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1. Introduction. A mimber of papers have been written about Halley's method, a third-order
method for the solution of a nonlinear equation. (See, for example, [8].)For real-valued functions,
this method is usually written as

Xk+l=Xk- f(Xk)

f'(Xk) -l f
"

( )
f(Xk) ,

2 Xk-

k ;;;. O. (0)

This method is also called the method of tangent hyperbolas, as in [3], because x k+ 1 as given by
(0) is the intercept with the x-axis of a hyperbola that is osculatory to the curve y = f( x) at

x = Xk. Construction of the appropriate hyperbola, given f(Xk)' f'(Xk)' and f"(Xk)' is an
interesting exercise.

Many of the authors writing on Halley's method have, in particular, been concemed with
developing a convergence theorem similar to the so-called Newton-Kantorovich theorem. (See, for
~xample, [5, p. 421 ff].) The most far-reaching results can undoubtedly be found in [3], where also
a comprehensive list of references is given. Error bounds, also, are given in [3]. These reflect for
the first time the correct order of the error.

In this note we add some new results on Halley's method for real functions. From aremark by
G. H. Brown, Jr. [2], Halley's method can be derived by applying Newton's method to the

function g(x) =f(x)/If'(x). The adaptation of Theorem 7.1 of Ostrowski [7] to Halley's
method gives us results on the existence and uniqueness of a zero and on the convergence to this
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zero. In particular, we get error bounds that reflect correctly the order of the error. This method is
demonstrated by a simple well-tried numerical example.

2. TheoreticalResults.

THEOREM.Let f( x) be a real-valued lunction 01 the real variable x, and let I( Xo)f'( xo) =1= Olor
some Xo. Furthermore let

1'
( )

1/ "
( )

I(xo)
=1= 0

Xo -2 Xo f'(xo) .

Deline

I(xo)

ho= - I(xo) ,
f'(xo) --lf"(xo) f'(xo)

and set

XI= Xo + ho,

{

[XO,XO+2hO], ho>O
Jo=

[xo+2ho,xo], ho<O.

For X E Jo let I have a continuous third derivative. Suppose that f' doesn't change sign in Jo and that
with .

I(x)

g(x) = Jf'(x)

we have

Ig"( x)1 ~ Mo

and

2lholMo~ Ig'(xo)l.

(1)

(2)

Then starting with Xo the leasibility 01 Ha/ley's method is guaranteed. All Xk are contained in Jo, and

the sequence {Xk} convergesto a zero x* oll (which is unique in Jo).

Defining

hk= - f(Xk) ,

1'
( ) 1/ "

( )
I(Xk)

XIc -2 Xk f'(Xk)

{

[Xk,XIc+2hk], hk>O
Jk=

[xk+2hk,Xk], hk<O'

Ig"(x)1 ~ Mk' xE Jk> k ~ 0,

we have the error estimates

1 Mk-I
1

2

IXHI-Xkl ~2Ig'(xk)llxk-Xk-' ,

. I Mk-I
I 1

2

IX*-Xk+II~2Ig'(Xk)1 Xk-Xk-I ,

Mk-I 2

Ix* - xkl ~ Ig'(Xk),lxk - xk-d '

~.

k~O,

k~O,

k ~ I, (3)

k ~ I, (4)

k ~ 1. (5)
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If

1f'(X)1 ~ N, x EJO' (6)

and if

1 1

2 /f'(x)

f"'(x) 3

(

f"(X»

)

2

f'(x) +2 f'(x) I~M,
x EJo, (7)

then we have the coarser estimates

NM 3
IXk+J-Xkl~I_'I- \IIXk-Xk-l!' k ~ 1, (3')

1

* I,,;:: NM
1

-
1

3
X - Xk+ I """ I _'I - \1 Xk xk-l , k ~ 1, (4')

2NM
1

3

Ix* - Xkl ~ Ig'(Xk)!lxk - Xk-I ,
k ~ 1. (5')

Proof. In some essential parts the proof is similar to that of Theorem 7.1 in [7]. Because of
f'(xo) =i=0, we can assurne thatf'(xo) > O. We then consider the function

f(x)

g(x) = /f'(x) ,
X EJo.

For x E Jo, g has a continuous second derivative and we have

'
( ) = rp7\'

( ) -! f"(x )f(x)

g x Vi 'x} 2 / 3'f'(x)

from which

.

[

f" ( x ) 3

(

f" (x)

)

2

]g"(x)=~g(x) - f'(x) +2 f'(x) .
(8)

Furthermore

Ig'(x) - g'(xo)1 =I~:g"(t) dtl ~ Ix - xolMo,

and, using (2), we have

Ig'(xI) - g'(xo)! ~ IXI- xolMo= IholMo~ Ig'\xo)/ ,

from which we may estimate

(9)

, Ig'(xo)1
Ig'(xJ)1 ~ Ig'(xo)I-lg'(xo) - g (xl)1 ~ - .

