On Square Roots of M-Matrices

G. Alefeld* and N. Schneider FB 3 / Mathematik Technische Universität Berlin Strasse des 17. Juni 135 1000 Berlin 12, Germany

Submitted by Hans Schneider

ABSTRACT

The question of the existence and uniqueness of an *M*-matrix which is a square root of an *M*-matrix is discussed. The results are then used to derive some new necessary and sufficient conditions for a real matrix with nonpositive off diagonal elements to be an *M*-matrix.

1. INTRODUCTION

Following Ostrowski [3], a real n by n matrix $A = (a_{ij})$ is called an *M*-matrix if it can be written in the form

$$A = sI - B, \quad s > 0, \quad B \ge 0, \quad \rho(B) \le s. \tag{1}$$

Here ρ denotes the spectral radius and I is the unit matrix. If $\rho(B) < s$, then A is called a *nonsingular M-matrix*; otherwise, a *singular M-matrix*.

In this paper we discuss the existence and uniqueness of an M-matrix which is a solution of the equation

$$X^2 - A = 0,$$
 (2)

where A is a given M-matrix. A solution of (2) is called a square root of A. The following example shows that there are M-matrices which have no square root at all.

LINEAR ALGEBRA AND ITS APPLICATIONS 42:119–132 (1982)

© Elsevier Science Publishing Co., Inc., 1982 52 Vanderbilt Ave., New York, NY 10017

0024-3795/82/010119+14\$02.75

119

^{*}Current address: Institut für Angewandte Mathematik, Universität Karlsruhe, Kaiserstrasse 12, 7500 Karlsruhe, Germany.

EXAMPLE. Let

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = sI - B, \quad s > 0, \qquad B = \begin{pmatrix} s & 1 \\ 0 & s \end{pmatrix}.$$

Since $\rho(B) = s$, it follows that A is a singular M-matrix. A short discussion shows that (2) has no solution.

In this paper we prove that an *M*-matrix *A* has an *M*-matrix as a square root if and only if *A* has "property c." For a subset of the set of *M*-matrices with "property c" we are able to prove that there exists only one *M*-matrix as a square root. This subset contains *M*-matrices which are irreducible or nonsingular. The proof of the existence of a square root is constructive. This allows us to compute this matrix.

In Section 2 we list some definitions and well-known facts which we use in the sequel. Section 3 contains the main results. Finally, in Section 4 we give some new necessary and sufficient conditions for a real matrix with nonpositive off diagonal elements to be an *M*-matrix.

2. PRELIMINARIES

DEFINITION 1. An *n* by *n* matrix *T* is called *semiconvergent* if and only if the limit $\lim_{i\to\infty} T^i$ exists. (See [1, p. 152].)

The following result is established by use of the Jordan form for T (see [1, p. 152]).

THEOREM 1. The n by n matrix T is semiconvergent if and only if each of the following conditions holds.

(a) $\rho(T) \le 1$.

(b) If $\rho(T)=1$, then all elementary divisors associated with the eigenvalue 1 of T are linear.

(c) If $\rho(T)=1$, then $\lambda \in \sigma(T)$ ($\sigma(T)=$ spectrum of T) with $|\lambda|=1$ implies $\lambda=1$.

For the next result and in the sequel of this paper we use the definition of irreducibility of a matrix, which can be found in [4, p. 18]. Notice that a 1 by 1 matrix is irreducible iff its only element is different from zero.

THEOREM 2. If $T=(t_{ij}) \ge 0$, $t_{ii} \ge 0$, $1 \le i \le n$, then T is semiconvergent if (a) and (b) of the preceding theorem hold.

Proof. It is sufficient to prove that (c) of Theorem 1 holds. There exists an n by n permutation matrix Q such that

$$QTQ^{T} = \begin{pmatrix} R_{11} & R_{12} & \cdots & R_{1m} \\ & R_{22} & & \vdots \\ O & & \ddots & \\ & & & R_{mm} \end{pmatrix}, \quad 1 \le m \le n,$$

where each square submatrix R_{ij} , $1 \le j \le m$, is irreducible. See for example [4, p. 46, (2.41)]. If T is irreducible, then m = 1 and we can choose Q = I. Since the diagonal elements of each R_{ii} are also positive, it follows from Lemma 2.8 and Theorem 2.5 in [4, p. 41] that each R_{ii} is primitive. (See Definition 2.2 in [4, p. 35]). This means that for each *i* there is only one eigenvalue λ of R_{ii} , namely $\rho(R_{ii})$, for which $|\lambda| = \rho(R_{ii})$ holds. From these remarks (c) of the preceding theorem follows.

