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ON THE EVALUATION OF RATIONAL FUNCTIONS IN INTERVAL
ARITHMETIC*

G. ALEFELD7 AND J. G. ROKNEt

Abstract. We discuss some new expressions for rational functions for which the Hausdorff distance
between the range over a given interval and the interval arithmetic evaluation has the order of the square
of the width of the given interval.

1. Preliminaries and introduction. Let there be given a real-valued rational
function of the real variable x,

f( ) =g(X)=L~=oayxY
x ,"5 y'

h (x) ':"y=o byx

and a compact interval X = [Xl, X2]. If g(X) and heX) denote the interval arithmetic
evaluation of one of the infinitely many equivalent representations of g and h (for
example, by using Horner's method) and if 0 eh (X), then

(l)

(2) f(x) E feX) := g(X)
heX) ,

XEX.

Let

q(A, B) = max {laI - b11,la2- b21}

denote the Hausdorff metric for real intervals A = [al. a2],B = [bI, b2]and let d(X) =
X2- Xl denote tbe width of the interval X = [Xl,X2].Then if

W(f,X):= [f(u),f(v)]

is the range of f over X it holds that

(3) q(W(f, X),f(X»::: ad(X),.

provided we have

d(g(X» ~cld(X), d(h(X» <:c2d(X).

These last two relations are valid if, für example, we use Horner's scheme in evaluating
g(X) and heX). In the sense of (3), W(f, X) is therefore linearly approximated by feX).

In his book [5, § 6.2], R. E. Moore has demonstrated by some examples that using
the so-caIled centered form of f allows one to replace d (X) by the square of d (X) on
the right-hand side of (3). Furthermore, he made the conjecture that this is true in
general. Tbe centered form is described by Moore in the following manner:

Let there be given a rational function f(x) and areal number c = m(X) (= the
midpoint of the interval X) at which f is defined. Then we have

(4) f(x) =f(c) + tex - c),

where the real function t is defined by

(5) t(y) = f(y + c) - f(c).
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The representation (4) of I is calIed the centered form. For t the only assumption is
that the number of occurrences of the variable y in the expression chosen for t~y)
cannot be further reduced by canceIlations. For example,

t(y) = /- /+2y + 1

is not allowed. In this case we have to use

t(y) = 2y + 1.

Moore's conjecture now reads (in a different but because of [1, eq. (21), p. 24J
equivalent form):

If

I(X) := I(c) + t(X - c),

then

(6) q( wU, X), I(X» ~ a d(X)2

holds.

Although it is perhaps gene rally known, we first show by a simple example that
without additional assumptions on the expression used für t(y), (6) does not hold.

Let

l+x

I(x) = 2+x'

c=m(X)=O, X=[-",], ,<2, and hence d(X) = 2,. We have l(c)=I(o)=t and
therefore (4) reads

(7) I(x) = ~ + tex - c),

where, from (5),

1+v 1
t(y) = ::...- -.

2+y 2

Using this expression for t(y) we get from (7)

1 1+ [-', , ] - ~=
I(X)=2+2+[-r"J 2

[ 1-', 1+'
]

, ,<1,
2+, 2-,

[
1-', 1+'

]
, 1:::,<2.

2-, 2-,

Since in this case

[

1-, 1+'

JW(f,X)= 2-,2+, ,

a simple computation shows that we only have

2,
q(W(f, X),f(X» =~(1 +,) = O(d(X».4-,

If, however, we use the expression

Y
t(y)=~,~. ,=y.w(y),

1

w(Y)=2(2+y)
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for t and evaluate (7) by first evaluating w(X - c) then multiplying this interval by X - c
and adding!, then we actually have the estimation (6).

In general, the foIlowing is true. If

(8)

then for

f(x)=f(c)+p:-C)' W(X-c),

fiX) = f(c)+(X -c). w(X -c)

Moore's conjecture is true. This has been proven first by Hansen [3, p. 102 ff.]; see
also [1, p. 37 ff.]. Hansen's proof shows that the conjecture is also true if the factor
x - c is "multiplied into the dividend" of w(x - C). If, for example,

)
2 3

.

{

I + (x - c + (x - c)
}

fVd = f(c) + (x - c) . ., ,
1+ (x - cr

then the relation (6\ holds for

fiX):= f(c)+(X -c)p +(X -C)2+(~ -C)3 }l 1+ (X - c-

as weIl as for

fex) := f(c) + (X - c) + (X - C)3+ (X - C)4
1+(X-c)2 ,

no matter how the polynomials involved in these expressions are evaluated.
For polynomials

f(x) = I ayx Y
y=o

the centered form (8) can be computed by representing f as a Taylor's series at x = c
and writing the nonconstant terms as (x - c) . w(x - c). For rational functions (1) one
can-after Ratschek [8]-proceed in the following manner.

