 2

k Xt

0 [-.500 000 000 000 45, .S00 000 000 000 45)
1 [ .395999 88315603, .40526948941198]
2 [ .39868707361927, .398 688 824 53066)
3 [ .398688025 54373, .398 688 025 544 26)
4 [ .39868802554375, .398 688 025 544 22]
3 [ .398 688 025 54376, .398 688 025 544 22)
6 [ .398688 02554377, .398 688 025 544 22]
7 [ .398688 025 54378, .398 688 025 544 22)
8 [ .39868802554379, .398 688025 54422)

The influence of rounding errors on Algorithm A was not discussed in § 3 of this
paper. However, as was pointed out by an (anonymous to us) referee, these rounding
errors can have a great influence on the practical behaviour of this algorithm. This
can also be seen from the results given in Table 2. Theoretically the statement (*) of
the algorithm will be used infinitely often, as soon as the region in which the algorithm
is quadratically convergent is reached. Using a computer with fixed mantissa length
for floating point numbers, this behaviour will be violated as soon as the limiting
accuracy of the computer under consideration has been reached. The possible improve-
ments from one step to the next can only be very small (if an improvement is possible
at all). Therefore the following iterates are all computed using (*+). Actually, this
means a waste of computer time. This can be avoided, for examplc, by modifying the
: Algonthm A in the followmg manner: As soon as d (Im(x A)))>ad(x") holds for
some k =1, where a is defined by (17), we don’t compute new values of A, in the
following steps, that is, we simply replace the statements of Algorithm A beginning
with line 4 by

X*'=knix*, A)Nx*, k=K

Of course, one can also use more sophisticated modifications of the algorithm.
Both examples were computed using a Cyber 170 at the Zentraleinheit

Rechenzentrum of the Technical University of Berlin, West Germany.
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