DEFINITION 2. An *M*-matrix *A* is said to have "property c" if it can be split into A = sI - B, s > 0, $B \ge 0$, where the matrix T = B/s is semiconvergent.

All nonsingular *M*-matrices have "property c." There are, however, singular *M*-matrices which do not share this property (see [1, p. 152ff]).

Let

$$Z^{n \times n} := \{ A = (a_{ii}) | a_{ii} \leq 0, i \neq j \}.$$

Then we have the following results.

Theorem 3.

(a) $A \in \mathbb{Z}^{n \times n}$ is a nonsingular M-matrix if and only if A^{-1} exists and $A^{-1} \ge 0$ (see [1, p. 134 ff.]).

(b) $A \in \mathbb{Z}^{n \times n}$ is a nonsingular M-matrix if and only if the real parts of all eigenvalues are positive. The same characterization holds for the nonzero eigenvalues of a singular M-matrix (see [1, pp. 134 ff., 147 ff.]).

(c) If A and B are n by n M-matrices and if $AB \in \mathbb{Z}^{n \times n}$, then AB is an M-matrix (see [1, p. 159, Exercise 5.2]).

then

$$[\alpha_1,\ldots,\alpha_n]\cdot[\beta_1,\ldots,\beta_n]=\left[\alpha_1\beta_1,\alpha_1\beta_2+\alpha_2\beta_1,\ldots,\sum_{k=1}^n\alpha_k\beta_{n-k+1}\right].$$

Therefore the set of matrices of the form (3) is closed under ordinary matrix multiplication.

3. SQUARE ROOTS OF *M*-MATRICES

Let there be given an n by n matrix A. We know from the definition of an M-matrix that there exists an s>0 such that

$$A = sI - \tilde{P}, \qquad \tilde{P} \ge 0, \quad \rho(\tilde{P}) \le s.$$

If $\Delta s > 0$ and $A = (s + \Delta s)I - (\Delta sI + \tilde{P})$, then using the Perron-Frobenius theorem [4, p. 46], it follows that $\rho(\Delta sI + \tilde{P}) = \Delta s + \rho(\tilde{P}) \leq \Delta s + s$. From this remark we conclude that there exists an $s_0 > 0$ such that for all $s \geq s_0$ we can represent the *M*-matrix A in the following manner:

$$A = sI - \tilde{P} = s(I - \tilde{P}/s) = s(I - P)$$

with $P = \tilde{P}/s$, diag $P > 0$, $\rho(P) \le 1$ (MM)

(diag P denotes the diagonal part of P). Since A/s=I-P, one knows a square root of A if one knows a square root of I-P.

It is obvious that A has an M-matrix as a square root if and only if I-P has an M-matrix as a square root. Therefore we can restrict the discussion in the

122

following lemma to *M*-matrices which have the special form

$$A=I-P$$
, $P \ge 0$, diag $P > 0$, $\rho(P) \le 1$.

LEMMA 1. Let there be given an n by n matrix $P=(p_{ij})\ge 0$ where $\rho(P)\le 1$ and diag P>0. Let $\alpha\ge 1$. Then the following three statements hold:

(a) There exists an n by n matrix $B \ge 0$ where $\rho(B) \le \alpha$ and $I - P = (\alpha I - B)^2$ if and only if the iteration method

$$X_{i+1} = \frac{1}{2\alpha} \left[P + (\alpha^2 - 1)I + X_i^2 \right], \qquad X_0 = 0, \tag{4}$$

is convergent. In this case $B \ge X^* = \lim_{i \to \infty} X_i$, $X^* \ge 0$, $\rho(X^*) \le \alpha$, diag $X^* > 0$, and $(\alpha I - X^*)^2 = I - P$.

(b) If (4) is convergent, it follows that P and X^*/α are semiconvergent.

(c) If P is semiconvergent, then (4) is convergent for all $\alpha \ge 1$. Denoting in this case the limit of the iteration method

$$Y_{i+1} = \frac{1}{2} (P + Y_i^2), \qquad Y_0 = 0,$$

by Y^{*}, the equation

$$\alpha I - X^* = I - Y^*$$

holds.