Let

r

g(x)= I a~(x-c)Y
y=o

and

s

h(x)= Ib~(x-c)Y
y=o

be the Taylor polynomials of g and h at x = c.
Then we have

(9) fix) = fid + (x -c)' w(x -c),

where

(0)
. ,\,max (r.s) -, .

W(y)=,,"-y=1 (ay-f(c)b~)yy-I,5 , 'V~y=oh'Y}" .

Despite the good approximation of Wtf, X) by (9) and (10), its use has one great
disadvantage: if r« s then the evaluation of (9) needs many more operations than (1),
for example.
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Therefore, the question arises: Do there exist "simpler" expressions far f which
nevertheless possess the property (6)?

We first note that we can write (10) in the form

. " , y-1 f( ) ,5 b ' y-l

, ( .) _,,-y=l ayY - c L..y=1 yY
"')- ,5 b'.y'L..y=o y}

(10')

Exactly in the same way as it was done for (9), (10) in [1, p. 44 ff,J, for example, one
can show that (6) holds for (9), (10'). We omit the details.

Since L~=ob~(X-c)Y can be computed trom L:=l b~(X-C)Y-1 by multiplying
with X - c and then adding bb, the disadvantage of (9), (10) for r« 5 does not exist for
(9), (10'),

On the other hand it follows by the property of subdistributivity (see [6, p. 13])
that the evaluation of (9), (10) is always contained in the evaluation of (9), (10').

In [1, p. 41 ff.] it was proven that the so-called mean-value form,

(11) f(X):= f(c)+(X -c)f'(X),

which was introduced by Moore [5, § 6.3J, has the property (6) provided d(f'(X)) ~
ßd(X). If, for example, f is given by (1), then one can use

f '(X ) := h(X)g'(X)- g(X)h'(X)
, h (X)2

or

feX) := g'(X) - g(X)h'(X)
heX) h(X)2'

In both cases one has to evaluate not only the derivatives of g and h, but also g and h
themselves at the interval X.

2. Some new quadratic convergent cases. In the sequel we will show that under
certain conditions for g and h, there exist expressions that are simpler than the centered
form (9) or the mean-value form (11) for which (6) holds.

In order to simplify the notation, we assum.e without loss of generality that
h (c) = 1: h (c) ;i=0 is necessary in order that f is defined for all x EX. Then we can write
f, given by (1) as

, ,
( )

y

1 Ly=oayX-c
f(X)=-

b
' . 1+,5 (b' j bb)(x-c)'"0 L..y=l y

The range of f can be obtained by division of the range of bbf by bb. Correspondingly,
oneobtains an interval-arithmetic evaluation of f by dividing the evaluation of b~f by
bb. Tberefore (6) is proven for f ifwe have proven this relation for bbf. We can therefore
assume that f given by (1) has also the following representation:

(12) f(x)= L~:oa~\x-c)" y'
1 + LY=l b)x -c)

We are now ready to prove the following:
THEOREM 1. (a) Let c = m (X) ( = midpoint of the interval X) and let

.~

OE 1 + L b~(X -c)y =: h(X).
y=1
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If

f~X) := g(X)
h (X) ,

where
r

(X) -" ,.. V" - )
y

g -.:.. a ..,.L"\. C ,
y=o

rhen (6) holds provided we have

(13) sign (a ~) . sign (b~ab):$ O.

(Here g(X) and h (X) are supposed to be computed by first computing the powers
of X - c, then multiplyingby the coefficientsa ~ and b~ and finallyadding these terms.
The statement is also true if we use Horner's scheme for the evaluation of the
dividend and divisor of (12). More generally, the statement holds if we have d(g(X» ~
cld(X) and d(h (X») ~c2d(X), where g and h have the representation used in (12),
respectively. )

(b) Let c = m(X) (= midpoint of rhe interval X) and let

OE 1+(X -c)h'(X).

Then under the condition (13) rhe relation (6) holds for

f X) := ab + (X -c)g'(X).
( 1+(X -c)h/(X)

(14)

(g'(X) is any evaluation of the derivative of g for which d(g'(X» ~ ßd(X) holds.
For example, one can use the given representation of g in (1), form the derivative and
then use Horner's scheme. The same is true for h'(X).)