Integrating by parts and using

(10)

ho = - g(xo)" \,

we get

f
XI

(x,- x )g"(x) dx = g(x])
Xo
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and therefore

Ig(X\)1 ~ ~lhoI2Mo-

Because of (10), the feasibility of Halley's method (0) is guaranteed for k = I and we have

x2=x\+hl-

(1 I)

Since

hl = - g(xJ)
g'(x\ )

we have from (10) and (11)

Ihd ~ Ihol2MoIg'(xo)1-
Finally in a way similar to that in [7]

. 2lhllMo~ Ig'(xl)l, (12)

and

I
\hd ~ "2lhol-

From these inequalities it follows that X2 lies in Jo and JI is contained in Jo; that is, we have
MI ~ Mo- Therefore (12) can be replaced by

21hdMJ~ Ig'(xl)l- (13)

For the sequence

Xk+1 = Xk + hk (14)

as computed by Halley's method it holds in general that

g(Xk)
hk = - g'(Xk) -

Therefore (13) shows that our assumptions remain true if we replace Xoby XI and ho by hl, and by
Xk and hk, respectively, in general. The convergence to a zero x* that is unique in Jo can now be
proved as in [7]. To prove the error estimates we start with (11): We have

( )
. I 2

Ig XI I~ "2lhol Mo

(15)

and, therefore, using (15),

- - - g(xl)
I

,,;::: Mo - 2'

IX2 xd-lhll"""~g'(XI) """2Ig'(xl)llxl xol-

This is (3) for k = 1. For k > I the assertion is proved by mathematical induction. We omit the
details. Since Ix* - xHd ~ hk we immediately get (4) from (3).
. Finally we have

Ix* - xkl ~ IXHI- xkl + IXk+l- x*l,

and (5) is therefore proved by using (3) and (4). Applying the mean-value theorem we have, for
xE Jk-I'

Ig"(X)1 =!
I

f(x)

[

_f'''(X) + 3
(

f"(x)

)

2

]2 Vf'(x) f'(x) "2 f'(x) I~NMlx-x*I~2NMlxk-Xk-d.
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Replacing, therefore, in (3), (4), and (5) Mk-I by the upper bound 2NMlxk - xk-d, we establish
(3'), (4') and (5'). 0

Without going into details of the proof we remark that the estimation (5) can further be
improved. If we define

t - I
k-

Ig'(xk),lhkIMk,
k~O,

then

. I Mk-I 2

Ix -xkl~.; 1
,
( )l lxk-Xk-d,

1 + 1 - 2tk g Xk

This last can be proved in exactly the same manner as the corresponding inequality for Newton's
method (see [4, p. 34 ff]).

Since one can easily show that

k ~ 1. (5")

1 tk-I
,~-

tk ~ 2 1 - tk-I
k ~ 1,

(5") can be replaced by
1

IX.-Xkl~

F1 + 1 - tk-I
1 - tk-I

Mk-I

Ig'(Xk),lxk- xk-d2.
(5"')

Since tk ~ 0, (5") and (5"') are asymptotically better than (5) by a factor of 1.

3. Numerical Example. In order to compare OUTtheorem with other results, we consider the
simple well-tried example (see, for example, [3, p. 453, Tabelle 2])

f(x) =X3 - 10.
Wehave

rex) = 3X2, f"(x) = 6x, f"'(x) = 6.

As in [3], we choose Xo = 2 and get

- g(xo) - tho - - '
( )

- 2.153 846 154,
g Xo

Xl= Xo+ ho= 2.153846154, andJo = [2,2.307692308].

For X E Jo we have

g"(X) ~ Mo = 0.288675 135.

Furthermore

Ig'(xo)1 = 3.752776750;

hence the main inequality (2) holds.
We have

Ig'(XI)1 = 3.731 590 624.

Using this value in (5) for k = 1 we have

M
Ix. - xd ~ I_"'~ \1Ix) - XOl2= 0.001 831001.

tAn numerical values have been computed using a HP21 pocket calculator.



1981] CLASSROOM NOTES 535

The actual error is

Ix. - xd ::::: 0.000 588 556.t

The error estimation reflects the order of the actual error and is only three times as large as the
actual error.

For hl we get

hl = 0.000 588536.

Therefore we have

JI = [x I' XI + 2h I ]

= [2.153846 154,2.155023227],

and, for x E J1,

g"(x) E [-0.000 946 821,0.000 945788],

hence

MI = 0.000 946 821.

F or x 2 we get the value

X2 = 2.154434690,

and therefore

Ig'(X2)1 = 3.731 530346.

Using (5) for k = 2, we finally have

M

Ix. - x21~ Ig'(~k)llx2- x,12~ 8.78X 10-11.

The actual error for X2is

Ix. - x21::::: 2.93 X 10-11.

Therefore the actual error is overestimated only by a factor of 3. (5"') gives us the estimate

Ix. - x21:::::4.39 X 10-11.

None of the error estimates that are to be found in Tabelle 2 in [3,p. 453] givea smaller bound for
the error than (5"').

4. Conclusion. H we compare the assumptions of our theorem with other results (especially
with those given in [3]), then it seems that the most drastic assumption is the requirement that f'
doesn't change sign in Jo. We need this assumption, however, in order to define g( x) in the whole
interval Jo.

Hone wants to use the more precise error estimate (5), then one has to compute the bound
Mk-I for the second derivative of g. There is no essential difficulty in doing this since one can get
these bounds very simply by using interval arithmetic in (8). See, for example, [1,p. 28 ff], or [6, p.
161 ff], or [9]. Tbe same is true for the inequality (5') and the bounds M and N appearing there.

t The """, " sign means here and in the sequel that the number is rounded upwards in the usual manner.
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In conclusion we remark that the most important applications of Halley's method are to
nonlinear equations in Banach spaces. See, for instance, the discussion and examples in [3].

The generalization of the results of this paper to this general case and some numerical examples
will be discussed in another paper.
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