Proof. (a), \Rightarrow : We prove by induction that the sequence which is computed using (4) is increasing and bounded. Assuming $X_{i+1} \ge X_i$, $X_i \le B$, which is obviously true for i=0, it follows that

$$X_{i+2} = \frac{1}{2\alpha} \left[P + (\alpha^2 - 1)I + X_{i+1}^2 \right] \ge \frac{1}{2\alpha} \left[P + (\alpha^2 - 1)I + X_i^2 \right] = X_{i+1}$$

and

$$B - X_{i+1} = B - \frac{1}{2\alpha} \Big[P + (\alpha^2 - 1)I + X_i^2 \Big]$$

= $\frac{1}{2\alpha} \Big[I - P - (\alpha^2 I - 2\alpha B + X_i^2) \Big] \ge \frac{1}{2\alpha} \Big[I - P - (\alpha I - B)^2 \Big] = 0.$

Therefore the iteration method (4) is convergent. For its limit X^* we have $\lim_{i\to\infty} X_i = X^* \leq B$, $(\alpha I - X^*)^2 = I - P$, diag $X^* > 0$, $X^* \geq 0$. Because of $0 \leq X^* \leq B$, it follows that $\rho(X^*) \leq \rho(B) \leq \alpha$ from the Perron-Frobenius theorem [4, p. 46, Theorem 2.7].

⇐: Assuming the convergence of the method (4), we have $X^* = \lim_{i \to \infty} X_i$ ≥0 and $I - P = (\alpha I - X^*)^2$. Let U be a matrix which transforms P into Jordan form:

$$U^{-1}PU = \begin{pmatrix} J_1 & O \\ & \ddots & \\ O & J_k \end{pmatrix},$$

where

$$J_{j} = \begin{pmatrix} \lambda_{j} & 1 & & & O \\ & \cdot & \cdot & & & \\ & & \ddots & \cdot & & \\ & & & \ddots & 1 \\ O & & & & \lambda_{j} \end{pmatrix}, \quad 1 \leq j \leq k.$$

Setting $Z_i := U^{-1}X_iU$, we get from (4)

$$Z_{i+1} = \frac{1}{2\alpha} \left[U^{-1} P U + (\alpha^2 - 1) I + Z_i^2 \right], \qquad Z_0 = 0, \tag{5}$$

and therefore each diagonal element μ of $U^{-1}PU$ is related to a diagonal element $\lambda^{(i+1)}$ of Z_{i+1} by the equation

$$\lambda^{(i+1)} = \frac{1}{2\alpha} \Big[\mu + (\alpha^2 - 1) + (\lambda^{(i)})^2 \Big].$$
 (6)

We prove by mathematical induction that $\rho(X_i) \leq \alpha$ and therefore that $\rho(X^*) \leq \alpha$ holds. For i=0 this is trivially the case. Using $\rho(P) \leq 1$ and the induction hypothesis, we have

$$|\lambda^{(i+1)}| \leq \frac{1}{2\alpha} \left[|\mu| + \alpha^2 - 1 + |\lambda^{(i)}|^2 \right] \leq \frac{1}{2\alpha} \left(|\mu| - 1 + 2\alpha^2 \right) \leq \alpha.$$
 (7)

Therefore the assertion holds with $B := X^*$.

(b): Let (4) be convergent, and assume that P is not semiconvergent. Again let U be a matrix which transforms P into Jordan form. Since $\rho(P) \leq 1$ and diag P > 0, it follows, using Theorem 2, that at least one of the submatrices J_i , $1 \leq j \leq k$, has the form

where the order of J_i is greater than one. Let this be the case for $j := \tilde{j}$. Setting again $Z_i = U^{-1}X_iU$, we see from (5) that Z_i has the form

$$Z_i = \begin{pmatrix} J_1^{(i)} & & \bigcirc \\ & \ddots & \\ \bigcirc & & J_k^{(i)} \end{pmatrix}$$

 $J_{\overline{i}}^{(i)}$ has the form

$$J_{\tilde{i}}^{(i)} = \left[\beta_1^{(i)}, \dots, \beta_{\nu_{\tilde{i}}}^{(i)}\right].$$

The sequence $(\beta_1^{(i)})$ is computed by the recursion

 $\beta_1^{(i+1)} = \frac{1}{2\alpha} \Big[1 + (\alpha^2 - 1) + (\beta_1^{(i)})^2 \Big], \qquad \beta_1^{(0)} = 0.$