Proof. We prove (b). (The proof of (a) can be performed in an analogous way and
is in some parts even easier.) First we note that for areal interval

A = 1+ [-r, r], r< 1,

the following holds:

(15)
1

[

1 1

]
2

[
1 1

]A = l+,l-r =A+r 1+r'1-r'

Because of c = m (X) the divisor of (14) can be written as

1 + (X - c)h'(X) = 1+ [-r, r],
where

1
d(

. " '
(

I
r = 2 X)ll X)!.

The absolute value Ih'(X)1 is defined as Ih'(X)1:= q(h'(X), 0). Using (15) and the
subdistributive law of interval arithmetic (see, e.g., [6, p. 13]), we have for (14)

feX) = (ab +(X -c)g'(X»{ 1+ (X -c)h'(X) + r2[1: r' 1~r J}

<;;a~ + ab(X - c)h'(X) + (X - c)g'(X) + abr2[1: r' 1~,]

.

[

1 1

]+(X -c)2g'(X)h'(X)+(X -c)g'(X)r2 1+r' 1-r .
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From this it follows immediately that the width of f(X) satisfies the relation

(16) d(j(X)) ~ ra~h'(X)1 d(X) + ig'(Xji d(X) + 0(d(X)2).

Correspondingly, we have for the range of f over the intervalX the representation

(17) ~v ( f, X) = [f ( II ), f (1-' ) J,

where u, v EX. Using (12) we have

a S + a;Ct"- cl + O«x - e )2)
f(x) = ,. "

1 +b1 (x -e)+ O«x -er)

= aS- a Sb; (x - e) + a ~(x - e) + 0 ((x - e ):\

and therefore, by (17),

d( W(f, X» = -aSb ~«(;- u) + a ~(v - u) + O«u - e )2) +-O«v - e )2).

If we have
' b

'
-ap 1 ~O, a~ ~O,

then, replacing v by X2 and u by Xl in the last equation, we have

(18)
"

d(W(f, X» ~ la~b~!d(X) + ia~! dLX) + O(d(Xr).

H, however,

-a'b'< O0 1 = , a~~O ,

we again get (18) by replacing (; by Xl and u by X2.

In order to complete the proof, we use the following facts:
1. If A C;;B, then q(A, B)"5.d(B)-d(A) (see [1, p. 24]).
2. If IAI:=q(A,O) then iA!-IBi~q(A,B). This follows

inequality: q(A, 0) ~ q(A, B) + q(B, 0).
3. Finally, we note that

trom the triangle

abb; E aSh'(X), a ~ E g'(X).

Using (16) and (18) we have

q( W(f, X),f(X)) ~ d(f(X)) -d( W(f, X))

"5.(laSh'(X)! -Ia[)b; I) d(X) + (lg'(X)I-la; Dd(X) + O(d(X)2}

~ {q(abh'(X), a ~b;) + q(g'(X), a ~)} d(X) + 0(d(X)2)

"5. {d(abh'(X)) + d(g'(X))} d(X) + 0(d(X)2)

"5.ad(X)2 0

As a special case of the preceding theorem, we have the following:
COROLLARY. (1) If h (x) =1 then all the statements 01 Theorem 1 hold.
(2) 11g(x) =1 then all the statements of Theorem 1 hold.
Proo/. The proof follows immediately, since in both cases condition (13) holds.
While statement (1) of this corolIary is equivalent either to the statements about

the centered form of polynomials (if g is evaluated as in part (a) of Theorem 1) orte
the statements about the mean-value form (if g is evaluated as in part (b) of the
theorem) the second part of the corollary seems to be a new result.
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We now illustrate OUf results by some simple examples.
Example 1.

I-x:'.
f(x)=- c=m(X)=O X=[-r r] r<1
- 1 +x ' ",.

We have W(f, XI = [1- r, 1 +,] and (13) holds.
The evaluation of f as described in part (a) of Theorem 1 yields

f(X) = [ 1- r, 1+ / ]
,

1-,

and therefore

2 2

q( W(f, X),f(X)) = 1 ~ r = O(d(X)2),

as predicted by Theorem 1.
If we use the expression defined in part (b) of Theorem 1, namely

. 2 2
1-2X.X

[

1-2r 1+2r

JfeX) := .. u 1+ r ' 1 - r '

we also get

.