Since this sequence is increasing and bounded, it is convergent and $\lim \beta_1^{(i)} = \alpha$. Assume now that the sequence $(\beta_2^{(i)})$ which is computed using the iteration method

$$\beta_2^{(i+1)} = \frac{1}{2\alpha} \left(1 + 2\beta_1^{(i)} \beta_2^{(i)} \right), \qquad \beta_2^{(0)} = 0 \tag{8}$$

is convergent. Setting $\lim \beta_2^{(i)} = \beta$, we get from (8)

$$\beta = \frac{1}{2\alpha} (1 + 2\alpha\beta),$$

which is a contradiction. Therefore the sequence (Z_i) and hence the sequence (X_i) cannot be convergent. Contradiction! This means that P is semiconvergent. It remains to be shown that also X^*/α is semiconvergent. Since by Lemma 1(a), diag $X^*>0$ and therefore also diag $(X^*/\alpha)>0$, it is sufficient by Theorem 2 to show that (a) and (b) of Theorem 1 hold. In part (a) of Lemma 1 we have shown that $\rho(X^*) \leq \alpha$, and therefore it follows that $\rho(X^*/\alpha) \leq 1$. This is (a) of Theorem 1. Let now $\rho(X^*/\alpha)=1$. In order to prove (b) of Theorem 1, we have to show that all elementary divisors associated with the eigenvalue 1 of X^*/α are linear. Passing to the limit in (6), it follows that every eigenvalue μ of P is associated with an eigenvalue λ of X^* by the equation $1-\mu=(\alpha-\lambda)^2$. If now $\lambda/\alpha=1$, then $\mu=1$ follows. Passing to the limit in (5), it follows that if μ is an eigenvalue of P the elementary divisors of which are linear, then the elementary divisors of the related eigenvalue λ are also linear. Since P is semiconvergent, (b) of Theorem 1 holds for P and therefore also for X^*/α .

(c): Let P be semiconvergent. Then P belongs to the class M (see [2, p. 47]). Hence a natural matrix norm exists for which $||P|| \le 1$ holds. Using mathematical induction, we prove that the sequence computed using (4) is norm-bounded. If $||X_i|| \le \alpha$, which is the case for i=0, then it follows that

$$\|X_{i+1}\| \leq \frac{1}{2\alpha} \left(\|P\| + \alpha^2 - 1 + \|X_i\|^2 \right) \leq \frac{1}{2\alpha} \left(1 + \alpha^2 - 1 + \alpha^2 \right) = \alpha.$$

The sequence is also increasing, and therefore it is convergent. Setting again $Z_i = U^{-1}X_iU$ and in addition $\bar{Z}_i = U^{-1}Y_iU$, we have

$$Z_i = \begin{pmatrix} J_1^{(i)} & \bigcirc & \\ & \ddots & \\ \bigcirc & & J_k^{(i)} \end{pmatrix}, \quad \tilde{Z_i} = \begin{pmatrix} \tilde{J}_1^{(i)} & \bigcirc & \\ & \ddots & \\ \bigcirc & & \tilde{J}_k^{(i)} \end{pmatrix}.$$

Here $J_i^{(i)}$ and $\tilde{J}_i^{(i)}$, $1 \le j \le k$, are matrices of the form

 $J_{j}^{(i)} = \left[\beta_{1}^{(i)}, \dots, \beta_{\nu_{j}}^{(i)}\right], \qquad \tilde{J}_{j}^{(i)} = \left[\tilde{\beta}_{1}^{(i)}, \dots, \tilde{\beta}_{\nu_{j}}^{(i)}\right],$

where the elements are computed in the following way:

$$\begin{split} \beta_1^{(i+1)} &= \frac{1}{2\alpha} \Big[\lambda_i + (\alpha^2 - 1) + (\beta_1^{(i)})^2 \Big], \qquad \beta_1^{(0)} = 0, \\ \tilde{\beta}_1^{(i+1)} &= \frac{1}{2} \Big[\lambda_i + (\tilde{\beta}_1^{(i)})^2 \Big], \qquad \tilde{\beta}_1^{(0)} = 0, \\ \beta_2^{(i+1)} &= \frac{1}{2\alpha} \Big[1 + 2\beta_2^{(i)}\beta_1^{(i)} \Big], \qquad \beta_2^{(0)} = 0, \\ \tilde{\beta}_2^{(i+1)} &= \frac{1}{2} \Big[1 + 2\tilde{\beta}_2^{(i)}\tilde{\beta}_1^{(i)} \Big], \qquad \tilde{\beta}_2^{(0)} = 0, \end{split}$$

and in general

$$\beta_{r}^{(i+1)} = \frac{1}{2\alpha} \sum_{l=1}^{r} \beta_{l}^{(i)} \beta_{r-l+1}^{(i)}, \quad \beta_{r}^{(0)} = 0 \\ \tilde{\beta}_{r}^{(i+1)} = \frac{1}{2} \sum_{l=1}^{r} \tilde{\beta}_{l}^{(i)} \tilde{\beta}_{r-l+1}^{(i)}, \quad \tilde{\beta}_{r}^{(0)} = 0$$

$$3 \le r \le \nu_{i}.$$

(In order to simplify the notation we suppress the fact that the elements are actually dependent also on *j*.) Setting $\beta_r = \lim_{i \to \infty} \beta_r^{(i)}$, $\tilde{\beta}_r = \lim_{i \to \infty} \tilde{\beta}_r^{(i)}$, $1 \le r \le \nu_i$, we have $(\alpha - \beta_1)^2 = 1 - \lambda_i$ and therefore $\beta_1 = \alpha - \sqrt{1 - \lambda_i}$. [Since A = I - P is an *M*-matrix, all eigenvalues of *A* have nonnegative real parts. See Theorem 3, part (b). Since $\alpha - \beta_1$ is an eigenvalue of $\alpha I - X^*$, which is an *M*-matrix by (a), we have to choose the unique square root of $1 - \lambda_i$ which has a nonnegative real part.] Since also $\tilde{\beta}_1 = 1 - \sqrt{1 - \lambda_i}$, we have $\beta_1 = \alpha - 1 + \tilde{\beta}_1$. Using mathematical induction, we are able to prove that $\beta_r = \tilde{\beta}_r$, $r = 1(1)\nu_i$. This can be done for all j, $1 \le j \le k$. This means

$$U^{-1}X^*U = (\alpha - 1)I + U^{-1}Y^*U$$

and therefore we have proved the assertion.

Using the preceding lemma, we can establish the following result.

THEOREM 4. Let A be an n by n M-matrix, and let A = s(I-P) be a representation of A of the form (MM). A has an M-matrix as a square root if and only if A has "property c." In this case let Y* denote the limit of the

sequence generated by

$$Y_{i+1} = \frac{1}{2} (P + Y_i^2), \qquad Y_0 = 0.$$

Then $\sqrt{s}(I-Y^*)$ is an M-matrix with "property c" which is a square root of A. For any other M-matrix Z* which is a square root of A the relation $Z^* \leq \sqrt{s}(I-Y^*)$ holds.

Proof. If A has an M-matrix as a square root, then we get from Lemma 1, parts (a) and (b), that P is semiconvergent and therefore that A has "property c." The other direction follows from Lemma 1, parts (a) and (c). From Lemma 1, part (b), we also obtain that the matrix $\sqrt{s}(I-Y^*)$ has "property c."

Finally let Z^* be an *M*-matrix which is a square root of *A*, and let $Z^* = \beta I - B$, $\beta \ge \sqrt{s}$, be a representation of this matrix of the form (MM). The matrix I - P can be written in the form

$$I-P=\frac{A}{s}=\left(\frac{\beta}{\sqrt{s}}I-\frac{B}{\sqrt{s}}\right)^2,$$

where $\beta/\sqrt{s} \ge 1$. Setting $\alpha := \beta/\sqrt{s}$ and denoting by X^* the limit of the sequence generated by

$$X_{i+1} = \frac{1}{2\alpha} \Big[P + (\alpha^2 - 1)I + X_i^2 \Big], \qquad X_0 = 0,$$

we get from Lemma 1, parts (a) and (c), that $X^* \leq B/\sqrt{s}$ and $\alpha I - B/\sqrt{s} \leq \alpha I - X^* = \alpha I - [(\alpha - 1)I + Y^*] = I - Y^*$, that is,

$$\sqrt{s(I-Y^*)} \ge \beta I - B = Z^*.$$

This shows that the matrix $\sqrt{s}(I - Y^*)$ is the largest *M*-matrix which is a square root of *A*.