(
r2 3r2

) 2
q(W(f,X),f(X))=max -'- 1 =O(d(X)),1 +r -r

as predicted by theory.
Example 2. Although condition (13) seems at first sight to be rather artificial and

only necessary for the given proof of Theorem 1, the following example shows that
without (13) the statements of Theorem 1 are not true in general. Let

l+x
[ ]fLt)=-, c=m(X)=O, X= -r,r, r<2.

- 2+x

The relation (13) does not hold in this example. We have

[

1-r l+r

JW(f.X)= 2-,2+, '

and both (a) and (b) of Theorem 1 give
. .

I+X

[

1-r l+r

Jf(X) = 2 + X = 2 +, 2 - r .

From this it follows that in this case we only have

2r(1 + r)
q(W(f, X),f(X)) = . 2 - O(d(X)).

Example 3. For the centered form (8) it is weIl known that (6) is true not only for
c = m(X) but for an arbitrary point CE X. The same is true for the mean-value form
(11). For these general cases the proofs have been given in [1].

A slight modification of the proof of Theorem 1 shows that the statements of this
theorem are alsotrue if c ~ m(X), CEX. Weillustratethisas follows.Consideragain



RATIONAL FUNCTION"S IN INTERVAL ARITH\.tETIC 869

the first example,

l-x-

{Ix)= l+x '

andX = [ -rl, r2]. 1 > '1 > '2. The point c = 0 is in X but m (X) ::;f:0 if Tl 7'=Tz. The

evaluation of the expression in part (a) of Theorem 1 gi\es

fiX) =
[

1- Tl 1 +- TlT2 i

1 + T2' 1 - rj J,
and since in this case

~V(j, X) = [1- Tz, 1 + Tl]

it follows that
-, -,

(
Ti - r::' Tl(rI + (7»

)
2

q(W(f,X),fl-X))=max 1+ -, 1- ~ =O(d(X»).. T2 Tl

3. The n-dimensional rase. In the remainder of this paper, we discuss the gen-
eralization of Theorem 1 to the multidimensional case. Let x = (Xi) be areal n -vector,
and let

f(x}=g(x)
. h (x)

be a rational function of the n variables Xl, X2, . . . , Xn. Then, in the same way as for

n = 1, f can be written as

(19)
,r

f(x) = ",",y=oayx y. ,5
L.y=o byx y'

Here, again, ao and bo represent real numbers but ay, 1::: y ~ T, and by, 1 ~ y ~ S, are
y-linear operators trom IRninto IR(see, for eX,1mple, [7, Def. 17.2]). Furthermore, let
there be given n compact real intervals Xi, 1 ~ i ~ n. If we denote by X = lXi) a vector
wh ich has the intervals Xi as components, then analogous to (3) we have

(20) q( W(f, X), fIX»~ <: all(d(Xi»11

for an arbitrary vector norm. Here f(X) is obtained by evaluating (19) for the interval
vector X = (X;J.

If one uses the centered form defined analogously to (8), then again it holds that

(21) q(W(f, X),f(X)) ~ all(d(Xi))f

In [8J Ratschek has given an explicit formula for the centered form in the multi-
dimensional case, which is similar to (10).

Let c be the vector c = (m (X;), and suppose that f(x) can be represented as
,r , ( )

y
, ,,-,y=oay x-c

/(x)=1+ I 5

b'
( - \'Y'

y=l Y X c

which-as in the case n = l-we can assurne without loss of generality.
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In order to formulate the next theorem, recall that the linear operators a ~ and b ~

are n-dimensional row vectors:
, " , "

a1 = (an, a12,' .., a1n),

b
' '"

b
'

b
' b

' "
)1={ 11,12,"', In.

THEOREM2. (a) Let e = (m(Xi»'and
s

OE 1+ I b~(X -er =: heX).
;;= 1

Furthermore, let

g(X):= I a~(X -er'.
1'=0 .

[f

(22)

theli (21) holds for

sign (a~i)' sign (bLa~)<:O, 1 ~ i <: n,

feX) := g(X)
heX)'

(b) Let e = (m(Xd) and

OE 1 + h'(X)(X -e).

Then (21) holds for
, ,

feX) := ao + g (X)(X -e)
1 +h'(X)(X -e)

if (22) is true.
(For the evaluation of g(X) and heX) in part (a) and h'(X) and g'(X) in part (b),

the same remarks as in Theorem 1 hold.)
The proof of this theorem is analogous to that of Theorem 1. We omit the details.
The corollary can also be formulated in the multidimensional casein a completely

analogous manner.
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