We consider now the 2 by 2 zero matrix A = 0. Each *M*-matrix of the form

$$B = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \qquad b \le 0,$$

is a square root of A which has "property c." Therefore the problem of

finding an M-matrix which is a square root of an M-matrix with "property c" is in general not uniquely solvable. However, for a certain subset of the set of M-matrices with "property c" the following theorem shows the uniqueness of the solution of this problem. This subset contains the set of nonsingular M-matrices and the set of irreducible M-matrices.

THEOREM 5. An M-matrix $A = (a_{ij})$ has exactly one M-matrix as a square root if 0 is at most a simple zero of the characteristic polynomial of A.

Proof. If 0 is at most a simple zero of the characteristic polynomial of A, then A has "property c" and Theorem 4 guarantees the existence of an M-matrix which is a square root of A. Assume again that A is expressed in the form (MM), that is, A = s(I-P). We know from Theorem 4 that if Y^* is the limit of the sequence (Y_i) generated by

$$Y_{i+1} = \frac{1}{2} (P + Y_i^2), \qquad Y_0 = 0,$$

then $I-Y^*$ is an *M*-matrix which is a square root of I-P. We assume that there exists another *M*-matrix Z^* which is a square root of I-P, and that $Z^* = \alpha I - B$, $\alpha \ge 1$, denotes a representation of the form (MM).

From Lemma 1, part (a), we know that if X^* denotes the limit of the sequence generated by

$$X_{i+1} = \frac{1}{2\alpha} \Big[P + (\alpha^2 - 1)I + X_i^2 \Big], \qquad X_0 = 0,$$

then

$$B \ge X^*$$
, $(\alpha I - X^*)^2 = I - P = (\alpha I - B)^2$.

Let Q be a permutation matrix which transforms the matrix B into the reducible normal form

$$\tilde{B} = QBQ^{T} = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1m} \\ & B_{22} & & B_{2m} \\ \bigcirc & & \ddots & \vdots \\ & & & & B_{mm} \end{pmatrix}, \quad 1 \le m \le n,$$

where each square submatrix B_{ij} is irreducible, since we have diag B>0. If B

is irreducible, then m=1 and we can choose Q=I. Because $B \ge X^* \ge 0$ we get

$$\tilde{X} = QX^*Q^T = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1m} \\ & X_{22} & & X_{2m} \\ O & & \ddots & \vdots \\ & & & & X_{mm} \end{pmatrix}$$

where B_{ii} and X_{ii} have the same size.

We first show that $X_{ii} = B_{ii}$, $1 \le j \le m$. We know that $X_{ii} \le B_{ii}$, and we assume $X_{ii} \ne B_{ij}$ for some *j*. From the Perron-Frobenius theorem for irreducible matrices it follows that $\rho(B_{ij}) > \rho(X_{ij})$. From $(\alpha I - X^*)^2 = (\alpha I - B)^2$ it follows $(\alpha I - \tilde{B})^2 = (\alpha I - \tilde{X})^2$, and therefore $(\alpha I - B_{ij})^2 = (\alpha I - X_{ij})^2$. Setting $\mu := \rho(B_{ij}) \le \alpha$, there must exist an eigenvalue $\tilde{\mu}$ of \tilde{X}_{ij} such that

$$(\alpha-\mu)^2=(\alpha-\tilde{\mu})^2,$$

or

$$(\mu-\tilde{\mu})(\mu+\tilde{\mu})=2\alpha(\mu-\tilde{\mu}).$$

Since $|\tilde{\mu}| < \mu$, we get $\mu + \tilde{\mu} = 2\alpha$, which is a contradiction. Therefore we have $X_{ii} = B_{ii}, 1 \le j \le m$.

Since 1 is at most a simple zero of the characteristic polynomial of P, we know from (6) that α is at most a simple zero of the characteristic polynomial of \tilde{X} . Therefore we know that at most one of the diagonal blocks X_{ii} of \tilde{X} has the eigenvalue α . We prove by mathematical induction that

$$X_{lk} = B_{lk}, \qquad 0 \le k - l \le m - 1,$$

holds.

For k-l=0 we have already shown the assertion. From $(\alpha I - \tilde{B})^2 = (\alpha I - \tilde{X})^2$ it follows that

$$\tilde{B}^2 - 2\alpha \tilde{B} = \tilde{X}^2 - 2\alpha \tilde{X},$$

and therefore

$$\sum_{i=l}^{k} B_{li} B_{jk} - 2\alpha B_{lk} = \sum_{j=l}^{k} X_{lj} X_{jk} - 2\alpha X_{lk}.$$

Using the induction hypothesis it follows that

$$X_{ll}B_{lk} + B_{lk}X_{kk} - 2\alpha B_{lk} = X_{ll}X_{lk} + X_{lk}X_{kk} - 2\alpha X_{lk}$$

and therefore

$$(X_{ll} - \alpha I)(B_{lk} - X_{lk}) + (B_{lk} - X_{lk})(X_{kk} - \alpha I) = 0.$$
(9)

Since the matrices $\alpha I - X_{ll}$ and $\alpha I - X_{kk}$ are *M*-matrices and since at most one of these two is singular, it follows that Equation (9) has only the trivial solution, that is, $B_{lk} = X_{lk}$. (See [5, p. 262, Theorem 8.5.1].) Therefore we have $B = X^*$, and using Lemma 1, part (c), we obtain

$$\alpha I - B = \alpha I - X^* = I - Y^*.$$

Therefore $\sqrt{s}(I - Y^*)$ is the only *M*-matrix which is a square root of the given matrix *A*.

4. SOME CHARACTERIZATIONS OF M-MATRICES

In [1, p. 134 ff.] there is listed a series of conditions which characterize matrices $A \in \mathbb{Z}^{n \times n}$ that are nonsingular *M*-matrices or singular *M*-matrices with "property c." Using the Theorem 4 of the preceding section we can establish the following results.

COROLLARY 1. $A \in \mathbb{Z}^{n \times n}$ is a nonsingular M-matrix if and only if there exists a nonsingular M-matrix Y* for which $A = (Y^*)^2$ holds.

Proof. If $A \in \mathbb{Z}^{n \times n}$ is a nonsingular M-matrix, then the assertion follows from Theorem 4, since A has "property c." If on the other hand Y^* is a nonsingular M-matrix, then using Theorem 3, part (a), it follows from $A = (Y^*)^2$ that A is a nonsingular M-matrix.

COROLLARY 2. $A \in \mathbb{Z}^{n \times n}$ is a nonsingular M-matrix if and only if there exists a nonnegative matrix \mathbb{Z}^* for which $A(\mathbb{Z}^*)^2 = I$ holds.

Proof. Let $A \in \mathbb{Z}^{n \times n}$ and let $\mathbb{Z}^* \ge 0$. Then it follows from $A(\mathbb{Z}^*)^2 = I$ that A^{-1} exists and $A^{-1} \ge 0$ holds. Using Theorem 3 this means that A is a nonsingular M-matrix. If on the other hand A is a nonsingular M-matrix, then

Theorem 4 guarantees the existence of a nonsingular *M*-matrix Y^* for which $A = (Y^*)^2$ holds. Therefore the equation $A(Z^*)^2 = I$, $Z = (Y^*)^{-1} \ge 0$, follows.

The next result deals with the singular case.

COROLLARY 3. $A \in \mathbb{Z}^{n \times n}$ is a singular M-matrix with "property c" if and only if there exists a singular M-matrix Y* with "property c" for which $A = (Y^*)^2$ holds.

Proof. If $A \in \mathbb{Z}^{n \times n}$ is a singular *M*-matrix with "property c," then the assertion follows from Theorem 4. If on the other hand Y^* is a singular *M*-matrix with $A = (Y^*)^2$, then using Theorem 3, part (c), it follows that *A* is a singular *M*-matrix. We have to show that *A* has "property c." Since Y^* has "property c," it follows from Lemma (4.11) in [1, p. 153] that rank $Y^* = \operatorname{rank}(Y^*)^2$. This implies the equation rank $(Y^*)^2 = \operatorname{rank}(Y^*)^4$ or rank $A = \operatorname{rank} A^2$. Applying again Lemma (4.11) from [1], we have the result that *A* has "property c."

The authors are very much indebted to Professor Hans Schneider for his many suggestions for improving an earlier version of this paper.

REFERENCES

- 1 A. Berman and R. J. Plemmons, Non-negative Matrices in the Mathematical Sciences, Academic, 1979.
- 2 A. S. Householder, *The Theory of Matrices in Numerical Analysis*, Ginn (Blaisdell), Waltham, Mass. 1964.
- 3 A. M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comment. Math. Helv. 10:69-96 (1937).
- 4 R. S. Varga, *Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, N.J. (1962).
- 5 P. Lancaster, Theory of Matrices, Academic, 1969.

Received 18 November 1980; revised 28 April 1981